Способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве неодимового 1.4-цис-полизопрена. Способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена осуществляют смешением хлорида неодима с изопропиловым спиртом, при этом на стадии синтеза сольвата хлорида неодима осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции. Изобретение позволяет существенно снизить размер частиц получаемой суспензии сольвата и обеспечивает получение неодимового катализатора высокой активности для полимеризации изопрена. 2 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве неодимового 1.4-цис-полизопрена, который является продуктом растворной полимеризации изопрена в присутствии каталитической системы, содержащей неодим.

Неодимовые каталитические системы проявляют высокую активность и 1,4-цис-специфичность при полимеризации изопрена в том случае, если галогенид неодима находится в виде комплексного соединения с органическим лигандом. Последним могут являться одноатомные алифатические спирты. Поэтому процесс получения неодимового катализатора состоит из следующих стадий: получение сольвата хлорида неодима с органическим лигандом, взаимодействие полученного сольвата с алюминий органической компонентой катализатора.

Известен способ получения спиртовых сольватов хлорида неодима из оксидов неодима [RU 2039706 С1, 20.07.1995]. Согласно этому способу процесс образования сольвата хлорида неодима протекает при взаимодействии оксида неодима с соляной кислотой в среде изопропилового спирта (ИПС). После чего осуществляют отгонку избытка спирта в присутствии жидкого парафина с температурой начала кипения 220-270°С с одновременным формированием дисперсии спиртового сольвата.

Недостатками данного способа получения изопропанольного сольвата хлорида неодима являются: многостадийность процесса; наличие соляной кислоты, приводящей к износу оборудования; низкое содержание изопропилового спирта в составе комплексного соединения с хлоридом неодима. Эти факторы приводят к значительному повышению энерго- и металлоемкости производства неодимового катализатора с недостаточно высокой активностью, что, в свою очередь, определяет высокую себестоимость изопренового каучука.

Целесообразным в этом случае является прямой синтез спиртового сольвата из хлорида неодима в среде жидкого парафина. Наиболее близким к данному изобретению является способ [RU 2220909, 10.01.2004]. Согласно этому способу после смешения хлорида неодима с одноатомным алифатическим спиртом, которым является бутанол (БС), при мольном соотношении гексагидрат хлорида неодима:бутанол 1:45, осуществляют отгонку азеотропной смеси вода-бутанол при пониженном давлении. Далее проводят реакцию спиртового обмена путем разбавления образовавшегося концентрированного спиртового раствора хлорида неодима изопропанолом в среде жидкого парафина. В этом случае мольное соотношение хлорид неодима:ИПС составляет 18. После чего избыток смеси спиртов отгоняют в роторно-пленочном испарителе. В результате получают продукт, в котором мольное соотношение NdCl3:БC:ИПС составляет 1:0,4:2,2. Полученный сольват хлорида неодима характеризуется средним диаметром частиц твердой фазы, равным 1.2-1.6 мкм.

Синтез сольватов хлорида неодима данным способом исключает применение коррозионно-активных гидрохлорирующих агентов (таких как соляная кислота) и образование побочных продуктов в виде оксихлоридов неодима, которые существенно снижают активность неодимового катализатора при полимеризации. Недостатками способа являются сложность проведения некоторых стадий, повышенный расход хлорида неодима и изопропилового спирта, что приводит к нерациональному использованию дорогостоящих компонентов.

Кроме того, указанные способы получения изопропанольного сольвата хлорида приводят к образованию суспензии с весьма крупными размерами частиц и неоднородным содержанием изопропилового спирта. Поэтому полученный неодимовый катализатор проявляет недостаточно высокую активность при полимеризации изопрена, что наряду с повышенными расходами исходных компонентов каталитической системы, значительно ограничивает освоение этих катализаторов в крупнотоннажном синтезе изопренового каучука.

Задача, на решение которой направлено данное изобретение, заключается в разработке способа получения сольвата хлорида неодима с ИПС для неодимового катализатора, позволяющего повысить эффективность последнего при полимеризации изопрена.

В заявленном техническом решении результат достигается тем, что на стадии синтеза сольвата хлорида неодима смешением хлорида неодима с однотомным алифатическим спиртом - ИПС, осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции, при этом используют осушенный хлорид неодима, мольное соотношение вода:хлорид неодима не более 0.8, в виде 3-13 масс.% (по неодиму) суспензии в жидком парафине.

Сущность изобретения заключается в следующем. Процесс образования комплекса хлорида неодима с ИПС относится к классу топохимических реакций, скорость которых существенно зависит от размеров частиц твердой фазы [Розовский А.Я. Кинетика топохимических реакций. М.: Химия, 1974. 220 с.] (в данном случае исходного хлорида неодима). Как следствие, состав комплекса, т.е. мольное отношение ИПС:Nd, определяется скоростью вхождения лиганда в координационную сферу атома неодима. Процесс комплексоообразования протекает на поверхности частиц хлорида неодима с медленной скоростью, которая зависит от размеров его частиц. Гидродинамическое воздействие в турбулентных потоках приводит к диспергированию частиц хлорида неодима, а следовательно, увеличивает скорость комплесообрзования. В результате процесс протекает в условиях, максимально приближенных к модели сжимающейся сферы, что, согласно представлениям кинетики топохимических реакций, приводит к образованию тонкодисперсной суспензии изопропанольного сольвата хлорида неодима с однородным содержанием лиганда.

Преимущества предлагаемого способа заключаются в повышении скорости топохимической реакции комплексообразовния хлорида неодима с ИПС за счет гидродинамического воздействия в турбулентном реакторе диффузор-конфузорной конструкции. Это приводит к снижению размеров его частиц до 0.04-0.06 мкм, вместо 0.2-1.6 мкм, и повышению содержания ИПС в сольвате до мольного отношения к хлориду неодима 2.5-3.0, необходимого для проявления высокой каталитической активности при полимеризации изопрена.

Сущность изобретения подтверждается следующими примерами.

Пример 1 (по прототипу). В аппарат загружаются хлорид неодима в виде гексагидрата и бутанол при мольном отношении гексагидрата к спирту 1:45. Полученная смесь нагревается при перемешивании до 55°С, затем при остаточном давлении в аппарате 50 мм рт.ст. отгоняется гомогенная азеотропная смесь бутанол-вода. При постепенном уменьшении остаточного давления до 30 мм рт.ст. далее отгоняется безводный бутанол. Вакуум стравливается азотом, и к полученному раствору приливается сначала нагретый до 70°С изопропанол, а затем жидкий парафин. Мольное соотношение ИПC:Nd составляет 18. Избыток спиртов отгоняется в роторно-пленочном испарителе при остаточном давлении 30 мм рт.ст. Состав продукта характеризуется мольным соотношением BdСl3:БС:ИПС=1:0,4:2,2.

Пример 2 (контрольный). В аппарат загружается осушенный хлорид неодима с мольным соотношением вода:хлорид неодима 0.8 и жидкий парафин в количествах, необходимых для получения 9 масс.% суспензии по неодиму. При механическом перемешивании мешалкой вводится ИПС. Начальное мольное соотношение ИПС:Nd равно 3. Далее при постоянном перемешивании процесс комплексообразования проводят в течение 6-8 часов для достижения требуемой конверсии комплекса хлорида неодима с ИПС.

Пример 3 (по изобретению). В аппарат загружается осушенный хлорид неодима, в котором соотношение вода:хлорид неодима, также как в примере 2, равно 0.8, и жидкий парафин в количествах, необходимых для получения 9 масс.% суспензии по неодиму. При механическом перемешивании мешалкой вводится ИПС. Мольное соотношение ИПC:Nd равно 3. Сразу же после ввода ИПС осуществляется гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции в импульсном режиме при скорости движения реакционной смеси не ниже 1 м/с. После чего реакционная смесь подается на перемешивание механической мешалкой, продолжительность которого составляет 6-8 часов.

Полученные изопропанольные сольваты хлорида неодима использовались для приготовления неодимового катализатора с триизобутилалюминием и пипериленом. Полимеризацию изопрена проводили в герметичных реакторах в атмосфере аргона. В реактор загружали раствор изопрена в изопентане, а затем вводили неодимовый катализатор. Концентрация изопрена в реакционной смеси 1.5 моль/л, катализатора (по неодиму) 1 ммоль/л.

Данные по примерам 1-3 объедены в таблице 1.

Таблица 1.
Некоторые показатели процесса синтеза изопропанольного сольвата хлорида неодима, полимеризации изопрена и 1,4-цис-полиизопрнена
Показатель Пример 1 Пример 2 Пример 3
Синтез сольвата хлорида неодима
Массовая концентрация неодима в суспензии в жидком парафине, масс.% 9 9 9
Соотношение ИПС:Nd в комплексе хлорида неодима с ИПС 2.2 1.75 2.8
Средний размер частиц комплекса, мкм 1.2-1.6 0.2-0.5 0.04-0.06
Полимеризация изопрена
Выход 1,4-цис-полиизопрена за 1 час полимеризации, % 60 50 85
1,4-цис-полиизопрен
Коэффициент полидисперсности ММР 1,4-цис-полиизопрена 3.1 3.5 3.2

В таблице 2 приведены данные по примерам 4-7, показывающим влияние содержания воды в хлориде неодима, а также концентрации хлорида неодима в суспензии в жидком парафине на свойства сольвата хлорида неодима и полимеризацию изопрена. Полученные данные свидетельствуют о том, что оптимальной концентрацией неодима в суспензии в жидком парафине и мольное соотношение вода:хлорид неодима, обеспечивающими размер частиц комплекса 0.04-0.06 мкм и содержание ИПС в сольвате до мольного отношения к хлориду неодима 2.5-3.0, являются, соответственно, 3-13 масс.% и не более 0.8. В этих условиях удается сформировать высокоактивный в полимеризации изопрена (максимальный выход полимера 85% за 1 час) неодимовый катализатор, который позволяет получать 1,4-цис-полиизопрен с коэффициентом полидисперсности 3.2.

Таблица 2.
Влияние содержания воды и концентрации хлорида неодима в суспензии на свойства сольвата хлорида неодима и полимеризацию изопрена
При-мер Соотношение вода:хлорид неодима, моль Массовая концентрация неодима в суспензии, масс.% Средний размер частиц комплекса, мкм Соотношение ИПС:Nd в комплексе хлорида неодима с ИПС Выход 1,4-цис-полиизопрена за 1 час полимеризации, % Коэффициент полидисперсности ММР 1,4-цис-полиизопрена
1 0.02-0.04 1.95 65 6.8
3 0.04-0.06 2.10 71 6.3
4 0.3 9 0.04-0.06 2.5 80 4.5
13 0.05-0.06 2.7 83 4.4
20 0.07-0.09 1.93 70 6.7
1 0.03-0.05 1.90 66 4.8
3 0.04-0.06 2.5 79 3.5
5 0.8 9 0.04-0.06 2.8 85 3.2
13 0.04-0.06 2.7 81 3.7
20 0.07-0.09 2.1 78 5.2
1 0.07-0.09 1.99 69 4.9
3 0.08-0.09 1.97 67 5.3
6 1.5 9 0.09-0.20 1.93 63 6.7
13 0.10-0.35 1.88 60 7.2
20 0.20-0.45 1.73 55 7.1
1 0.08-0.25 1.5 53 6.7
3 0.10-0.35 1.45 50 6.9
7 2.8 9 0.25-0.55 1.40 48 7.1
13 0.35-0.60 1.37 47 6.8
20 0.35-0.7 1.35 45 4.9

Таким образом, предлагаемый способ получения сольвата хлорида неодима с изопропиловым спиртом позволяет существенно снизить размер частиц получаемой суспензии сольвата хлорида неодима и повысить до необходимого уровня содержание ИПС в сольвате. Эти факторы определяют высокую активность неодимового катализатора при полимеризации изопрена.

1. Способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена смешением хлорида неодима с изопропиловым спиртом отличающийся тем, что на стадии синтеза сольвата хлорида неодима осуществляют гидродинамическое воздействие в трубчатом турбулентном реакторе диффузор-конфузорной конструкции.

2. Способ по п.1, отличающийся тем, что используют осушенный хлорид неодима с мольным соотношением вода : хлорид неодима не более 0.8.

3. Способ по пп.1, 2, отличающийся тем, что используется 3-13 мас.% суспензия хлорида неодима в жидком парафине.



 

Похожие патенты:

Настоящее изобретение относится к способу полимеризации в объеме для получения полидиенов. Описан способ получения полидиена, который включает стадию (i) объединения (a) сопряженного диенового мономера, (b) органофосфата лантаноида, (c) алкилирующего агента и (d) хлорсодержащего соединения при мольном соотношении алкилирующего агента и органофосфата лантаноида от 2:1 до 500:1, мольном соотношении хлорсодержащего соединения и органофосфата лантаноида от 0,5:1 до 20:1, и количестве органофосфата лантаноида от 0,001 до 10 ммоль на 100 г сопряженного диенового мономера, где на упомянутой стадии (i) образуется полимеризационная смесь, которая включает менее чем 20 мас.% растворителя при расчете на совокупную массу полимеризационной смеси и (ii) осуществления полимеризации сопряженного диенового мономера с образованием полидиена, имеющего по меньшей мере 98% цис-1,4 звеньев и молекулярно-массовое распределение менее 2,2.

Настоящее изобретение относится к способу получения полидиенов. Описан способ получения полидиена, который включает стадию: полимеризации сопряженного диенового мономера с использованием каталитической системы на основе лантаноида, включающей комбинацию или продукт реакции (а) соединения лантаноида, (b) алкилирующего агента, (с) галогенсодержащего соединения и (d) дигидрокарбилового эфира, где (а) соединение лантаноида, (b) алкилирующий агент, (с) галогенсодержащее соединение и (d) дигидрокарбиловый эфир объединяют непосредственно и индивидуально с сопряженным диеновым мономером, и где упомянутая стадия полимеризации протекает в полимеризационной смеси, которая включает менее чем 20% (мас.) растворителя при расчете на совокупную массу полимеризационной смеси, и где дигидрокарбиловый эфир описывается формулой R-O-R, где каждый R представляет собой независимо гидрокарбильную группу или замещенную гидрокарбильную группу, выбранную из группы, состоящей из алкильной, циклоалкильной, замещенной циклоалкильной, алкенильной, циклоалкенильной и бензильной групп.

Изобретение относится к способу катионной (со)полимеризации изоолефинового мономера с использованием инициатора на основе цинка. Способ включает стадии а) получения раствора изоолефинового мономера в галогенуглеродном растворителе, б) прибавления к полученному на стадии а) раствору алкилгалогенидного активатора, в) добавления к полученному на стадии б) раствору инициатора на основе цинка и г) проведения реакции в полученном на стадии в) растворе, с образованием полимера, в состав которого входит изоолефин.
Изобретение относится к способу получения спиртового сольвата хлорида неодима, который может быть использован в качестве компонента для получения катализатора полимеризации диеновых углеводородов.
Изобретение относится к способам получения полимеров и сополимеров сопряженных диенов (со)полимеризацией и может найти применение в промышленности синтетического каучука.

Изобретение относится к каталитической системе, используемой для сополимеризации, по меньшей мере, одного сопряженного диена и, по меньшей мере, одного моноолефина, к способу получения данной каталитической системы, к способу получения сополимера сопряженного диена и, по меньшей мере, одного моноолефина, используемого в упомянутой каталитической системе, и к упомянутому сополимеру.

Изобретение относится к содержащим ускоритель полимеризуемым композициям, содержащим соединения, включающие фрагменты, способные к свободно-радикальной полимеризации, борорганическим соединениям, способным образовывать свободные радикалы, способные инициировать свободно-радикальную полимеризацию, и клеям на основе таких композиций.

Изобретение относится к технологии получения катализаторов полимеризации и сополимеризации сопряженных диенов и может быть использовано в промышленности синтетических каучуков.
Изобретение относится к области получения синтетического каучука и может быть использовано в нефтехимической промышленности. .

Способ извлечения редкоземельных элементов из фосфогипса включает сернокислотное выщелачивание РЗМ из пульпы фосфогипса с наложением ультразвуковых колебаний, разделение пульпы выщелачивания на продуктивный раствор РЗМ и кек, осаждение коллективного концентрата РЗМ из продуктивного раствора с получением водной фазы.

Изобретение относится к способу извлечения концентрата редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты. Экстракционную фосфорную кислоту с концентрацией 27-45 мас.%, содержащую РЗЭ и торий, пропускают через сульфоксидный катионит с образованием обедненного по РЗЭ торийсодержащего фосфорнокислого раствора и катионита, насыщенного РЗЭ.
Изобретение относится к способу извлечения редкоземельных (РЗЭ) из азотно-фосфорнокислых растворов переработки апатита. Способ включает растворение апатита в азотной кислоте, вымораживание нитрата кальция(стронция), осаждение гидрато-фосфатов РЗЭ и кальция(стронция), растворение осадка в азотной кислоте, введение в раствор нагретого до 40-50°С полученного на стадии вымораживания нитрата кальция(стронция) с концентрацией 800-1000 г/л, при этом содержание РЗЭ (в расчете на оксиды) поддерживают равной 40-60 г/л, а избыточной азотной кислоты 1-2 моль/л, последующую экстракцию РЗЭ трибутилфосфатом в присутствии нитрата кальция, промывку и реэкстракцию, причем промывку экстракта осуществляют упаренным реэкстрактом до концентрации по РЗЭ 250-300 г/л.
Изобретение относится к очистке фосфатно-фторидного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита. Способ очистки фосфатно-фторидного концентрата РЗЭ, содержащего примеси кальция и тория, включает обработку концентрата раствором серной кислоты концентрацией 4-6 мас.% в присутствии сульфоксидного катионита, при этом РЗЭ, примеси тория и кальция сорбируются сульфоксидным катионитом, перевод фтора наряду с фосфором в сернокислый раствор, отделение сернокислотного раствора от сульфоксидного катионита, десорбцию из катионита РЗЭ и примеси тория и кальция раствором соли аммония с получением десорбата и его нейтрализацию аммонийным соединением в три стадии, при этом на первой стадии нейтрализацию ведут до обеспечения pH 4,2-5,0 с образованием и отделением торийсодержащего осадка, на второй стадии - до обеспечения pH 7,0-7,5 с образованием и отделением концентрата РЗЭ, а на третьей стадии - до рН не менее 8,5 с образованием и отделением кальцийсодержащего осадка.

Изобретение относится к композиции на основе оксидов циркония, церия и по меньшей мере одного редкоземельного элемента, отличного от церия, к способу ее получения и к ее применению для очистки выхлопных газов двигателей внутреннего сгорания.
Изобретение может быть использовано в химической промышленности. На первой стадии извлечения гадолиния из смеси редкоземельных элементов в органическую фазу извлекают тербий, диспрозий и более тяжелые РЗЭ.

Изобретение относится к новому неорганическому зеленому пигменту для окрашивания различных материалов. Пигмент имеет формулу RE2MoO6, где RE - смешанные редкоземельные (РЗ) металлы в количестве 66,66 мол.%, Мо - молибден в количестве 33,34 мол.%.
Изобретение относится к области аналитической химии, а именно к люминесцентному способу определения самария. Способ включает перевод его в люминесцирующее соединение с органическим реагентом.
Изобретение относится к аналитической химии, а именно к фотометрическим способам определения редкоземельных элементов в природных объектах и технических материалах.
Изобретение относится к электролитическим способам получения чистого гексаборида диспрозия. В качестве источника диспрозия используют безводный трихлорид диспрозия, источника бора - фторборат калия, фонового электролита - эквимольную смесь хлоридов калия и натрия.

Изобретение относится к улучшенному способу карбонилирования по меньшей мере одного карбонилирующегося реагента, выбранного из группы, включающей диметиловый эфир и метанол, монооксидом углерода в присутствии катализатора с получением по меньшей мере одного продукта карбонилирования, выбранного из группы, включающей метилацетат и уксусную кислоту, и этот катализатор получают объединением морденита, в который включен по меньшей мере один из следующих: серебро и медь, с неорганическим оксидным связующим.
Наверх