Композиция для склеивания металлических изделий

Изобретение относится к области машиностроения и ремонта техники, в частности металлических деталей и узлов машин. Композиция для склеивания металлических изделий содержит анаэробный герметик АН-111 и наполнитель - углеродные нанотрубки «Таунит-М». Изобретение обеспечивает сокращение времени отверждения и повышение прочности клеевых соединений. 3 ил., 2 табл.

 

Область техники, к которой относится изобретение

Изобретение относится к области машиностроения и ремонта техники, в частности к склеиванию металлических деталей в узлах машин.

Уровень техники

Известна композиция при следующем соотношении компонентов (в % по массе) [1]:

- анаэробный герметик АН-111 - 78,08,

наполнители:

- порошкообразный акриловый лак АК-506 - 21,7,

- наноразмерный порошок сплава железа с никелем - 0,22.

Прочность клеевых соединений, выполненных данной композицией, составляет 28,2 МПа при толщине клеевого шва 0,1 мм (фиг.1), что на 22% выше прочности клеевых соединений анаэробного герметика АН-111 без наполнителей (23 МПа).

К недостаткам композиции относятся:

1. повышенные требования к точности концентрации компонентов, что повышает трудоемкость приготовления композиции и соответственно ее цену;

2. относительно незначительное повышение прочности клеевых соединений (до 22%), выполненных композицией, по сравнению с прочностью клеевых соединений анаэробного герметика АН-111 без наполнителей;

3. время отверждения клеевых соединений, выполненных композицией, не отличается от времени отверждения клеевых соединений анаэробного герметика АН-111.

Раскрытие изобретения

Заявлена композиция при следующем соотношении ингредиентов (в % по массе):

- анаэробный герметик АН-111 - 95…96,

наполнитель:

- углеродные нанотрубки «Таунит-М» - 4…5.

Анаэробные герметики представляют собой многокомпонентные жидкие составы, способные длительное время храниться без изменения свойств и быстро отверждаться при отсутствии взаимодействия с кислородом воздуха. Основой анаэробных герметиков являются полимеризационно-способные соединения акрилового ряда, чаще всего диметакриловые эфиры полиалкиленгликолей, для которых характерна высокая скорость превращения в трехмерно-сшитые полимеры. В состав анаэробных герметиков входят также ингибирующие и инициирующие системы, обеспечивающие длительное хранение герметиков и быстрое отверждение в изделиях, различные загустители, модификаторы, красители и другие добавки [2].

Отличие анаэробного герметика АН-111 от других марок анаэробных герметиков Анатерм заключается в том, что для повышения эластичности полимерных сеток анаэробных герметиков были синтезированы олигомерные каучуки с концевыми уретанакрилатными группами, которые представляют собой продукты взаимодействия гидроксилсодержащих полиэфиров и олигомерных каучуков с диизоцианатами и акрилатами. Введение реакционноспособных олигомерных каучуков в состав герметика АН-111 позволило существенно повысить его прочность и сохранить термическую и химическую стойкость [3].

В таблице 1 представлены показатели качества анаэробного герметика АН-111 [4].

Таблица 1
Показатели качества [4]
№п/п Наименование показателя Значения
1 Кажущаяся вязкость по Брукфильду при температуре 25°С, А/2/10, МПа·с 2000-3000
2 Момент отвинчивания образцов из конструкционной стали резьба M10·1,5 после выдержки при (23±2)°С в течение 1 часа и 3 часов, Н·м, не менее 20
3 Момент отвинчивания образцов из оцинкованной стали резьба M10·1,5 после выдержки при (23±2)°С в течение 1 часа и 3 часов, Н·м, не менее 15
4 Предел прочности при аксиальном сдвиге через 24 часа при (23±2)°С, МПа, не менее 20

Углеродные нанотрубки (УНТ) «Таунит-М» получены газофазным химическим осаждением (CVD) в процессе каталитического пиролиза углеводородов [5].

В таблице 2 представлены параметры УНТ «Таунит-М».

Таблица 2
Параметры углеродных нанотрубок «Таунит-М»
№п/п Наименование параметра Размерность Значения
1 Наружный диаметр нм 8…15
2 Внутренний диаметр нм 4…8
3 Длина нм 2 и более
4 Общий объем примесей
после очистки
%
%
До 5
До 1
5 Насыпная плотность г/см3 0,03…0,05
6 Удельная геометрическая поверхность м2 300…320 и более
7 Термостабильность °С До 600

Существенным отличительным признаком от прототипа является то, что в качестве наполнителя используются углеродные нанотрубки «Таунит-М».

Таким образом, заявленное техническое решение имеет существенные отличительные признаки от прототипа и соответствует, тем самым, критериям изобретения.

Экспериментальные исследования показали, что прочность клеевых соединений, выполненных заявляемой композицией, при толщине клеевого шва 0,1 мм составляет 46,5 МПа. Это на 65% превышает прочность клеевых соединений, выполненных композицией-прототипом, и на 102,2% - прочность клеевых соединений, выполненных анаэробным герметиком АН-111 (фиг.1).

Исследования процессов отверждения диэлектрическим и электрическим методами показали, что время полного отверждения клеевых соединений, выполненных композицией-прототипом при температуре окружающей среды Т=20°С, составляет 6 ч, а клеевых соединений, выполненных заявляемой композицией, 0,75 ч. Таким образом, время отверждения сократилось более чем на 5 ч, что позволяет значительно сократить длительность процесса сборки узла, в конструкцию которого входит клеевое соединение.

Реализация отличительных существенных признаков от прототипа, а именно использование в качестве наполнителя углеродных нанотрубок «Таунит-М» в композиции на основе анаэробного герметика АН-111, позволяет получить технический результат, который выражается в: 1) повышении прочности клеевых соединений, выполненных заявляемой композицией; 2) сокращении времени отверждения клеевых соединений, выполненных заявляемой композицией.

Краткое описание чертежей

Фиг.1. Прочность клеевых соединений при аксиальном сдвиге τ, выполненных анаэробным герметиком АН-111 (1), композицией-прототипом (2) и заявляемой композицией (3).

Фиг.2. Валы-образцы для клеевых соединений с подшипником 209.

Фиг.3. Центрирующее приспособление для сборки деталей клеевого соединения.

Осуществление изобретения

Заявлена композиция при следующем соотношении ингредиентов (в % по массе):

- анаэробный герметик АН-111 - 95…96,

наполнитель:

- углеродные нанотрубки «Таунит-М» - 4…5.

Анаэробный герметик АН-111 (ТУ 2257-274-00208947-96) поставляется в воздупроницаемых полиэтиленовых флаконах емкостью 50, 100 и 200 г. Разработчик и изготовитель - НИИ полимеров им. Каргина (г.Дзержинск).

Углеродные нанотрубки «Таунит-М» поставляются в полиэтиленовых пакетах в количестве, заявляемом покупателем. Разработчик и изготовитель - ООО «НаноТехЦентр» (г.Тамбов).

Ингредиенты взвешивали на аналитических весах марки ВЛА-200 М. Первоначально в стеклянную емкость заливали отобранный герметик АН-111, затем добавляли углеродные нанотрубки «Таунит-М», после чего композицию тщательно перемешивали. Композицию использовали в течение 10 мин.

Образцами являлись клеевые соединения внутренних колец подшипников 209 с валами. Валы изготовили из стали 45 (фиг.2). Шероховатость посадочной поверхности Ra 0,63 [6]. Радиальный зазор в соединении до склеивания в 0,1 мм обеспечивали шлифованием валов. Для обеспечения соосности деталей клеевого соединения использовали специально разработанные и изготовленные центрирующие приспособления (фиг.3).

Исследования прочности проводили на разрывной машине ИР 5047-50 с одновременной записью диаграммы «нагрузка-деформация». Скорость нагружения при испытаниях была постоянной и составляла 5 мм/мин.

Процессы отверждения клеевых соединений исследовали диэлектрическим и электрическим методами с помощью прибора Е7-11 [6]. Электрическую емкость клеевого шва соединения периодически измеряли прибором Е7-11 и по ней рассчитывали диэлектрическую проницаемость.

Диэлектрическую проницаемость ε определяли по формуле

ε = ln ( r 2 / r 1 ) C / 2 π ε o B , ( 1 )

где ε - диэлектрическая проницаемость клеевого шва; С - электрическая емкость клеевого шва, Ф; r1 - радиус вала, мм; r2 - радиус внутреннего кольца подшипника, мм; εо - диэлектрическая проницаемость вакуума; В - ширина кольца подшипника, мм.

Удельное электрическое сопротивление ρν рассчитывали по формуле

ρ ν = 2 R π D B S , ( 2 )

где ρν - удельное электрическое сопротивление, Ом×м; R - сопротивление клеевого шва, Ом; D - диаметр кольца подшипника, м; S - диаметральный зазор в соединении до склеивания, м.

О завершении полимеризации судили по стабилизации значений диэлектрической проницаемости или удельного электрического сопротивления клеевого шва. Эксперимент проводили в трехкратной повторности.

Библиографические данные

1. Демин, В.Е. Совершенствование технологии восстановления сопряжений опор корпусных деталей с подшипниками качения применением композиционных анаэробных материалов (на примере корпуса КП трактора Т-150К) [Текст]: автореф. дис… канд. техн. наук. / Демин В.Е. - Саратов. 2007. - 19 с.

2. Материалы, выпускаемые ФГУП «НИИ полимеров» // Клеи. Герметики. Технологии. - №1. - 2006. - С.47-48.

3. Хамидулова З.С., Рогачева И.П., Аронович Д.А. и др. Новые анаэробные герметики для автомобилестроения / Хамидулова З.С., Рогачева И.П., Аронович Д.А. и др. // Пластические массы. - №6. - 1999. - с.40.

4. Паспорт №358 на клей анаэробный герметик АНАТЕРМ-111 ТУ 2257-274-00208947-96. ФГУП «НИИ полимеров».

5. www.nanotc.ru

6. Композиция для склеивания металлических изделий [Текст]: Патент на изобретение №2430945 РФ Заявл. 29.05.2009 / Ли Р.И., Кондрашин С.И., Бочаров А.В., Бутан А.В. // Опубл. 10.10.2011. - Бюл. №28.

Композиция для склеивания металлических изделий, включающая анаэробный герметик АН-111 и наноразмерный наполнитель, отличающаяся тем, что наполнителем являются углеродные нанотрубки, мас. %:

анаэробный герметик АН-111 95 - 96
наполнитель - углеродные нанотрубки «Таунит-М» 4 - 5



 

Похожие патенты:

Изобретение относится к клею, который подходит для использования с материалами, обладающими низкой поверхностной энергией. Клей содержит акриловый сополимер, придающий клейкость реагент с высокой температурой стеклования (Tg) и придающий клейкость реагент с низкой температурой стеклования.

Изобретение относится к области получения эластичных быстроотверждающихся клеев холодного отверждения, а именно к полиуретановым клеевым составам с высокими адгезионными характеристиками с хорошей водостойкостью, и может быть использовано в различных областях человеческой деятельности.

Изобретение относится к композиции для склеивания металлических изделий. .

Изобретение относится к клею, используемому для склеивания металлических изделий в узлах машин. .
Изобретение относится к фотоотверждаемой клеевой композиции, которая может быть использована для капсуляции органических светоизлучающих диодов, а также к способу получения фотоотверждаемой клеевой композиции.

Изобретение относится к водной эмульсии полимера, ре-диспергируемой смоле и адгезивному материалу, полученным с применением этой эмульсии. .

Изобретение относится к чувствительным к давлению клеям, которые применяют предпочтительно в косметологии, в пищевом секторе промышленности, в медицинских пластырях, а также в трансдермальных терапевтических системах.

Изобретение относится к радикально полимеризующимся клеям, предназначенным для использования в качестве промежуточного полимерного слоя при изготовлении многослойных ударостойких конструкций с использованием оптически прозрачных материалов (силикатное стекло, оргстекло, полиэтилентерефталат, поликарбонат и т.п.).

Изобретение относится к получению клеевых композиций, содержа . .

Изобретение относится к технологии нанесения пленок и касается конструкций, включающих молекулярные структуры с высоким аспектным соотношением (ВАСМ-структуры), и способа их изготовления.
Изобретение относится к нанотехнологии и может быть использовано для эффективного изменения оптоэлектронных свойств ансамблей покрытых лигандной оболочкой наночастиц серебра в вязких средах и пленках.
Изобретение может быть использовано для оптических приборов и методов исследования в различных областях науки и техники. Светоперераспределяющее покрытие включает в качестве пленкообразующей основы тетраэтоксисилан, этиловый спирт и соляную кислоту.

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л.

Изобретение относится к технологии создания сложных структур с помощью потока ускоренных частиц и может быть использовано в нанотехнологии, микроэлектронике для создания сверхминиатюрных приборов, интегральных схем и запоминающих устройств.

Изобретение относится к контрастному агенту на основе наночастицы, где наночастицы содержат ядро, поверхность которого не содержит диоксид кремния, и оболочку, которая присоединена к поверхности ядра и содержит силан-функционализированную цвиттер-ионную группировку.

Изобретение относится к способу лазерно-плазменного наноструктурирования металлической поверхности обрабатываемого металла. Способ включает образование в непрерывном оптическом разряде приповерхностной лазерной плазмы в парах металла и подачу в лазерную плазму ионов активных химических элементов от независимого плазменного источника энергии.
Изобретение относится к технологии получения полупроводниковых наноматериалов. Способ включает подготовку кремниевой пластины путем нанесения на ее поверхность нанодисперсных частиц катализатора с последующим помещением в ростовую печь, нагревом и осаждением кристаллизуемого вещества из газовой фазы по схеме пар→капельная жидкость→кристалл, при этом перед нанесением частиц катализатора и помещением подложки в ростовую печь пластину кремния легируют фосфором до удельного сопротивления 0,008-0,018 Ом·см и анодируют длительностью не более 5 мин с подсветкой галогенной лампы в смеси 48%-ного раствора HF и C2H5OH (96%) в соотношении 1:1, причем плотность тока анодизации поддерживают на уровне не менее 10 мА/см2, а наночастицы катализатора наносят электронно-лучевым напылением пленки металла толщиной не более 2 нм.
Изобретение может быть использовано в материаловедении для изготовления деталей смазываемых и несмазываемых узлов трения машин и агрегатов. Антифрикционный полимерный композиционный материал включает политетрафторэтилен, дисульфид молибдена, ультрадисперсный порошок скрытокристаллического графита с удельной поверхностью 50-75 м2/г и углеродные нанотрубки.

Изобретение относится к получению тонкодисперсных органических суспензий, включающих металл/углеродный нанокомпозит, и может использоваться для создания функциональных полимерных материалов. Механически измельченный порошок металл/углеродного нанокомпозита, представляющий собой наночастицы 3d металла, такого как медь, или никель, или железо, стабилизированные в углеродных нанопленочных структурах, механически перетирают совместно с порционно вводимым органическим соединением в соотношении 3:1. Полученную смесь диспергируют с помощью ультразвука в течение времени, соответствующего максимальному соотношению пиковых интенсивностей на ИК-спектре при одинаковых волновых числах полученной суспензии и органического соединения. В качестве органических сред использованы этиловый спирт, толуол, ацетон, изометилтетрагидрофталевый ангидрид, смеси органических веществ. Технический результат состоит в получении суспензии на основе органического соединения и металл/углеродного нанокомпозита с регулируемой активностью, контролируемой методом ИК-спектроскопии. 2 н. и 6 з.п. ф-лы, 17 табл.
Наверх