Способ измерения глубины объекта и гидролокатором

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного газопровода и определения местоположения объекта утечки газа. Для этого излучают зондирующий сигнал, принимают эхосигнал статическим веером характеристик направленности в горизонтальной плоскости, производят многоканальную обработку по всем характеристикам направленности, выбирают порог в каждом канале, определяют времена начала Tмин и времена окончания эхосигнала Tмакс в каждом пространственном канале, выбирают канал, имеющий максимальное время задержки окончания эхосигнала Tмакс и соответствующее этому каналу минимальное время задержки начала эхосигнала Tмин, вычисляют дистанцию Днач=Tмин0,5C, вычисляют дистанцию по окончании эхосигнала Доконч=Tмакс0,5C, а глубину местоположения начала эхосигнала определяют по формуле H = Д о к о н ч . 2 Д н а ч . 2 , где H - глубина местоположения начала газовой пелены; Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубы; Днач - дистанция, соответствующая минимальному времени начала эхо-сигнала или выхода газовой пелены на поверхность; C - скорость распространения звука в районе работы. 1 ил.

 

Настоящее изобретение относится к области гидролокации и предназначено для измерения глубины местоположения объекта, имеющего развитую вертикальную структуру, в том числе местоположение источников скрытых утечек газа из трубопроводов.

В настоящее время большое распространение получили газопроводы, которые прокладываются на больших расстояниях под водой. Они могут располагаться как по дну морей, так и в подводном положении в плавучем состоянии на некоторой глубине. В процессе эксплуатации возникают ситуации, которые могут нарушить уплотнение между трубами, что приведет к образованию отверстия, из которого будет происходить утечка газа. Обнаружить утечку газа можно по снижению давления в магистрали. Однако это не всегда возможно, поскольку давление в системе зависит от потребления, которое практически всегда является случайным и зависит от случайности включения и отключения источников потребления. Обнаружить утечку газа с поверхности воды затруднительно, поскольку на поверхности моря будет наблюдаться газовые пузыри, характер которых будет маскироваться волнующейся водной массой. Обнаружить утечку газа можно и с использованием многолучевых эхолотов, которые работают непосредственно по дну и по известному местоположению газового трубопровода. (А.В. Богородский, Д.Б. Островский. Гидроакустические навигационные и поисково-исследовательские средства. СПб.: Изд. «ЛЭТИ», 2009 г., с.89-113), однако

это требует точного знания положения трубопровода на дне, что связано с большими предварительными работами. Можно использовать гидролокаторы бокового обзора типа «Гидра» (Скнаря А.В., Трусилов В.Т., Седов М.В. Применение гидролокаторов бокового обзора для решения задач безопасности судоходства и экологического мониторинга. Специальная техника, №2, 2003 г.). Как правило, эти гидролокаторы являются буксируемыми и имеют дистанцию обнаружения порядка сотен метров, что также ограничивает возможности мониторинга состояния трубопроводов. Наиболее полно возможности использования гидролокаторов бокового обзора для задач обследования акваторий изложены в работе В.Г. Тимошенков. Разработка программно- математических средств идентификации подводных потенциально опасных объектов, регистрируемых с помощью гидроакустических средств. НИР «Объект» ЛЮКИ НИР 518-1. УДК 551.46.07. СПб, 2008 г. ОАО «Концерн «Океанприбор». Там же приведен патентный поиск по всем гидроакустическим средствам для обнаружения подводных потенциально опасных объектов с.117-137, который показал, что в имеющейся литературе отсутствуют методы обнаружения местоположения газовой пелены на больших пространствах и отсутствуют методы определения глубины источника утечки.

Известен метод определения глубины погружения цели с использованием гидролокатора, описанный в работе (А.П. Сташкевич. Акустика океана. Л.: Судостроение, 1966 г., с.263). Способ содержит измерение дистанции до цели и угла, определяемого направлением характеристики направленности в вертикальной плоскости.

Известен «Способ и устройство определения глубины подводного объекта»

авторы SATO KAZUO и др. по патенту JP 02708109 B2 от 04.02.98 г. G01S 15/10 HITACYI LTD, который основан на том же принципе, что и предыдущий способ, но определение направления производится с использованием сканирования характеристики направленности в вертикальной плоскости при излучении зондирующего сигнала узкой характеристикой направленности.

Недостатком данных методов является то, что необходимо точно знать направление на цель, которая определяется с использованием узкой характеристики направленности (ХН) в вертикальной плоскости. Результатом оценки глубины для объекта является величина, которая получается при решении прямоугольного треугольника по гипотенузе, определяемой по оценке дистанции и углу, определяемому направлением характеристики направленности.

Такая процедура определения глубины погружения зависит от правильности получения оценки направления на цель, которая зависит от ширины характеристики направленности в вертикальной плоскости. Чем уже ХН, тем точнее можно определить направление на цель. Существующие системы обнаружения эхосигнала имеют узкую характеристику направленности в горизонтальной плоскости и широкую характеристику направленности в вертикальной плоскости. Ширина характеристики направленности в вертикальной плоскости является конечной величиной и составляет в существующих системах величину порядка 20°-40° по уровню 0.7 от максимума.

Известен измеритель глубины погружения объекта по патенту РФ №119127 и известен способ определения глубины погружения объекта с использованием подвижного носителя по патенту РФ №2350983. Они основаны на одном и том же принципе, но в измерителе по патенту РФ №119127 дополнительно учитывается курсовой угол на объект. Наиболее близким аналогом является способ по патенту РФ №2350983, который и принимается за прототип. Способ содержит излучение зондирующего сигнала, прием эхосигнала и измерение дистанции D1 на момент времени t1, в момент времени t1+Δt, повторяют процедуру измерения дистанции до объекта определяют дистанцию D2 до объекта в момент времени t1+Δt, определяют скорость движения носителя Vсоб; и глубину погружения объекта относительно горизонта движения носителя определяют по формуле

H = D 2 2 Δ D 2 , где

Δ D = ( D 1 2 D 2 2 V 2 Δ t 2 ) / 2 V Δ t , где

D1 - дистанция до объекта в момент времени t1,

D2 - дистанция до объекта на момент времени t1+Δt,

hизл - глубина погружения излучателя,

V с о б 2 - скорость перемещения излучателя.

Этот способ предназначен для определения глубины погружения неподвижного локального объекта.

При нарушении герметичности трубопровода происходит выход газа, который образует пелену пузырей. При работе гидролокатора можно будет получить эхосигнала от пелены пузырей, образующейся при движении пузырей с глубины на поверхность. Такой отражатель имеет хорошо развитую вертикальную структуру, поскольку пузыри поднимаются вертикально вверх и увеличиваются в объеме, что приводит к расширению газового облака у поверхности. Поскольку этот объект имеет большую протяженность в вертикальной и горизонтальной плоскости, то существенно увеличивается ошибка оценки глубины, либо невозможность получения оценки глубины известными методами.

Указанный недостаток устраняется тем, что в известный способ измерения глубины погружения, содержащий излучение зондирующего сигнала, прием эхосигнала и измерение дистанции дополнительно введены новые признаки, а именно прием эхосигналов осуществляется статическим веером характеристик направленности в горизонтальной плоскости, имеющих направленность в вертикальной плоскости порядка 40°, производится многоканальная обработка по всем характеристикам направленности, выбирается порог в каждом канале, обнаруживается эхосигнал, превысивший порог в каждом канале, определяется момент времени начала Тмин и момент времени окончания Тмакс эхосигнала в каждом пространственном канале, выбирается канал с максимальным временем задержки Тмакс и соответствующее ему Тмин минимальное время задержки, вычисляется Д н а ч = T м и н 0,5 C , вычисляется дистанции по окончанию эхосигнала, Д н а ч = T м а к с 0,5 C , а глубину местоположения начала эхосигнала определяется по формуле H = Д о к о н ч . 2 Д н а ч . 2 , где

H - глубина местоположения начала газовой пелены;

Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубопровода;

Днач - дистанция, соответствующая минимальному времени начала эхосигнала или выхода газовой пелены на поверхность;

C - скорость распространения звука в районе работы.

Техническим результатом предлагаемого способа является повышение точности определения глубины расположения начала эхосигнала от вертикально распределенной пелены пузырей, что соответствует местоположению источника нарушения герметичности газопровода.

Поясним достижение указанного технического результата и существо предлагаемого технического решения.

Американскими специалистами были проведены акустические исследования и были получены данные, что акустическую энергию хорошо отражают не только металлические и скальные объекты, но газовые пузыри, которые могут создаваться в кильватерных струях при движении надводного корабля. В монографии Физические основы подводной акустики /Под ред. Мясищева В.И. М.: Сов радио, 1955 г., с.604 рассмотрены вопросы отражения акустической энергии от отдельных пузырей и от пелены пузырей. В работе указывается, что эквивалентный радиус отражателя, состоящего из пелены пузырей, будет зависеть от их размеров. При совпадении частоты излучения с резонансной частотой пузыря эхосигнал резко увеличивается. Размеры пузырей зависят от глубины их нахождения, поскольку давление в месте установки газопровода большое, то и диаметр пузыря будет маленьким, так как он будет сжат гидростатическим давлением и пространственная протяженность будет мала. По мере всплытия диаметр пузыря будет увеличиваться и размеры пузырькового облака также будут увеличиваться по пространству.

На этой основе разработаны рыбопоисковые гидролокаторы, которые обнаруживают эхосигналы, отраженные от плавательных пузырей рыб как одиночных, так и их скоплений. Е.В. Шишкова. Физические основы промысловой акустики. М., 1977 г.. Известны гидролокаторы, разработанные для поиска и обнаружения скопления рыбных косяков, рассмотренные в работе Ю.С. Кобяков, Н.Н. Кудрявцев В.И. Тимошенко. Конструирование гидроакустической рыбопоисковой аппаратуры. Л.: Судостроение, 1986 г., с.5-27.

В нашем случае следует исходить из нескольких очевидных предпосылок: источник выхода газа находится на трубе, газ поднимается только вверх и объем его увеличивается вследствие расширения вплоть до поверхности, поэтому газовая пелена расположена вертикально, при подъеме пузырей их размер увеличивается. Наличие трубопровода не исключает получение эхосигнала от корпуса трубы, поскольку труба представляет собой полое пространство, заполненное газом, плотность которого отличается от плотности воды.

Для обнаружения и классификации пелены пузырей необходимо использовать обычный гидролокатор, содержащий приемную и излучающую антенну, коммутатор, генератор зондирующего сигнала и статический веер характеристик направленности при приеме. Поскольку зондирующий сигнал распространяется в водной среде по сферическому закону, то при излучении зондирующего сигнала с надводного корабля в горизонтальном направлении акустическая энергия будет распространяться, расширяясь в выбранном направлении. Первый эхосигнал придет от той части пелены пузырей, которая уже достигла поверхности, поскольку пространственная ширина пелены пузырей у поверхности максимальная. Последний эхосигнал придет от той части пелены пузырей, которая находится в начале выхода из трубопровода. Излучение производится в горизонтальном направлении широко направленной характеристикой (А.В. Богородский, Д.Б. Островский Гидроакустические навигационные и поисково-исследовательские средства. СПб.: Изд. «ЛЭТИ», 2009 г., с.192.). Прием эхосигнала осуществляется статическим веером характеристик направленности, каждая из характеристик которой имеет узкую направленность в горизонтальной плоскости и широкую направленность в вертикальной плоскости с раствором порядка 40°-50°.. (там же с.172-178.). Обработка принимаемого эхосигнала происходит автономно и независимо в каждой характеристике направленности. В каждой характеристике направленности происходит обнаружение эхосигнала, измерение амплитуды эхосигнала и момента начала эхосигнала и момента окончания эхосигнала. Поскольку пелена пузырей непрерывна на всем протяжении до поверхности и расширяется у поверхности, то эхосигнал будет представлять собой непрерывную временную функцию, где будет четко наблюдаться начало эхосигнала у поверхности и окончание эхосигнала у дна. Такая временная функция будет наблюдаться в двух или трех соседних пространственных горизонтальных каналах, если пространственные каналы статического веера характеристик направленности перекрываются, а ширина газового облака расширяется у поверхности. Поэтому необходимо обеспечить обнаружение эхосигнала в соседних характеристиках направленности, измерение момента начала эхосигнала отраженного от пелены пузырей, момента окончания эхосигнала отраженного от пелены пузырей в соседних характеристиках направленности. Когда характеристики перекрываются, то в одной характеристике будет наблюдаться эхосигнал с максимальной длительностью от начала эхосигнала у источника до окончания эхосигнала у поверхности, а у соседней характеристики только часть эхосигнала, соответствующую верхней части пелены. Это приведет к тому, что минимальное значение времени начала эхосигнала Тмин будет обнаружено и измерено в одном канале, а максимальное время окончания эхосигнала Тмакс будет зафиксировано в другом канале. Для этого необходимо из всей совокупности измерений выбрать канал, у которого измерена максимальное время окончания эхосигнала Тмакс и соответствующее этому каналу Тмин. Момент окончания эхосигнала Тмакс будет соответствовать моменту выхода газа и именно это определяет местоположение выхода газа из трубы. Вычислив минимальную дистанцию Днач по времени задержки эхосигнала до места выхода газа на поверхность Тмин в выбранном канале и по значению скорости звука, что соответствует началу эхосигнала, и, вычислив дистанцию Доконч, соответствующую окончанию эхосигнала, по максимальному времени задержки эхосигнала Тмакс в этом же канале и значению скорости, что соответствует началу выхода газа, можно определить глубину месторасположения источника разгерметизации газопровода в метрах по формуле:

H = Д о к о н ч 2 Д н а ч 2 , где

H - глубина месторасположения точки разгерметизации;

Докончмакс0,5С - максимальная дистанция, соответствующая окончанию эхосигнала,

Дначмин0,5С - минимальная дистанция, соответствующая началу эхосигнала.

Сущность предлагаемого способа поясняется фиг.1, на которой представлена структурная схема гидролокатора для определения глубины местоположения источника газовой пелены.

На фиг.1 обозначено

1 - антенна,

2 - коммутатор приема передачи,

3 - задающий генератор,

4 - система формирования статического веера характеристик направленности,

5 - процессор многоканальной системы обработки,

6 - блок выбора порога в каждом канале обнаружении,

7 - блок измерения времени начала эхосигнала Тмин и измерения времени окончания эхосигнала Тмакс. в каждом канале;

8 - блок выбора канала, у которого максимальное время окончания эхосигнала Тмакс и соответствующие ему значения времени Тмин начала эхосигнала и вычисления дистанций Днач, Доконч;

9 - блок вычисления глубины местоположения начала газовой пелены;

10 - блок отображения и управления.

11 - блок измерения скорости звука.

Антенна 1 соединена двусторонней связью с коммутатор приема передачи 2 и через систему 4 формирования статического веера характеристик направленности соединена с процессором 5 многоканальной системы обработки эхосигналов, каждый канал из К каналов которого состоит из последовательно соединенных, блока 6 выбора порога обнаружения, блока 7 измерения времени начала Тмин эхосигнала и времени окончания эхосигнала Тмакс, блока 8 выбора канала с временем Тмакс и соответствующим ему временем Тмин и вычисления Днач и Доконч, с первым входом блока 9 вычисления глубины местоположения начала газовой пелены, через двухсторонний вход блока 10 отображения и управления со входом задающего генератора 3 и далее со входом коммутатора 2 приема передачи. Измеритель скорости звука 11 соединен со вторым входом процессора 5 многоканальной системы обработки эхосигналов.

Антенна, коммутатор приема и передачи, задающий генератор являются известными устройствами и используются при разработке гидролокаторов. А.С. Колчеданцев. Гидроакустические станции. Л.: Судостроение, 1982 г., с.60-90. Система формирования статического веера характеристик направленности является известным устройством, который может быть сформирован как аналоговыми, так и цифровыми методами, например таким, как изложены в Справочнике по гидроакустике. Л.: Судостроение, 1988 г., с.18-29.

В настоящее время вся гидроакустическая аппаратура делается с использованием цифровых методов обработки и реализуется на спецпроцессорах или персональных компьютерах с соответствующим программным обеспечением, имеющимся в наличии или специально разработанным на основе стандартных методов программирования.

Цифровые процессоры являются известными устройствами, которые предназначены для осуществления конкретных алгоритмов обработки с использованием аппаратных решений и жесткой логикой вычислений. Их применение повышает быстродействие цифровых вычислительных систем в несколько раз, и в большинстве случаев сокращает аппаратные затраты. Описания спецпроцессоров приведены в книге Корякин Ю.А., Смирнов С.А., Яковлев Г.В. Корабельная гидроакустическая техника. СПб.: Наука, 2004 г., с.281. Там же приведено описание гидроакустических комплексов и гидролокаторов, построенных на основе спецпроцессоров с.296, с.328.

Вопросы, связанные с цифровой обработкой сигналов, вопросы модуляции и демодуляции, спектральный анализ, а также использование пакетов расширения «Матлаб», которые обеспечивают последовательную процедуру использования разрабатываемых алгоритмов, рассмотрены в пособии А.Б. Сергиенко. Цифровая обработка сигналов. СПб., 2011 г., с.655. Измеритель скорости звука является известным устройством Комляков В.А. Корабельные средства измерения скорости звука и моделирование акустических полей в океане. СПб.: Наука 2003 г.

Измерение глубины местоположения начала образования газовой пелены производится следующим образом.

Блоком управления и отображения 10 формируется команда на излучение, которая передается в блок 3 задающего генератора. Задающий генератор формирует зондирующий сигнал нужной длительности, на нужной частоте и необходимой мощности. Этот сигнал передается через коммутатор 2 приема-передачи на антенну 1 и излучается в водное пространство. Принятый антенной 1 эхосигнал через коммутатор приема-передачи 2 поступает в систему формирования статического веера характеристик направленности, где осуществляется формирование характеристик направленности необходимой ширины в горизонтальной плоскости и в вертикальной плоскости. Выход системы 4 соединен с первым входом процессора 5 многоканальной системы обработки эхосигналов, которая представляет собой систему обнаружения и измерения, число каналов которой равно числу характеристик направленности. В каждом канале существует блок 6 выбора порога и блок 7 измерения времени начала эхосигнала Тмин в канале и времени окончания эхосигнала Тмакс.

В блоке 7 определяется превышение амплитуды эхосигнала над выбранным в блоке 6 порогом, измеряется амплитуда эхосигнала и временное положение Тмин начала эхосигнала и Тмакс времени окончания эхосигнала.

Измеренные в блоке 7 времена по всем К - независимым каналам вместе с номерами каналов поступают в блок 8 выбора канала с максимальным временем окончания эхосигнала Тмакс и соответствующим ему Тмин минимальным временем начала эхосигнала. По измеренным Тмакс и Тмин вычисляются оценки дистанции Днач и Дконеч с использованием измеренной оценки скорости звука блоком 11. Полученные оценки дистанций поступают в блок 9 вычисления глубины местоположения начала газовой пелены, где происходит вычисление глубины разработанным алгоритмом по приведенной формуле. Оценка глубины поступает в блок 10 отображения и управления и отображается на индикаторе или дисплее. Одновременно на индикатор выводится отображение в координатах пространственный канал - время процессов по всем каналам, и оператор может убедиться в правильности выбранного канала и правильности измерения времен, а также, если необходимо, провести корректировку измерений на основе опыта работы.

Таким образом, предложенный способ позволяет обнаружить пелену газовой течи и измерить глубину места образования газовой пелены гидроакустическими средствами на больших дистанциях, поэтому можно считать заявленный технический результат достигнутым.

Способ измерения глубины объекта гидролокатором, содержащий излучение зондирующего сигнала, прием эхосигнала и измерение дистанции, дополнительно введены новые признаки, а именно прием эхосигналов производят статическим веером характеристик направленности в горизонтальной плоскости, имеющих направленность в вертикальной плоскости порядка 40°, производят многоканальную обработку по всем характеристикам направленности, выбирают порог в каждом канале, обнаруживают эхосигнал, превысивший порог в каждом канале, измеряют времена начала Tмин и времена окончания эхосигнала Tмакс в каждом пространственном канале, выбирают канал, имеющий максимальное время задержки окончания эхосигнала Тмакс и соответствующее этому каналу минимальное время задержки начала эхосигнала Tмин, вычисляют дистанцию Днач=Tмин0,5С, вычисляют дистанцию по окончании эхосигнала Доконч=Tмакс0,5С, а глубину местоположения начала эхосигнала определяют по формуле H = Д о к о н ч . 2 Д н а ч . 2 , где
Н - глубина местоположения начала газовой пелены;
Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубы;
Днач - дистанция, соответствующая минимальному времени начала эхосигнала или выхода газовой пелены на поверхность;
C - скорость распространения звука в районе работы.



 

Похожие патенты:

Изобретение относится к области авиации, в частности к системам бортового оборудования вертолетов. Система обнаружения помех для посадки и взлета вертолета включает ультразвуковые устройства сканирования (1), каждое из которых состоит, по меньшей мере, из средств для передачи ультразвукового сигнала в направлении вниз и получения отраженного ультразвукового сигнала.

Использование: гидроакустика, а именно в гидроакустических системах определения глубины, и может быть применен для автоматического адаптивного обнаружения эхо-сигналов от дна и автоматического измерения глубины в условиях, когда требуется механическая защита излучающей поверхности электроакустического преобразователя.

Изобретение относится к морской технике, в частности к морскому подводному оружию. Устройство содержит захват и элемент сигнализации о местоположении мины, выполненный в виде гидроакустического маяка.

Использование: изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед.

Использование: в гидроакустике. Сущность: способ предназначен для определения ошибки оценки дистанции гидролокатором, установленным на подводном подвижном носителе относительно неподвижного отражателя.

Использование: изобретение относится к гидроакустической технике. Сущность: антенна содержит тонкостенную полую сферическую оболочку, пьезоэлектрические преобразователи, опору для крепления антенны к носителю.

Изобретение относится к области судостроения и судовождения. Способ обеспечения безаварийного движения надводного или подводного судна при наличии подводных и надводных потенциально опасных объектов включает постоянный прием спутниковых навигационных данных, данных от радиолокационной станции, автоматической идентификационной системы, определение местоположения судна, вычисление скорости судна, глубины под килем.

Изобретение относится к гидрографии, в частности к способам и техническим средствам определения глубин акватории фазовым гидролокатором бокового обзора, и может быть использовано для выполнения съемки рельефа дна акватории.

Использование: изобретение относится к области гидроакустики и может быть использовано для построения гидроакустических систем, содержащих навигационную станцию освещения ближней обстановки (НГАС ОБО) и самоходный необитаемый подводный аппарат (СНПА).

Использование: морские исследования посредством профилографов (станций) вертикального зондирования морской среды, в автоматизированных подводных аппаратах (зондах) заякоренного типа для проведения комплексных наблюдений за гидрологическими параметрами и за динамикой водной среды, а также для химико-биологического и экологического контроля и мониторинга акваторий.

Использование: гидроакустическая техника, а именно область активной гидролокации, включая активные гидролокаторы, предназначенные для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Технический результат: обеспечивается высокая вероятность правильной классификации обнаруженного объекта. Это достигается путем реализации возможности выработки класса обнаруженного объекта по совокупности посылок с идентификацией эхо-сигналов в серии посылок. 1 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов, классификации обнаруженных объектов. Сущность: активный гидролокатор с классификацией объекта содержит последовательно соединенные устройство управления, устройство формирования зондирующего сигнала, генераторное устройство и излучающую акустическую антенну, последовательно соединенные приемную акустическую антенну, устройство обработки эхо-сигналов от объекта и устройство измерения классификационного параметра, а также индикатор. В него введены последовательно соединенные блок определения РапостN, где РапостN - апостериорная плотность вероятности класса объекта по текущей посылке N, блок определения РапостF, где РапостF - апостериорная плотность вероятности класса объекта по совокупности посылок F, и блок выработки решения о классе объекта по совокупности посылок, блок памяти Рапр, где Рапр - априорная плотность распределения величины классификационного параметра. Техническим результатом изобретения является повышение вероятности правильной классификации обнаруженного объекта путем обеспечения возможности определения класса обнаруженного объекта по совокупности посылок. 1 ил.

Использование: гидроакустика. Сущность: способ содержит излучение зондирующего сигнала, прием эхосигнала веером статических характеристик, набор временной реализации последовательно по всем пространственным каналам, обработку последовательно по всем пространственным каналам, определение уровня помехи, как результат суммирования всех отсчетов по первому циклу приема по всем пространственным каналам, вычисляют порог обнаружения по среднему значению всех отсчетов Аср, производят выбор минимального значения в каждом наборе временных отсчетов огибающей последовательно по всем пространственным каналам по правилу 0≤Амин<Аср, запоминают номера пространственных каналов, в которых обнаружены минимальные значения огибающих, производят выбор максимального отсчета Амакс в каждом наборе отсчетов огибающей по всем пространственным каналам, проводят прореживания с оставлением минимального отсчета по правилу п последовательных отсчетов выбирают наименьший, и максимального отсчета по правилу из n последовательных отсчетов выбирают максимальный, в каждом наборе временных отсчетов огибающей по всем пространственным каналам, производят автоматическое обнаружения превышения эхосигналами выбранного порога обнаружения Амакс>Апорог=кАср последовательно по всем пространственным каналам статического веера характеристик направленности, измеряют и запоминают амплитуды и номера отсчетов сигналов, превысивших порог обнаружения, измеряют и запоминают номера пространственных каналов, в которых произошло обнаружение сигнала, измеряют угловую протяженность УПмак объекта по количеству пространственных каналов, превысивших порог обнаружения, определяют номера отсчетов и пространственных каналов, в которых не произошло превышение выбранного порога и уровень сигнала в которых близок к 0, определяют угловую протяженность УПмин области минимальных отсчетов по числу пространственных каналов, в которых 0≤Амин<Аср, и при совпадении угловых протяженностей принимают решения о наличии тени объекта. Технический результат: повышение информативность входной информации за счет выделения тенеграфических особенностей эхосигнала от объекта.1 ил.

Использование: гидроакустика и может быть использовано для построения навигационных гидроакустических станций освещения ближней обстановки. Сущность: способ содержит излучение зондирующего сигнала, прием отраженного эхосигнала, формирование статического веера характеристик направленности, формирование цифрового массива данных с выхода тракта когерентной обработки по каждому пространственному каналу, последовательный вывод цифровых отсчетов на индикатор, определение порога автоматического обнаружения по среднему значению амплитуд цифровых отсчетов первого и второго циклов обработки по всем пространственным каналам, вывод цифровых отсчетов на индикатор осуществляется по правилу А=Аотсч/ (Г-К), где А амплитуда отсчета, выводимая на индикатор, Аотсч - амплитуда исходного цифрового отсчета, Г - параметр, определяемый оператором как глубина регулировки усиления, К - номер цикла обработки, порог автоматического обнаружения выбирается из условия минимума пропуска эхосигнала от цели, формирование общего цифрового массива данных с выхода тракта когерентной обработки по всем пространственным каналам от момента излучения до момента достижения зондирующим сигналом установленной шкалы работы, определение отсчетов, превысивших порог, определение номера пространственного канала М, определение временного положения отсчета Т, проведение классификации по цифровым отсчетам обнаруженной цели из общего цифрового массива по М пространственным каналам, средний канал из которых равен измеренному каналу, и во временном окне, равном Н циклам набора временной реализации, автоматическое определение классификационных признаков и автоматическое принятие решения о классе цели, вывод результата обработки по обнаруженной цели на индикатор с указанием номера цели, измеренных координат М и Т, классификационных признаков и класса обнаруженной цели, при очередном обнаружении превышения порога процедура повторяется до окончания шкалы дистанции и по совокупности всех обнаруженных целей формируется банк классификации. Технический результат: обеспечение обнаружения и классификации обнаруженных целей. 1 ил.

Изобретение относится к области использования навигационных и промерных эхолотов и может быть применено для их тарировки. Техническим результатом изобретения является повышение точности тарирования эхолотов и снижение трудозатрат на ее проведение. Технический результат достигается тем, что для тарировки эхолота предлагается использовать лазерное тарирующее устройство, работающее в сине-зеленом диапазоне частотного спектра излучения. Лазерный импульс в этом диапазоне способен проникать сквозь водную среду и, отразившись от дна, приниматься фотоприемным устройством. Зная скорость прохождения лазерного излучения через воду и время прохождения прямого и отраженного сигнала, представляется возможным определить глубину места под судном с более высокой точностью, чем навигационным эхолотом. 1 ил.

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - уменьшить погрешность измерения и увеличить дальность действия при работе измерительного комплекса в мелком море. Гидроакустический измерительный комплекс содержит N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных. Посредством акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, а локальные координатные системы всех акустических комбинированных приемников совмещены. При этом расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения. Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутальных углов φ1n, φ2n, блок вычисления усредненных азимутальных углов, блок вычисления горизонтальных координат источника звука. Информация с выхода блока вычисления горизонтальных координат источника звука и блока определения максимума вертикальной компоненты вектора интенсивности поступает на первый и второй входы устройства доступа к цифровым сетям передачи данных. Для увеличения дальности обнаружения движущегося источника звука и поддержания с ним акустического контакта в систему сбора, обработки и отображения информации дополнительно введены N/2-канальный вычислитель взаимного спектра сигналов для пар акустических комбинированных приемников, расположенных на одном горизонте и принадлежащих двум донным вертикально ориентированным эквидистантным антеннам, N/2-канальный вычислитель взаимной корреляционной функции, сумматор, блок измерения максимума взаимной корреляционной функции, блок нормирования взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, компаратор, блок задания расчетных значений отношений предыдущего измерения к последующему, блок принятия решения об обнаружении источников звука и их числе. 2 ил.

Система для освещения подводной обстановки относится к специальной технике и может быть использована для обнаружения и опознания подводных объектов, а также для сигнализации и оповещения о появлении на акваториях морских объектов хозяйственной деятельности (акватории портов, морские терминалы по добыче и транспортировке углеводородов, гидротехнические сооружения и т.д.) неизвестных малогабаритных подвижных аппаратов (МПА) или подводных пловцов (ПП), а также для обнаружения и сопровождения айсбергов. Задачей изобретения является возможность оперативно определять место появления неизвестного подводного объекта, идентифицировать подводный объект и визуально отображать на мониторе диспетчерской станции морского объекта хозяйственной деятельности (МОХД) появление несанкционированного подводного объекта. Система для освещения подводной обстановки, состоящая из группы многолучевых эхолотов, гидроакустические приемопередатчики которых посредством приемопередающей антенны формируют n-лучей с возможностью секторного обзора на акватории расположения объекта морской хозяйственной деятельности, при этом приемопередатчики соединены с блоком обработки акустических сигналов, установленным на диспетчерском пункте морского объекта хозяйственной деятельности, который соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, который соединен с устройством отображения информации, при этом каждый приемопередатчик соединен при помощи оптоволоконного кабеля с блоком обработки акустических сигналов, установленным на диспетчерской станции морского объекта хозяйственной деятельности, излучающий и приемный каналы соединены с блоком обработки акустических сигналов, предназначенным для формирования излучающих сигналов, регистрации и обработки принятых сигналов соответственно, блок обработки акустических сигналов соединен с процессором с программным обеспечением автоматического обнаружения и сопровождения, соединенным с устройством отображения информации, отличающаяся тем, что каждый многолучевой эхолот содержит параметрический профилограф, причем антенны накачки параметрического профилографа размещают на дрейфующих или заякоренных буях на разных горизонтах по глубине акватории на расстояниях не более 8000 метров друг от друга. 2 ил.
Изобретение относится к области использования систем технического зрения для обнаружения объектов и скорости их движения на гидролокационных изображениях. Техническим результатом изобретения является высокая точность определения координат объектов, окружающих подвижную подводную платформу, и скорости их движения за счет использования совместной обработки последовательности гидролокационных изображений и данных инерциальной системы самой движущейся платформы.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится с использованием многоканального запоминающего устройства на выходе системы доплеровской фильтрации, на основе измерения времени задержки отклика на выходе согласованного фильтра для специально сформированного сложного сигнала, причем длительность этого отклика существенно (например, в десятки-сотни раз) меньше длительности сигнального отклика тонального сигнала. Сложный сигнал формируется с использованием сигнального отклика тонального эхо-сигнала на выходе того доплеровского канала, в котором этот эхо-сигнал был обнаружен, и модулирующей функции сложного сигнала. 2 ил.

Изобретение относится к гидроакустической технике, конкретнее к области активной гидролокации, в том числе к активным гидролокаторам, предназначенным для обнаружения объектов, измерения координат и параметров движения обнаруженных объектов. Техническим результатом изобретения является то, что обеспечивается повышение точности определения дистанции до цели. Это достигается за счет того, что определение дистанции до цели производится на основе измерения времени задержки отклика на выходе второго согласованного фильтра для специально сформированного (на основе отклика эхо-сигнала на выходе первого согласованного фильтра) вспомогательного сложного сигнала, причем длительность отклика на выходе второго согласованного фильтра существенно меньше длительности отклика эхо-сигнала на выходе первого согласованного фильтра. 2 ил.

Изобретение относится к области гидролокации и предназначено для обнаружения газовой пелены и определения глубины местоположения начала утечек газа трубопроводов гидроакустическими средствами. Технический результат - обеспечение обнаружения и классификации источника утечки газа подводного газопровода и определения местоположения объекта утечки газа. Для этого излучают зондирующий сигнал, принимают эхосигнал статическим веером характеристик направленности в горизонтальной плоскости, производят многоканальную обработку по всем характеристикам направленности, выбирают порог в каждом канале, определяют времена начала Tмин и времена окончания эхосигнала Tмакс в каждом пространственном канале, выбирают канал, имеющий максимальное время задержки окончания эхосигнала Tмакс и соответствующее этому каналу минимальное время задержки начала эхосигнала Tмин, вычисляют дистанцию ДначTмин0,5C, вычисляют дистанцию по окончании эхосигнала ДокончTмакс0,5C, а глубину местоположения начала эхосигнала определяют по формуле HДоконч.2−Днач.2, где H - глубина местоположения начала газовой пелены; Доконч - дистанция, соответствующая максимальному времени окончания эхосигнала или выхода газовой пелены из трубы; Днач - дистанция, соответствующая минимальному времени начала эхо-сигнала или выхода газовой пелены на поверхность; C - скорость распространения звука в районе работы. 1 ил.

Наверх