Способ организации защиты систем вибрационного контроля от ложных срабатываний и комплекс для его осуществления


 


Владельцы патента RU 2527321:

Федеральное государственное бюджетное учреждение науки Геофизическая служба Сибирского отделения Российской академии наук (RU)

Изобретения относятся к контрольно-измерительной технике и могут быть использованы на объектах, оснащенных системами вибрационного контроля. Способ включает использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта. Дополнительно синхронно регистрируют вибрации на исследуемом объекте и на расстоянии от исследуемого объекта. В качестве датчиков целостности исследуемого объекта и удаленного датчика используют датчики вибрации с эквивалентными техническими характеристиками. Расстояние от исследуемого объекта до удаленного датчика выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Систему вибрационного контроля выполняют учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Комплекс включает датчики целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте и удаленный датчик, который расположен на расстоянии от исследуемого объекта, а также систему вибрационного контроля исследуемого объекта. Датчики целостности объекта и удаленный датчик выполнены в виде датчиков вибрации с эквивалентными техническими характеристиками, осуществляющими регистрацию вибраций синхронно. При этом удаленный датчик выполнен расположенным от исследуемого объекта на расстоянии не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Система вибрационного контроля выполнена учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Технический результат заключается в увеличении надежности работы систем вибрационного контроля, в возможности исключения ложных срабатываний, в простоте реализации. 2 н. и 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано на объектах, оснащенных системами вибрационного контроля и расположенных в районах, подверженных воздействию землетрясений и/или промышленных взрывов. Такими объектами могут быть технологическое оборудование, конструкции или инженерные сооружения промышленных предприятий. Изобретение предназначено для защиты систем вибрационного контроля от ложных срабатываний, возникающих при неопасных сейсмических воздействиях.

В известных способах организации систем вибрационного контроля датчики абсолютной вибрации, которые предназначены для измерения механических колебаний объекта, устанавливаются непосредственно на элементах конструкции оборудования или сооружения, которые в максимальной степени реагируют на динамические силы и характеризуют общее вибрационное состояние объекта, что согласуется с действующими документами (ГОСТ ИСО 10816-1-97) и правилами (Патент РФ 2471161 C1, МПК G01M 7/00, опубл. 27.12.2012; патент РФ 2464486 C1, МПК F17D 5/05, опубл. 20.10.2012). Вместе с тем, если исследуемый объект находится или в сейсмоактивном районе, или вблизи мест проведения взрывных работ (например, возле карьеров), то сейсмические воздействия от внешних источников (землетрясений или промышленных взрывов) также будут вызывать механические колебания объекта исследования. В случае возникновения сейсмического воздействия общее колебание объекта, измеренное установленными на нем датчиками вибрации, будет состоять из суммы колебаний самого объекта исследования и колебаний от внешнего источника: fi(t)=Ai(t)+Bi(t), где fi(t) - измеренное колебание, Ai(t) - вибрация самого оборудования, BBi(t) - колебание от внешнего источника сейсмического воздействия, t - время, i - номер точки измерения (от 1 до N). Следовательно, измеренные известными способами механические колебания могут давать ложные показания за счет присутствия слагаемого от внешнего сейсмического воздействия. Если система вибрационного контроля настроена, например, на остановку работы оборудования в случае превышения уровня измеренных вибраций некоторого заданного порога, то даже при неопасном сейсмическом воздействии от внешнего источника механических колебаний может произойти ложное срабатывание системы, которое приведет к необоснованной остановке работы промышленного предприятия.

Подобное происшествие произошло, например, на Саяно-Шушенской ГЭС 26 февраля 2012 г. Система виброконтроля остановила работу одного из гидроагрегатов. Причиной стало землетрясение, произошедшее на расстоянии около 300 км от ГЭС. Интенсивность воздействия от него в районе ГЭС составила 4 балла, что не является опасным для любых видов сооружений или оборудования. Однако амплитуда колебаний, измеренная системой виброконтроля, а именно датчиками абсолютных вибраций, превысила допустимую норму, что и послужило причиной остановки гидроагрегата. Такая ситуация опасна в том отношении, что если подобное происшествие произойдет с десятью гидроагрегатами одновременно, то последствия могут быть непредсказуемыми как для технического состояния самой ГЭС, так и для единой энергосистемы страны.

Известно техническое решение, взятое в качестве прототипа, включающее использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта (авторское свидетельство №868665, МПК G01V 1/00, приоритет 12.02.1979, авторы изобретения: Р.А.Агамирзоев, Т.Э.Имамалиев и Б.А.Барков. «Способ защиты объекта при воздействии на него сейсмической волны и устройство для его осуществления»).

Недостатком известного технического решения является то, что в нем не заложено инструкций или алгоритмов защиты систем вибрационного контроля от ложных срабатываний при неопасных сейсмических воздействиях от внешнего источника.

Задача настоящего изобретения - разработать способ и комплекс для его осуществления, позволяющие исключить ложное срабатывание систем вибрационного контроля при неопасных сейсмических воздействиях от внешних источников.

Задача решается тем, что в способе организации защиты систем вибрационного контроля от ложных срабатываний, включающем использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта, дополнительно синхронно регистрируют вибрации на исследуемом объекте и на расстоянии от исследуемого объекта, в качестве датчиков целостности исследуемого объекта и удаленного датчика используют датчики вибрации с эквивалентными техническими характеристиками, расстояние от исследуемого объекта до удаленного датчика выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта, систему вибрационного контроля выполняют учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Кроме того, систему вибрационного контроля выполняют имеющей количество идентичных измерительных каналов, достаточное для подключения датчиков целостности объекта и одного удаленного датчика.

А комплекс организации защиты систем вибрационного контроля от ложных срабатываний, включающий датчики целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленный датчик, который расположен на расстоянии от исследуемого объекта, дополнительно содержит систему вибрационного контроля исследуемого объекта, датчики целостности объекта и удаленный датчик выполнены в виде датчиков вибрации с эквивалентными техническими характеристиками, осуществляющими регистрацию вибраций синхронно, при этом удаленный датчик выполнен расположенным от исследуемого объекта на расстоянии не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта, а система вибрационного контроля выполнена учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников. Кроме того, система вибрационного контроля выполнена имеющей количество идентичных измерительных каналов, достаточное для подключения датчиков целостности объекта и одного удаленного датчика.

Технический результат заявляемого технического решения заключается в увеличении надежности работы систем вибрационного контроля, в возможности исключения ложных срабатываний последних при неопасных сейсмических воздействиях от внешних источников, в простоте реализации, в увеличении средств и методов данного назначения.

Заявляемое техническое решение поясняется на фиг.1, где представлена блок-схема технического решения и обозначено: 1 - исследуемый объект, 2 - датчики целостности объекта, 3 - удаленный датчик, 4 - система вибрационного контроля.

Способ при помощи предлагаемого комплекса реализуют следующим образом.

К установленным непосредственно на исследуемом объекте 1 датчикам целостности исследуемого объекта 2 в количестве N штук добавляется удаленный датчик 3, размещенный на расстоянии L от объекта в точке N+1. В качестве датчиков целостности исследуемого объекта 2 и удаленного датчика 3 используют датчики вибрации с эквивалентными техническими характеристиками. Расстояние L от исследуемого объекта 1 до удаленного датчика 3 выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта. Сигналы датчиков целостности исследуемого объекта 2 и удаленного датчика 3 поступают в систему вибрационного контроля 4, имеющую количество (не менее N+1) идентичных измерительных каналов, достаточное для подключения датчиков целостности объекта и удаленного датчика, выполненную учитывающей разность между показаниями датчиков целостности исследуемого объекта 2 и показаниями удаленного датчика 3 при сейсмических воздействиях от внешних источников.

В случае возникновения сейсмического воздействия от внешнего источника измеренные колебания удаленным датчиком будут представлять сумму из колебаний, источником которых является объект исследования и внешний источник сейсмического воздействия: fN+i(t)=AN+1(t)+BN+i(t), где fN+i(t) - измеренные колебания в точке N+1; AN+i(t) - колебания от объекта исследования, распространившиеся до точки N+1; BN+i(t) - колебания от внешнего источника сейсмического воздействия; t - время. Так как расстояние от объекта исследования до удаленного датчика 3 в точке N+1 L выбрано таким образом, что амплитуды вибраций пренебрежимо малы по сравнению с вибрациями исследуемого объекта 1, то слагаемым AN+1(t) можно пренебречь. Так, исследованиями, выполненными на Саяно-Шушенской ГЭС, показано, что на удалении нескольких десятков метров от работающего гидроагрегата амплитуды колебаний уменьшаются на 2 и более порядка. Вместе с тем, расстояние L между исследуемым объектом 1 и удаленным датчиком 3 выбрано не более длины сейсмической волны от внешнего источника и поэтому можно считать, что функции B1, …, N(t) и BN+1(t) равны. Таким образом, в точке N+1 фактически измеряется колебание, являющееся вторым слагаемым колебаний, измеренных в точках 1, N. Тогда разности колебаний, измеренных в точках 1, N и в точке N+1, представляют собой механические колебания самого исследуемого объекта: fi(t)-fN+1(t)=(Ai(t)+Bi(t))-(AN+1(t)+BN+1(t))≈Ai(t), i=1, …, N. Таким образом, производят учет разности между показаниями датчиков целостности исследуемого объекта 2 и показаниями удаленного датчика 3 при сейсмических воздействиях от внешних источников. Учесть данную разность между показаниями возможно другим способом, а именно тем, что системой виброконтроля анализируются показания удаленного датчика 3 в точке N+1 независимо от показаний датчиков целостности исследуемого объекта 2. В случае если при неопасном сейсмическом воздействии амплитуды колебаний в точке N+1 начинают превышать некоторый заданный порог, то выдается сигнал о блокировании показаний датчиков целостности исследуемого объекта. Данный сигнал аннулируется в тот момент, когда амплитуды колебаний в точке N+1 станут меньше заданного порога, т.е. после момента завершения сейсмического воздействия.

Таким способом достигается защита системы вибрационного контроля 4 от ложных показаний, связанных с неопасным сейсмическим воздействием от внешнего источника.

Преимущество заявляемого способа заключается в увеличении надежности работы систем вибрационного контроля, в возможности исключения ложных срабатываний последних при неопасных сейсмических воздействиях от внешних источников, в простоте реализации, в увеличении средств и методов данного назначения.

1. Способ организации защиты систем вибрационного контроля от ложных срабатываний, включающий использование датчиков целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленного датчика, который расположен на расстоянии от исследуемого объекта, регистрацию колебаний от внешних источников на исследуемом объекте и на расстоянии от исследуемого объекта, отличающийся тем, что дополнительно синхронно регистрируют вибрации на исследуемом объекте и на расстоянии от исследуемого объекта, в качестве датчиков целостности исследуемого объекта и удаленного датчика используют датчики вибрации с эквивалентными техническими характеристиками, расстояние от исследуемого объекта до удаленного датчика выбирают не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта, систему вибрационного контроля выполняют учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников.

2. Способ по п.1, отличающийся тем, что систему вибрационного контроля выполняют имеющей количество идентичных измерительных каналов, достаточное для подключения датчиков целостности объекта и одного удаленного датчика.

3. Комплекс организации защиты систем вибрационного контроля от ложных срабатываний, включающий датчики целостности исследуемого объекта, которые установлены непосредственно на исследуемом объекте, и удаленный датчик, который расположен на расстоянии от исследуемого объекта, отличающийся тем, что он дополнительно содержит систему вибрационного контроля исследуемого объекта, датчики целостности объекта и удаленный датчик выполнены в виде датчиков вибрации с эквивалентными техническими характеристиками, осуществляющими регистрацию вибраций синхронно, при этом удаленный датчик выполнен расположенным от исследуемого объекта на расстоянии не более длины сейсмической волны от внешнего источника и таким образом, чтобы амплитуды вибраций в месте установки удаленного датчика были пренебрежимо малы по сравнению с амплитудами вибраций исследуемого объекта, а система вибрационного контроля выполнена учитывающей разность между показаниями удаленного датчика и показаниями датчиков целостности исследуемого объекта при сейсмических воздействиях от внешних источников.

4. Комплекс по п.3, отличающийся тем, что система вибрационного контроля выполнена содержащей количество идентичных измерительных каналов, достаточное для подключения датчиков целостности объекта и одного удаленного датчика.



 

Похожие патенты:

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для вибродиагностики машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями.

Изобретение относится к вибродиагностике машин и механизмов и может использоваться для диагностирования машин в условиях производства или/и эксплуатации при отсутствии машин-эталонов с известными погрешностями, т.е.

Группа изобретений относится к области измерительной техники и может быть использована для контроля состояния вращающихся лопаток газотурбинных двигателей. Настоящее изобретение раскрывает способ определения событий вибраций с резонансной частотой в узле вращающихся лопаток, установленных на роторе, и ряд отстоящих друг от друга по периферии стационарных зондов таймирования, связанных с лопатками, обнаруживают моменты, когда лопатки проходят соответствующие зонды.

Группа изобретений относится к частотному анализу данных. В частности, к анализу данных испытаний самолетов на допуск к области полетных режимов.

Изобретение относится к испытательной технике и может быть использовано для выделения и фильтрации исследуемых сигналов из воспроизводимого стационарного случайного процесса и измерения в реальном времени параметров сигнала.

Изобретение относится к измерительной технике и может быть использовано для вибродиагностики оборудования, оказывающегося в опасных зонах при подаче на него напряжения (высоковольтных камерах, в герметизированных отсеках, отсеках обрабатывающих центров с работающим высокоскоростным оборудованием), а также мотор-вентиляторов, применяемых на железнодорожном транспорте.

Изобретение относится к области испытаний на механические воздействия (вибрационные испытания) аппаратуры. .

Изобретение относится к испытательной технике и может быть использовано при испытании объектов машиностроения, стройиндустрии, бытовой техники и других изделий на вибропрочность и виброустойчивость.

Изобретение относится к области исследования зданий и сооружений с расположенными внутри или в непосредственной близости механизмами или агрегатами, являющимися источниками сейсмических колебаний, и анализа для интерпретации полученных сейсмических данных.

Изобретение относится к способам вибрационной диагностики дефектов подшипников качения турбомашин в эксплуатационных условиях и может найти применение в авиадвигателестроении и энергомашиностроении для выявления наличия дефекта смазки подшипника качения.

Изобретение относится к области акустики и предназначено для создания акустических волн в газовой среде. Способ генерирования акустических волн осуществляется путем образования колебательного тела из облака ионизированного газа в электростатическом поле с последующим моделированием колебательного тела высокочастотным электрическим полем, при этом в качестве электростатического поля используется переменное электрическое поле. Устройство для осуществления способа содержит два звукопроницаемых электрода 1, разделенные диэлектрическим корпусом 2, содержащим полость 3, которая образует в совокупности с электродами 1 ионизационную камеру, ионизирующий электрод 4, источник постоянного напряжения 5 и модулятор напряжения 6. Изобретение позволяет осуществить генерацию акустических волн в широком частотном и мощностном диапазоне. 2 ил.

Изобретение относится к измерительной технике, а именно к оптическим измерителям и датчикам вибрации, и служит для решения задачи виброконтроля в условиях вибрационных нагрузок больших электрических машин (турбогенераторы, гидроэлектрические насосы/генераторы, электродвигатели, силовые трансформаторы). Волоконно-оптический преобразователь вибрации содержит несущее основание, элемент вибрации, оптические световоды, относительно торцов которых на расстоянии сформирована отражающая поверхность, каждый из оптических световодов выполняет одновременно функцию подвода и отвода светового потока, несущее основание из пластины монокристалла изготовлено за одно целое с элементом вибрации, сверху и снизу несущего основания закреплены световоды, оси которых перпендикулярны отражающей поверхности, причем продолжения осей указанных световодов пересекают ее верхнюю и нижнюю границы. Технический результат - повышение точности, надежности и срока эксплуатации волоконно-оптического преобразователя вибрации и датчиков/измерителей, в составе которых он используется. 2 з.п. ф-лы, 7 ил.

Изобретение относится к испытательному оборудованию и может быть использовано в различных отраслях промышленности для испытания изделий на виброустойчивость в трех взаимно перпендикулярных положениях. Устройство содержит вибратор со столом, на котором установлено приспособление для закрепления в нем испытываемого изделия. Приспособление имеет возможность производить переориентацию и фиксацию изделия в трех взаимно перпендикулярных положениях без снятия его с приспособления. В корпусе приспособления установлены две, одна в другой, подвижные рамки с взаимно перпендикулярными осями вращения, вокруг которых рамки могут поворачиваться на 90°, причем каждая из них имеет свое устройство фиксации после переориентации, выполненное в виде дискового тормоза и клинового зажима. Внутренняя рамка имеет механизм передачи крутящего момента от привода к изделию. На основании вибратора установлен портал в виде стойки и опоры, на горизонтальной балке которой на специальных кронштейнах установлены два валика, шкив выходного вала их поочередно соединяется резиновым пассиком с рабочим шкивом приспособления при испытаниях в динамическом режиме изделия. Технический результат заключается в возможности проведения испытания изделий на виброустойчивость по трем взаимно перпендикулярным направлениям за одну установку изделия в приспособление, а также обеспечивающего возможность проведения испытания изделий в статическом и динамическом режимах состояния изделия. 13 ил.

Изобретение относится к области механики сплошных сред и предназначено для оценки напряженно-деформированного состояния объектов механических систем. Способ заключается в измерении пространственной вибрации, накапливании массива векторных величин деформаций и воспроизведении пространственного годографа измерительной точки. При этом синхронно с измерениями осуществляют аналитический синтез 3D-суперпозиции спектра измерений и накапливают массив векторных величин напряжений. Диагностику напряженно-деформированного состояния объекта осуществляют по визуальному образу, представленному в виде пространственной трехмерной диаграммы физического состояния объекта мониторинга в измерительной точке, представляющей в связанном виде законы Гука и Пуассона. Технический результат заключается в реализации возможности отражения в реальном времени текущего ресурса конструкционной прочности объекта мониторинга, повышении достоверности оценки физического состояния объектов мониторинга. 5 ил.

Изобретение относится к испытательной технике, а именно к установкам для испытания на вибрацию в трех взаимно перпендикулярных положениях прицела, при воздействии условий внешней среды. Стенд для испытаний прицела на вибрацию содержит вибровозбудитель со столом, устройство для размещения испытываемого изделия в форме куба с крышкой, который жестко скреплен со столом вибровозбудителя. На наружных поверхностях куба выполнены окна под электрические разъемы, и объектив прицела, и ребра жесткости, в верхней части куба расположены две направляющие с пазами, образующие усеченную призму, крышка куба выполнена в виде плиты - имитатора объекта, к которой закреплен прицел, и содержит выступ, взаимодействующий с пазами направляющих. В частном случае для ограничения продольных перемещений и усилий на крепежные элементы плиты - имитатора объекта, контактирующие поверхности отверстий плиты - имитатора объекта и крепежных элементов выполнены с уклоном конуса, равным 2. Технический результат - повышение точности измерения перегрузок вибропередачи в требуемом диапазоне частот прицела путем повышения жесткости конструкции стенда. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области измерительной технике и касается оптико-электрического преобразователя механических волн. Преобразователь механических волн содержит осветитель, водяную емкость с зеркальным узлом и стойку, поддерживающую светочувствительный элемент. Осветитель установлен на демпфере под углом к вертикали. Лучи от осветителя падают на зеркальный узел, находящийся в водяной емкости, и отражаются от него на светочувствительный элемент, установленный на текстолитовой стойке. Размер чувствительной площадки светочувствительного элемента выбирают из условия равенства размеру светового пятна отраженного излучения. Технический результат заключается в повышении чувствительности и надежности устройства. 1 ил.

Способ проверки затяжки сердечника статора электрической машины, содержащей сердечник (2) статора и ротор (3), образующие воздушный зазор (5) между собой, причем способ включает в себя этапы, на которых вводят контрольно-измерительный прибор (12), который соединен с подвижной опорой (10), в воздушный зазор (11), вводят пластину (21) между стальными листами (5) сердечника статора и приводят пластину (21) во вращение, располагают локально контрольно-измерительный прибор (12) и осуществляют локальную проверку определенных зон сердечника (2) статора генератора. Устройство для реализации способа, содержащее подвижную опору (10), вводимую в воздушный зазор (11) между сердечником (2) статора и ротором (3), приводимую во вращение пластину (21) между стальными листами (5) сердечника, и контрольно-измерительный прибор (12), установленный на подвижной опоре (10). Техническая задача - выполнение проверки для определения затяжки сердечника статора без необходимости извлечения ротора с помощью предложенного способа и устройства, а также уменьшение риска повреждения сердечника статора и/или ротора в результате проверки. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к вибрационной технике. Способ предполагает использование вибратора, в котором пьезоэлемент выполняют в виде пакета пьезокерамических колец, при этом внутри колец располагают цилиндрическую оправку. Ось симметрии оправки располагают перпендикулярно основанию, а диск располагают в ее верхней части так, что он контактирует с верхним пьезокерамическим кольцом пакета пьезокерамических колец пьезоэлемента, а на верхней поверхности диска устанавливают измерительные пьезоэлементы, контактирующие с двухступенчатым цилиндрическим диском, к верхней части которого присоединяют наконечник. Внешний диаметр диска выполняют равным внешнему диаметру пакета пьезокерамических колец, а основание представляет собой прямоугольной формы пластину с четырьмя пазами для крепления к исследуемому объекту. При этом нижнюю плоскость цилиндрической оправки располагают с зазором по отношению к верхней плоскости основания, а токонепроводящий корпус выполняют в виде цилиндрической обечайки. В верхней деформируемой части основания наклеивают тензодатчики, а в цилиндрической оправке выполняют полость и заполняют ее элементами, создающими дополнительное стохастическое движение. Технический результат - расширение частотного диапазона виброускорений. 2 ил.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством. Дождевальное устройство выполнено в виде открытого корпуса с дном, перфорированным сквозными отверстиями. Установка имитации дождя выполнена с возможностью перемещения посредством колес со стопорным механизмом, закрепленных на регулируемых телескопических стойках. Стенки открытого корпуса дождевального устройства образованы скрепленными между собой фигурными планками с угловым и Z-образным профилем. Дно открытого корпуса, перфорированное сквозными отверстиями, выполнено в виде съемной панели. Достигается повышение качества исследовательских и доводочных работ за счет реализации возможности исследования влияния внешнего воздействия дождя на виброакустический комфорт в условиях свободного звукового поля внешней среды. 2 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию для испытаний приборов на вибрационные и ударные воздействия. Устройство содержит основание, на котором посредством, по крайней мере, трех виброизоляторов закреплена переборка, представляющая собой одномассовую колебательную систему. В качестве генератора гармонических колебаний использован эксцентриковый вибратор, расположенный на переборке, a на переборке установлена стойка для испытания собственных частот упругих элементов рессорных и тарельчатых виброизоляторов разной длины, геометрических параметров, а также разной величины масс, закрепленных на концах этих испытываемых элементов. При этом колебания массы, закрепленной на каждом упругом элементе, фиксируются индикатором перемещений, по показаниям которого определяется резонансная частота, соответствующая параметрам каждого упругого элемента. На основании и переборке закреплены датчики виброускорений, сигналы от которых поступают на усилитель, затем осциллограф, магнитограф и компьютер для обработки полученной информации, при этом для настройки работы стенда используется частотомер и фазометр. Технический результат заключается в расширении технологических возможностей испытаний объектов, имеющих несколько упругих связей с корпусными деталями. 3 з.п. ф-лы, 7 ил.
Наверх