Нейтронно-активационный способ контроля выгорания отвс реакторов на тепловых нейтронах и устройство для его реализации



Нейтронно-активационный способ контроля выгорания отвс реакторов на тепловых нейтронах и устройство для его реализации
Нейтронно-активационный способ контроля выгорания отвс реакторов на тепловых нейтронах и устройство для его реализации
Нейтронно-активационный способ контроля выгорания отвс реакторов на тепловых нейтронах и устройство для его реализации

Владельцы патента RU 2527489:

Российская Федерация в лице Открытого акционерного общества "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") (RU)
Федеральное государственное унитарное предприятие "Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Технической Физики имени академика Е.И. Забабахина" (ФГУП "РФЯЦ-ВНИИТФ им. академ. Е.И. Забабахина") (RU)

Заявленное изобретение относится к средствам измерения глубины выгорания отработавших тепловыделяющих сборок реакторов на тепловых нейтронах. На дно бассейна выдержки под водой устанавливают диагностический контейнер. В стенке корпуса выполнена кольцеобразная полость с жидким индикаторным веществом, окруженная слоями полипропилена и слоями стали, а также слоем кадмия. Корпус содержит центральную полость, в которой размещают ОТВС. Контейнер закрывают крышкой, удаляют воду из центральной полости с ОТВС, проводят активацию индикаторного вещества, сливают в лабораторную емкость индикаторное вещество, перемешивают и берут пробу. Затем измеряют среднюю удельную активность индикаторного вещества и определяют интенсивность нейтронного излучения ОТВС и связанную с ней глубину выгорания ОТВС. При этом кольцеобразная полость с жидким индикаторным веществом может состоять из нескольких изолированных друг от друга колец. Далее выявляют глубину выгорания для каждого кольца и составляют профиль выгорания для ОТВС. Техническим результатом является возможность всестороннего охвата индикаторным веществом активной зоны ОТВС, исключение влияния воды на точность измерения, устранение фонового влияния при измерении удельной активности индикаторного вещества, а также повышение точности определения глубины выгорания ОТВС энергетических ректоров на тепловых нейтронах без извлечения ОТВС из воды бассейна выдержки. 2 н. и 7 з.п. ф-лы, 3 ил.

 

Область техники

Изобретение относится к неразрушающим дистанционным методам контроля выгорания топлива отработавших тепловыделяющих сборок (ОТВС) реакторов на тепловых нейтронах. В частности, способ и устройство предназначены для измерения глубины выгорания (В) ОТВС реакторов ВВЭР-1000 в диапазоне В≈(15÷70) МВт·сут/кг U в реальных условиях их хранения в бассейнах выдержки, заполненных водой. Глубина выгорания топлива - количество выделившейся энергии в одном килограмме урана, содержавшегося в топливе, за время кампании реактора.

Данные о глубине выгорания отработавшего ядерного топлива (ОЯТ) в активных зонах ОТВС представляют большой интерес для анализа и оптимизации происходящих в них процессов, а также осуществления гарантий МАГАТЭ по нераспространению ядерных материалов, что предъявляет повышенные требования к точности определения этой величины.

Предшествующий уровень техники

Существующие к настоящему времени методы контроля выгорания ОЯТ можно разделить на три основных группы: радиохимические методы, гамма (γ) - спектрометрические методы и нейтронные (n) методы.

Радиохимические методы основаны на отборе проб ОЯТ из ОТВС, выделении из них актиноидпых элементов (U, Pu, Am, Cm) или индикаторных нуклидов - продуктов деления (Cs, Се, Eu и др.), масс-спектрометрическом, α-спектрометрическом и γ-спектрометрическом определении содержания изотопов этих нуклидов в отобранных пробах и вычислении по этим данным выгорания топлива в каждой из проб. Результаты измерений для проб, проводимые этими методами, характеризуются сравнительно высокой точностью.

Недостатком радиохимических методов является большая длительность анализа, трудоемкость и необходимость применения громоздкого и дорогостоящего оборудования, обслуживание которого связано с проведением многочисленных ручных операций в загрязненных условиях. Как всякие разрушающие методы, радиохимические методы малопригодны для анализа выгорания топлива во всем объеме ОТВС.

Гамма (γ) - спектрометрические методы основаны на измерении линейчатых γ-спектров одного или нескольких радиоактивных изотопов - продуктов деления, содержание которых в ОТВС коррелирует с выгоранием ядерного топлива. Гамма-спектрометрические методы относятся к разряду неразрушающих методов, позволяющих характеризовать выгорание ОЯТ во всем объеме ОТВС, имеющих, как правило, очень большие весогабаритные показатели и сложную конструкционную структуру.

В реальных условиях дистанционной спектрометрии γ-излучения цельных крупногабаритных ОТВС (в частности, в реакторах ВВЭР-1000) достижение высокой точности проблематично прежде всего из-за трудноучитываемого эффекта самопоглощения анализируемых γ-квантов. Важным фактором, сильно влияющим на точность определения этим методом выгорания ОТВС, является также большой γ-фон. Мощность дозы γ-излучения вблизи ОТВС может достигать значений ~104 Р/час. Это фон, вызываемый другими, кроме анализируемых, продуктами деления, а также многократно рассеянным γ-излучением. Он увеличивает «загрузку» регистрирующей аппаратуры, ведет к появлению ложных сигналов в анализируемом энергетическом окне регистрации за счет наложения сигналов от γ-квантов с энергиями, отличными от энергий диагностируемых γ-линий. Как следствие, возникает необходимость применения коллимирующих, сканирующих, фильтрующих и котировочных устройств, использование которых само может стать источником дополнительных погрешностей.

Нейтронные (n) методы основаны на сильной корреляции n-излучения ОТВС тепловых реакторов и глубины выгорания, что обязано спонтанному делению нарабатываемого в них изотопа кюрия-244 (244Cm) с периодом полураспада TCm=18,1 лет. При В≥15 МВт сут/кг U, времени выдержки ОТВС после извлечения из активной зоны реактора tв≈(3÷15) лет и фиксированном начальном обогащении урана в топливе. Эта связь между интенсивностью n-источпиков в ОТВС (Sn) и глубиной выгорания (В) ОТВС с хорошей точностью описывается степенной функцией:

Snα·exp(-λCmtв), при α~4÷5 (1) где:

Sn (н/с) - интенсивность n-источников в ОТВС,

В (МВт сут/кг U) - глубина выгорания ОТВС,

λCm=0.69 (TCm)-1 - константа радиоактивного распада 244Cm,

tв≈(3÷15) лет - время выдержки ОТВС после извлечения из активной зоны реактора, (В.Ф.Фролов. Ядерно-физические методы контроля делящихся веществ. М., Энергоатомиздат, 1989 г.).

α - показатель корреляционной зависимости, который определяется индивидуально для каждого реакторного блока, рассчитан по программам высокого уровня, такой как ПРИЗМА-РИСК (ВНИИТФ) (зарегистрирована в отраслевом фонде алгоритмов и программ ОФАП, акт №687 от 19.11.2009).

Отсюда следует, что в n-методах достижение высокой точности определения глубины выгорания ОЯТ происходит за счет повышения точности измерения интенсивности n-источников - Sn.

Достоинством n-методов являются:

- большая чувствительность метода, что обеспечивается высоким значением показателя степени α~4÷5 в формуле (1);

- высокая представительность контроля среднего выгорания топлива по поперечному сечению ОТВС, что обеспечивается большой проникающей способностью нейтронов деления, то есть пренебрежимо малым их самопоглощением в ОТВС;

- малое влияние истории облучения ОТВС в реакторе на результаты измерений, что обусловлено достаточно большим периодом полураспада изотопа 244Cm(TCm≈18,1 лет) - основного источника регистрируемых нейтронов - и пренебрежимо малым его выгоранием за время кампании реактора (~3 года);

- слабая чувствительность погрешности определения выгорания (σв) к погрешности нейтронных измерений (σn): σв-1σn, при α~4÷5, а также к точности задания исходных параметров tв в формуле (1).

В качестве аналога был выбран принцип нейтронной активации водного раствора марганцевой соли по аналогии с методикой «марганцевый бак», применяемой для прецизионных калибровок нейтронных источников (К.Бекурц, К.Виртц. Нейтронная физика. М., Атомиздат, 1968 г.).

В измерениях по методике «марганцевый бак» контролируемый n-источник помещается в бак с водным раствором сульфата марганца (MnSO4) на время t0, в течение которого производится активация ядер 55Mn в результате радиационного захвата замедлившихся в воде нейтронов с образованием радиоактивного изотопа 56Mn, обладающего удобными для регистрации периодом полураспада TMn=2,58 ч и энергиями рождающихся при этом γ-квантов: Еγ, МэВ=0,847 (99); 1,811 (29); 2,110 (15), где в скобках указан квантовый выход в процентах на распад. После активации раствор тщательно перемешивают, берут его часть (пробу) и подвергают γ-спектрометрическому анализу для определения удельной активности (А) изотопа 56Mn. Удельная активность (А) линейно связана с измеряемой интенсивностью (Sn) n-излучения контролируемого источника. Точность измерения этой величины методом «марганцевого бака» составляет ~(1÷2)%.

Недостатком способа являются весогабаритные характеристики диагностируемой ОТВС, ее сложная структура и большое содержание делящихся материалов. Поэтому непосредственно использовать эту методику для измерений интенсивности n-измерения ОТВС в условиях бассейна выдержки невозможно.

В качестве прототипа для устройства была выбрана измерительные установка, реализующая нейтронный метод контроля выгорания ОТВС. Она представляет собой несущую конструкцию в виде плиты с центральным отверстием, обеспечивающим прохождение через него ОТВС (С.А.Андрушечко и др. Известия Вузов. Ядерная энергетика, №2, с.60-70, 2004 г.). На плите с центральным отверстием устанавливают два или более нейтронных детекторов, как правило, в виде камер деления. Такие измерительные установки оснащены соответствующими приводами, которые позволяют производить аксиальное сканирование нейтронного потока контролируемых ОТВС путем их непрерывной или дискретной протяжки через детектирующие устройства непосредственно в бассейне выдержки. После чего результаты нейтронного сканирования ОТВС обрабатывают, усредняют по высоте ОТВС и определяют среднее выгорание топлива в контролируемой ОТВС.

Недостатком для подобных измерительных устройств, реализующих n-метод, является слишком большая погрешность определения глубины выгорания ОТВС реакторов ВВЭР-440. Погрешность составила σв≈(11-14)% (2σ), чему соответствует погрешность n-измерений σn≈30%.

В качестве прототипа предлагаемого способа была выбрана методика «Вилка», разработанная в LANL (Fork system) для контроля выгорания ОТВС энергетических реакторов (R.I.Ewing. Bumnup verification measurements at USA nuclear utilities using the Fork-system. ICNC-95. Albuquerque. USA. v.II, p.64-68, 1995). В этой методике измеряют n-излучения ОТВС камерами деления, размещенными на рычагах несущей конструкции, выполненной в виде вилки. Сканируют активную зону ОТВС, протягивая ее между рычагами вилки непосредственно в бассейне выдержки.

Основным недостатком существующих измерительных установок является сильное влияние, оказываемое внешней средой, на показания нейтронных детекторов при типовых условиях измерений в бассейне выдержки, заполненном, как правило, борированной водой. Это приводит, во-первых, к изменению коэффициента размножения нейтронов в системе, состоящей из бассейна выдержки, измерительных установок, ОТВС, причем, зависимым от выгорания ОТВС образом. Во-вторых, к замедлению и поглощению нейтронов на их пути к детекторам, что затрудняет интерпретацию получаемых результатов измерений.

К недостаткам относится также существенное влияние сильного (~104 Р/час) и переменного вдоль оси ОТВС γ-фона на работу нейтронных детекторов и определенные трудности, связанные с достижением необходимой точности юстировки ОТВС относительно детекторов при сканировании их нейтронного потока.

Эти факторы приводят к необходимости введения многочисленных и часто трудно учитываемых поправок при обработке результатов измерений, что отражается на точности контроля выгорания исследуемых ОТВС.

Раскрытие изобретения.

Задачей изобретения является повышение точности нейтронно-активационного способа приборного контроля глубины выгорания ОТВС энергетических ректоров на тепловых нейтронах без извлечения ОТВС из воды бассейна выдержки.

Технический результат заключается в одновременном, всестороннем окружении активной зоны ОТВС индикаторным веществом, устранении помех от воды между активной зоной ОТВС и индикаторным веществом при его активации, устранении фоновых влияний при измерении удельной активности индикаторного вещества в лабораторных условиях.

Указанный технический результат достигается тем, что в нейтронно-активационном способе контроля выгорания ОТВС реакторов на тепловых нейтронах, заключающемся в перемещении ОТВС под водой к месту измерения до сближения активной зоны ОТВС с нейтронно-чувствительным элементом, определении интенсивности (Sn) нейтронного излучения ОТВС, расчете выгорания по известной зависимости между выгоранием и интенсивностью B(Sn), согласно изобретению на дно бассейна выдержки под водой устанавливают диагностический контейнер с кольцеобразной полостью в стенке корпуса, заполненной жидким индикаторным веществом, и центральной полостью, в которую помещают и фиксируют ОТВС. Закрывают контейнер, затем удаляют воду из центральной полости с ОТВС и проводят активацию индикаторного вещества в течение фиксированного времени. Сливают индикаторное вещество, перемешивают его, берут из него пробу, по которой измеряют среднюю удельную активность индикаторного вещества. С учетом калибровки измерительной установки определяют интенсивность нейтронного излучения (Sn) и связанную с ней глубину выгорания (В) ОТВС.

Расположение индикаторного вещества в кольцеобразной полости в стенке контейнера позволяет одновременно и всесторонне окружить активную зону ОТВС по ее боковой стороне. Удаление воды из ДК, не поднимая ОТВС на поверхность воды, позволяет устранить влияние воды на коэффициент умножения ОТВС и тем самым на измеряемую интенсивность источников нейтронов в ОТВС в способе контроля глубины выгорания.

Слив индикаторного вещества и дальнейшее его исследование вне бассейна выдержки позволяет исключить сильный γ-фон от диагностируемой ОТВС. Все это позволяет повысить точность способа контроля глубины выгорания ОТВС.

Можно измерять удельную активность индикаторного вещества гамма-спектрометром. Это дополнительно улучшает точность способа контроля глубины выгорания.

Можно заполнять индикаторным веществом кольцеобразную полость в стенке контейнера, состоящую из отдельных, изолированных друг от друга колец, внутри стенки боковой поверхности цилиндрического диагностического контейнера. После облучения индикаторное вещество из каждого кольца сливают отдельно, определяют глубину выгорания для каждого кольца, составляют профиль глубины выгорания для активной зоны ОТВС. Профиль выгорания при этом более точный, чем в прототипе, из-за всестороннего охвата активной зоны ОТВС индикаторным слоем.

Задачей изобретения является создание устройства, определяющего с повышенной точностью глубину выгорания ОТВС энергетических ректоров на тепловых нейтронах без извлечения ОТВС из воды бассейна выдержки.

Технический результат заключается в одновременном, всестороннем схватывании индикаторным веществом активной зоны ОТВС, избавлении от влияния воды на точность измерения, устранении фоновых влияний при измерении удельной активности индикаторного вещества.

Технический результат достигается тем, что в устройстве для контроля выгорания ОТВС, содержащем чувствительный к нейтронному излучению элемент, окруженный слоями полиэтилена и кадмия, согласно изобретению устройство выполнено в виде диагностического контейнера, состоящего из крышки и корпуса с центральной полостью для размещения ОТВС и кольцеобразной полостью в боковой стенке корпуса, которая окружена слоями кадмия и водородосодержащего вещества. Контейнер соединен с детектирующим блоком для измерения удельной активности индикаторного вещества, при этом чувствительный к нейтронному излучению элемент выполнен в виде жидкого индикаторного вещества, помещенного в кольцеобразную полость в боковой стенке корпуса диагностического контейнера.

Кольцеобразная полость конструктивно расположена вокруг активной зоны ОТВС, одновременно и всесторонне охватывает ее. Кольцеобразная полость окружена слоями кадмия и водородосодержащего вещества. При этом чувствительный к нейтронному излучению элемент представлен в виде жидкого индикаторного вещества, заполняющего кольцеобразную полость. Чувствительный элемент является жидкостью, принимающей форму кольцеобразной полости, в которую она налита, а значит, также охватывает активную зону ОТВС.

Индикаторное жидкое вещество может быть выполнено в виде водного раствора сульфата марганца.

Измеритель интенсивности нейтронного излучения может быть выполнен в виде гамма-спектрометра. Это дополнительно повышает точность нейтронно-активационного способа.

Водородосодержащее вещество может быть выполнено из полипропилена.

Боковая стенка корпуса диагностического контейнера может быть выполнена многослойной, состоящей из внешнего слоя стали, слоя пропропилена, слоя стали, полости для индикаторного вещества, слоя стали, слоя полипропилена, внутреннего слоя стали, слоя кадмия. Слои стали придают контейнеру прочность. Слои полипропилена замедляют быстрые нейтроны. Слой кадмия пропускает поток быстрых нейтронов от ОТВС к индикаторному веществу, но уменьшает поток тепловых нейтронов извне на ОТВС. Это уменьшает фоновый источник нейтронов в ОТВС из-за делений на уране. В следствие чего индикаторный раствор активизируется в точном соответствии с выгоранием ОТВС. Все это повышает точность определения интенсивности нейтронных источников в ОТВС.

Центральная полость корпуса диагностического контейнера может быть снабжена трубами для отвода воды из контейнера. Отсутствие воды между ОТВС и индикаторным веществом устраняет помехи, а значит повышает точность определения интенсивности нейтронных источников в ОТВС.

Кольцеобразная полость контейнера может быть снабжена трубами. Такое решение позволяет помещать в кольцеобразную полость жидкое индикаторное вещество и удалять его для дальнейшего исследования. Измерение активности индикаторного вещества производится в лабораторных условиях, где нет фоновых влияний от бассейна выдержки и других ОТВС. Это дополнительно повышает точность устройства.

Варианты осуществления изобретения.

Как показано на фиг.1, диагностический контейнер состоит из корпуса 1, на который сверху установлена крышка 2. Внутри корпуса 1 расположена центральная полость 3. Корпус 1 снабжен трубами 4 для отвода и подвода воды 5 из бассейна выдержки. Средняя часть корпуса 1 выполнена многослойной. Внутрь корпуса 1 установлена диагностируемая ОТВС 6, средняя часть которой является активной зоной 7. Корпус 1 стоит на дне 8 бассейна выдержки.

Как показано на фиг.2, многослойная средняя часть корпуса 1 состоит из следующих слоев. Внешний слой стали 9, слой полипропилена 10, слой стали 11, кольцеобразная полость, заполненная жидким индикаторным веществом 12, слой стали 13, слой полипропилепа 14, слой стали 15, слой кадмия (Cd) 16.

Слои из нержавеющей стали 11 и 13 составляют оболочку кольцеобразной полости с индикаторным веществом 12. Слои 9 и 15 образуют наружную и внутреннюю обечайки диагностического контейнера.

В качестве индикаторного вещества 12 в конкретном варианте исполнения используется водный раствор сульфата марганца (MnSO4). Индикаторное вещество 12 размещается между двумя слоями водородосодержащего материала, в данном случае полипропилена 10 и 14. Полипропилен 10 и 14 замедляет нейтроны, испускаемые активной зоной 7 ОТВС 6, и тем самым повышает чувствительность способа. Чувствительность - число реакций активации марганца в конкретной установке на один нейтрон, испущенный из ОТВС. Полипропилен 10 и 14 замедляет нейтроны, в результате повышается вероятность того, что нейтрон вызовет реакцию активации в индикаторном веществе 12.

Слой поглотителя нейтронов - кадмий 16, размещается на внутренней стенке корпуса 1 и служит для уменьшения нейтронной связи между активной зоной 7 ОТВС 6 и ее внешним окружением. Это ослабляет влияние окружения на результаты измерений и способствует повышению их точности.

Для получения информации об аксиальном распределении источников нейтронов в активной зоне 7 ОТВС 6 и, следовательно, глубины выгорания в ней топлива, кольцеобразная полость с индикаторным веществом 12 разбивается на несколько кольцеобразных секций 17, как показано на фиг.3. В этом случае усреднение активации раствора индикаторного вещества 12 проводится по объему каждой отдельной секции 17.

Способ осуществляется следующим образом. На дно 8 бассейна выдержки устанавливается корпус 1. ОТВС 6 поднимают над дном 8, не доставая из воды бассейна выдержки, загружают в центральную полость 3 корпуса 1. Сверху на корпус 1 устанавливают крышку 2. Из центральной полости 3 через трубы 4 удаляют воду. В кольцеобразную полость корпуса 1 заливают индикаторное вещество 12. В течение времени t0=10÷15 мин индикаторное вещество 12 активируется.

Быстрые нейтроны, испускаемые активной зоной 7 ОТВС 6, проходят через слой кадмия 16, замедляются слоями пропилена 10 и 14, попадают в индикаторное вещество 12 и активируют его. Это увеличивает чувствительность устройства, а следовательно, точность измерения глубины выгорания.

Слой кадмия 16 пропускает быстрые нейтроны от активной зоны 7 в сторону индикаторного вещества 12, но не пропускает замедлившиеся полипропиленом 10 и 14 нейтроны в обратную сторону. Это препятствует возникновению быстрых нейтронов от деления ядер делящихся изотопов, которые не связаны с истинным выгоранием ОТВС 6 в активной зоне 7 и не характеризуют выгорание ОТВС 6. Это также увеличивает точность соответствия глубины выгорания ОТВС 6 и активирования индикаторного вещества 12.

По окончании времени активации индикаторное вещество 12 откачивают через трубы 18 из кольцеобразной полости 12 корпуса 1 в емкость, находящуюся в радиационно безопасном месте. Активированное индикаторное вещество 12 сливают в баллоны-хранилища и тщательно перемешивают. Забирают пробы индикаторного вещества 12. Проводят γ-спектрометрическое определение их удельной активности блоком для измерения удельной активности 19. Активированное индикаторное вещество 12 выдерживается в баллонах-хранилищах перед повторным использованием в течение времени, необходимого для восстановления первоначальных свойств индикаторного вещества 12.

Функциональная связь между измеренной удельной активностью пробы (AMn), и интенсивностью n-излучения контролируемой ОТВС (Sn) определяется соотношением:

A M n = λ M n q n γ S n t 0 , ( 2 ) , где:

AMn, (Бк/л) - измеренная удельная активность пробы,

λMn=0,69 (TMn)-1 - константа радиоактивного распада 56Mn,

q (1/н·л) - число реакций радиационного захвата нейтронов ядрами 55Mn в одном литре раствора индикаторного вещества, нормированное на один нейтрон, испущенный при спонтанном делении 244Cm в ОТВС (чувствительность измерительной установки),

Sn (н/с) - интенсивностью n-излучения контролируемой ОТВС,

t0 (мин) - время активации раствора индикаторного вещества в диагностическом контейнере.

Чувствительная измерительная установка включает в себя диагностический контейнер и блок для измерения удельной активности 19 (показано на фиг.1).

Величина q может быть рассчитана по нейтронно-физическим программам высокого уровня или определена в результате калибровки измерительной установки предлагаемой методики с применением эталонных источников нейтронов. Проведенные расчетные исследования с моделью измерительной установки для контроля ОТВС ВВЭР-1000 показали, что при выбранной конфигурации слоев диагностического контейнера и принятых условиях применения предлагаемого способа эта величина практически инвариантна (разброс в ее значениях не превышал ~2%) по отношению к изменению в широком эксплуатационном диапазоне выгорания ОТВС и связанного с ним изменения изотопического состава ОЯТ, пространственного распределения n-источников по высоте активной зоны, включая условия измерения с точечным эталонным источником при калибровке измерительной установки, температуры воды в бассейне выдержки и концентрации в ней борной кислоты. Ее значение для исследованной модели измерительной установки при концентрации сульфата марганца в водном растворе индикаторного вещества С=400 г/л оказалось равным q≈(8,65±0,19)·10-4 1/н·л.

Из чего следует, что при контроле сборок с выгоранием топлива В≈(15÷50) МВт·сут/кг·U, чему соответствует Sn≈(2·106÷4·108) н/с TBC, и t0=10 мин для ожидаемого значения удельной активности индикаторного вещества будем иметь А≈(102÷2·104) Бк/л. Это гарантирует ее измерение существующими техническими средствами с погрешностью не более ~2%. В результате, согласно формуле (2), для суммарной погрешности определения интенсивности n-излучения ОТВС предлагаемым методом получим σn~(3÷4)%.

Таким образом, предлагаемый нейтронно-активационный метод контроля выгорания ОТВС существенно уменьшает погрешность нейтронных измерений по сравнению с другими методами.

Такая погрешность (σn) делает предлагаемый метод перспективным для решения одной из важных задач обеспечения гарантий МАГАТЭ по нераспространению ядерных материалов - задачи раздельного дистанционного определения содержания изотопов плутония (239-242Pu) в ОТВС.

В доступных источниках информации не обнаружено технических решений, содержащих совокупно признаки, сходные с отличительными признаками заявляемого нейтронно-активационного метода. Следовательно, изобретение соответствует критерию «новизна».

В располагаемых нами источниках информации отсутствуют сведения о влиянии имеющихся в заявленном изобретении отличительных признаков в совокупности на достижение заявленного технического результата. На основании этого изобретение соответствует критерию «изобретательский уровень».

Промышленная применимость.

Реализация предлагаемого способа возможна, так как он основан на применении технологий, хорошо освоенных современной промышленностью. Материалы, используемые в предлагаемом способе и устройстве, на сегодняшний день известны и используются в атомной промышленности. Способ и устройство могут применяться для измерения глубины выгорания ОТВС реакторов ВВЭР-1000 в диапазоне В≈(15÷70) МВт·сут/кг U в реальных условиях их хранения в бассейнах выдержки, без извлечения ОТВС из воды. Это подтверждает промышленную применимость предлагаемого способа и устройства.

1. Нейтронно-активационный способ контроля выгорания ОТВС реакторов на тепловых нейтронах, заключающийся в перемещении ОТВС под водой к месту измерения до сближения активной зоны ОТВС с нейтронно-чувствительным элементом, определении интенсивности (Sn) нейтронного излучения ОТВС, расчете выгорания по известной зависимости между выгоранием и интенсивностью B(Sn), отличающийся тем, что на дно бассейна выдержки под водой устанавливают диагностический контейнер с кольцеобразной полостью в стенке корпуса, заполненной жидким индикаторным веществом, и центральной полостью, в которую помещают и фиксируют ОТВС, закрывают контейнер, затем удаляют воду из центральной полости с ОТВС и проводят активацию индикаторного вещества в течение фиксированного времени, сливают индикаторное вещество, перемешивают его, берут из него пробу, по которой измеряют среднюю удельную активность индикаторного вещества, с учетом калибровки измерительной установки определяют интенсивность нейтронного излучения ОТВС (Sn) и связанную с ней глубину выгорания ОТВС (В).

2. Нейтронно-активационный способ контроля выгорания ОТВС по п.1, отличающийся тем, что заполняют индикаторным веществом кольцеобразную полость в стенке корпуса контейнера, состоящую из отдельных, изолированных друг от друга колец.

3. Нейтронно-активационный способ контроля выгорания ОТВС по п.2, отличающийся тем, что после облучения раствор индикаторного вещества из каждого кольца сливают отдельно, определяют глубину выгорания ОТВС для каждого кольца, составляют профиль выгорания для активной зоны ОТВС.

4. Устройство для контроля выгорания ОТВС, содержащее чувствительный к нейтронному излучению элемент, окруженный слоями полиэтилена и кадмия, отличающееся тем, что устройство выполнено в виде диагностического контейнера, состоящего из крышки и корпуса с центральной полостью для размещения ОТВС и кольцеобразной полостью в боковой стенке корпуса, которая окружена слоями кадмия и водородосодержащего вещества, контейнер соединен с детектирующим блоком для измерения удельной активности индикаторного вещества, при этом чувствительный к нейтронному излучению элемент выполнен в виде жидкого индикаторного вещества, помещенного в кольцеобразную полость в боковой стенке корпуса диагностического контейнера.

5. Устройство для контроля выгорания ОТВС по п.4, отличающееся тем, что жидкое индикаторное вещество выполнено в виде водного раствора сульфата марганца.

6. Устройство для контроля выгорания ОТВС по п.4, отличающееся тем, что водородосодержащее вещество выполнено из полипропилена.

7. Устройство для контроля выгорания ОТВС по п.4, отличающееся тем, что боковая стенка корпуса диагностического контейнера выполнена многослойной, состоящей из внешнего слоя стали, слоя полипропилена, слоя стали, полости для индикаторного вещества, слоя стали, слоя полипропилена, внутреннего слоя стали, слоя кадмия.

8. Устройство для контроля выгорания ОТВС п.4, отличающееся тем, что центральная полость корпуса диагностического контейнера снабжена трубами для удаления воды из контейнера.

9. Устройство для контроля выгорания ОТВС п.4, отличающееся тем, что кольцеобразная полость корпуса диагностического контейнера снабжена трубами для заливки и удаления индикаторного вещества.



 

Похожие патенты:
Изобретение относится к области изоляции радиоактивных отходов, образующихся при переработке облученного топлива атомных электростанций (АЭС), а именно к области иммобилизации трансурановых элементов. Наиболее эффективно заявляемое изобретение может быть использовано в процессе переработки отработавшего топлива АЭС с целью длительной и надежной изоляции трансурановых элементов и одновременно с сохранением в будущем возможности их извлечения и использования, или для дальнейшей переработки с использованием процесса трансмутации. Сущность изобретения состоит в том, что оксиды трансурановых элементов смешивают с порошком металлического палладия в соотношении, мас.%: оксидов трансурановых элементов - 30-70, металлический палладий - 70-30, и полученную смесь подвергают прессованию. В результате получается композиция для долговременного хранения трансурановых элементов, которая включает оксиды трансурановых элементов в металлическом палладии, что обеспечивает высокую химическую устойчивость материала, безопасность хранения на неограниченный период времени и при этом сохраняется возможность извлечения ТПЭ после растворения предложенной композиции в азотной кислоте. Для получения предложенной композиции предлагается использовать техногенный, (“реакторный”) палладий, являющийся продуктом деления ядерного топлива.
Изобретение относится к материалам с нейтронопоглощающими свойствами для защиты от нейтронного излучения. Предложен термостойкий нейтронозащитный материал, состоящий из магнийфосфатного связующего (24-33 мас.%) и порошковой части (76-67 мас.%), при этом порошковая часть содержит гидрид титана ТiH2 (90,3-95,5 мас.%), оксид магния MgO (2,7-4,5 мас.%) и карбид бора В4С (1,8-5,2 мас.%).
Изобретение относится к радиохимической технологии и может быть использовано при производстве «реакторного» 99Мо как генератора 99mТc биомедицинского назначения, а также при анализе технологических растворов для предварительного выделения Мо или Мо и Zr при экстракционной переработке растворов технологии отработавшего ядерного топлива атомных электростанций (ОЯТ АЭС).

Изобретение относится к способу определения оптимальных параметров растворения оксидов переходных металлов в растворах, содержащих комплексообразующий агент, и может быть использовано в атомной энергетике.

Изобретение относится к области ядерной энергетики, в частности к оборудованию и методам обращения с радиоактивными отходами. Изобретение может использоваться при резке трубопроводов в труднодоступных зонах нефтехимической, газовой промышленности и общем машиностроении.

Изобретение относится к горному делу и может быть использовано при разведке, проектировании и эксплуатации полигонов глубинного захоронения жидких промышленных отходов, а так же при использовании водоносных горизонтов, содержащих высокоминерализованные подземные воды, для других целей.

Изобретение относится к области разделения жидких сред выпариванием. .
Изобретение относится к технологии рециклирования ядерных энергетических материалов, а именно к способам очистки гексафторида урана от фторидов рутения, и может быть использовано для возврата урана, выделенного из отработавшего ядерного топлива, в топливный цикл легководных реакторов.

Изобретение относится к области подземного захоронения биологически опасных сточных вод различных предприятий, очистка и переработка которых затруднена, а сброс в открытые водоемы невозможен.
Изобретение относится к области ядерной энергетики, а именно к области переработки отработавшего ядерного топлива. .
Заявленное изобретение относится к способу подготовки карбидного ОЯТ к экстракционной переработке. Заявленный способ включает подавление действия содержащихся в азотнокислом растворе карбидного топлива комплексообразующих лигандов путем их окисления азотной кислотой в присутствии катализатора, в качестве которого используют поливалентный металл, находящийся в азотнокислом растворе или вводимый в него до или после растворения карбидного ОЯТ, выбранного из ряда: церий, железо, марганец, технеций, ртуть. Далее нагреванием азотнокислого раствора карбидного топлива или проводят такое окисление непосредственно в процессе растворения карбидного топлива в азотной кислоте в присутствии катализатора с последующим растворением в окисленном растворе карбидного топлива оксидного или металлического ОЯТ, или проводят одновременно операции окисления комплексообразующих лигандов и растворения оксидного или металлического ОЯТ в растворе карбидного топлива. В альтернативном решении предлагается проводить аналогичную подготовку карбидного ОЯТ к экстракционной переработке с последующим смешением окисленного раствора карбидного топлива с растворами оксидного или металлического ОЯТ или с прямым введением необходимого количества раствора нитрата циркония или раствора другого многовалентного металла-комплексообразователя. Техническим результатом является устранение необходимости использования сильного окислителя. 2 н. и 11 з.п. ф-лы, 12 пр.

Изобретение относится к способам переработки уран-фторсодержащих растворов, полученных от растворения огарков фторирования в производстве гексафторида урана. Способ включает растворение огарков в растворе азотной кислоты, извлечение урана из фторсодержащего азотнокислого раствора путем восстановления его гидразином на платиновом катализаторе, при постоянной очистке поверхности катализатора от осадка тетрафторида урана, отделение катализатора от азотнокислого раствора и осадка тетрафторида урана, обеспечение эквимолярного отношения фторид-ионов к урану (IV) в полученном растворе и разделение осадка тетрафторида урана и азотнокислотного раствора, при этом азотнокислотный раствор повторно используют для растворения огарков фторирования, предварительно доукрепив по азотной кислоте. Изобретение обеспечивает высокую степень восстановления урана и уменьшение количества нитрат-фторсодержащих отходов. 2 з.п. ф-лы, 2 ил.

Изобретение относится к средствам переработки жидких органических радиоактивных отходов. В заявленном способе предусмотрено распыление отходов пневмофорсункой и сжигание их в циклонной печи. При этом разогрев циклонной печи осуществляют теплом от сгорания газообразного или жидкого топлива, жидкие органические радиоактивные отходы подают на сжигание непрерывно, перед подачей в пневмофорсунку для распыления отходы подогревают, пневмофорсунку охлаждают водой, сжигание отходов проводят в присутствии мелкодисперсных частиц катализатора, вторичный воздух подают тангенциально, охлаждение и очистку газов проводят вначале в пенном слое струйного скруббера, а затем в абсорбере-конденсаторе. Сгорание топлива для разогрева циклонной печи осуществляют в псевдоожиженном слое катализатора, подогрев жидких органических радиоактивных отходов проводят охлаждающей водой пневмофорсунки. Установка для сжигания жидких органических радиоактивных отходов содержит циклонную печь (1) с пневмофорсункой, струйный скруббер (2), абсорбер-конденсатор (3), водяные насосы (4/2 и 4/3), в качестве пускателя используют каталитический реактор (7) с псевдоожиженным слоем катализатора. Циклонная печь установлена на баке струйного скруббера, пневмофорсунка для подачи органических радиоактивных отходов расположена в верхней части циклонной печи. Техническим результатом является повышение эффективности и экологической безопасности сжигания радиоактивных отходов. 2 н. и 4 з.п. ф-лы, 1 ил., 1 табл.
Заявленное изобретение относится к способу обезвреживания радиоактивных отходов в силикатном стекле. В заявленном способе раствор нитрата металлического элемента, являющийся компонентом радиоактивных отходов, перемешивают в этаноле с тетраэтоксисиланом, разбавленным этанолом, затем добавляют органическую кислоту, предпочтительно аскорбиновую кислоту. После этого смесь перемешивают при комнатной температуре в течение 2-5 ч, предпочтительно в течение 4 ч, в процессе чего протекает начальная стадия гидролиза. Полученный силикатно-гидрокси-нитратно-аскорбиновый золь с содержащимся в нем металлическим элементом, который является компонентом радиоактивных отходов, подвергают второму этапу гидролиза и полимеризации при температуре 70°C. Затем золь подвергают выпариванию до сухого остатка при давлении 0,1 МПа. Термообработку полученного геля производят в течение 4 ч при температуре 1200°C со скоростью нагрева 2°C/мин. Техническим результатом является возможность получения силикатного стекла с прочно внедренным в его структуру металлическим элементом, а также сокращение и упрощение технологического цикла. 2 н. и 8 з.п. ф-лы, 4 пр.

Изобретение относится к способам обработки облученного реакторного графита. Заявленный способ включает стадии термической деструкции и окисления. На подготовительном этапе графит помещают в термическую камеру, затем через термическую камеру продувают газообразную инертную среду, нагретую до максимальной температуры от 700°C до 1100°C, с выведением газовых радиоактивных продуктов деструкции в инертную среду. Далее газообразную инертную среду подвергают обработке для выделения и последующей утилизации радиоактивных соединений трития и хлора-36. Далее следует этап окисления, в котором через термическую камеру продувают газообразную кислородсодержащую среду с выведением газовых радиоактивных продуктов реакции окисления в кислородсодержащую среду, причем значение температуры среды поддерживают выше 500°C, но ниже максимальной температуры газообразной инертной среды на этапе термической деструкции. Затем полученную кислородсодержащую среду с радиоактивными продуктами реакции выводят из термической камеры и подвергают обработке для выделения и последующей утилизации радиоактивных соединений углерода-14. На заключительном этапе графит извлекают из термической камеры. Техническим результатом является возможность повышения эффективности очистки облученного реакторного графита от радионуклидов за счет его глубокой объемной и селективной дезактивации, а также увеличение безопасность дезактивации. 3 з.п. ф-лы, 2 ил.

Изобретение относится к средствам захоронения и утилизации жидких радиоактивных отходов и может быть использовано на предприятиях, хранящих радиоактивные отходы (РАО) низкой и средней активности в хранилищах различного типа, а также в зонах радиационных загрязнений с потенциальным выходом компонентов РАО в окружающую среду. В заявленном способе предусмотрен подбор эффективных высоко радиорезистентных штаммов микроорганизмов, способных окислять органические компоненты РАО (ацетат, оксалат и др.) и восстанавливать нитрат-анионы и трансвалентные радионуклиды, ограничивая их распространение в геологической среде, а также подбор концентраций водных растворов углеводов для стимулирования микробиологических процессов в подземных условиях. Техническим результатом является уменьшение распространения компонентов радиоактивных отходов из зон захоронения и радиоактивного загрязнения. 2 з.п. ф-лы, 2 ил.
Изобретение относится к способу переработки радиоактивных отходов, в частности пористо-волокнистых теплоизоляционных материалов (ТИМ), образующихся в процессе эксплуатации объектов атомной энергетики и промышленности. В заявленном способе осуществляют холодное прессование отходов в брикеты, затем проводят процесс высокотемпературной обработки в электрической печи камерного типа для нагрева спрессованных отходов до температуры 1050-1150°C с последующей их выдержкой еще не менее 1 часа при этой же температуре. Далее образовавшийся стеклоподобный материал охлаждают при температуре окружающей среды. Техническим результатом является снижение уноса в газовую фазу цезия-137 с 9-20% до 1-2%; упрощение технологии переработки ТИМ за счет исключения технологических операций по сушке, измельчению, добавлению реагентов и тщательному перемешиванию смеси перед термической обработкой; возможность использования простого, доступного, с меньшей металлоемкостью и стоимостью технологического оборудования, не требующего при обслуживании высокой квалификации персонала; снижение затрат электроэнергии на обработку ТИМ не менее чем в 4 раза; исключение образования дополнительных вторичных твердых радиоактивных отходов. 1 табл.
Изобретение относится к способам удаления радиоактивных отложений с поверхностей капсул с источником ионизирующего излучения. Способ включает в себя последовательную обработку капсулы раствором кислоты и промывку капсулы водным раствором, которые нагревают до режима пузырькового кипения. Капсулу, помещенную в первую емкость, в течение 10-20 минут промывают в режиме кипения в дистиллированной воде, затем промытую капсулу, помещенную во вторую емкость, дезактивируют в течение 10-20 минут в режиме кипения в 7-10% растворе азотной кислоты, далее охлаждают вторую емкость совместно с капсулой в течение 10-20 минут. Затем после охлаждения из второй емкости отбирают пробу раствора азотной кислоты в количестве 50 мл и проводят измерение ее радиоактивности, причем если радиоактивность пробы не превышает 0,2 кБк, то капсулу считают очищенной, в противном случае операции промывки и дезактивации с чистыми растворами дистиллированной воды и 7-10% растворами азотной кислоты в режиме кипения повторяют до получения проб с радиоактивностью, не превышающей 0,2 кБк. Техническим результатом является упрощение технологии и снижение себестоимости дезактивации капсулы с источником ионизирующего излучения. 1 з.п. ф-лы.

Изобретение относится к средствам переработки нитратсодержащих жидких радиоактивных отходов (ЖРО) и может быть использовано на атомных электростанциях и специализированных предприятиях, кондиционирующих радиоактивные отходы низкой и средней активности. В заявленном способе нитратсодержащие ЖРО перед отверждением в неорганический или полимерный матричный материал подвергают биодеструкции за счет ферментативных процессов специально подобранными консорциумами микроорганизмов при добавлении фосфорной кислоты и сахарозы, при этом микроорганизмы восстанавливают нитрат-ионы до молекулярного азота, нерадиоактивная газовая фаза (азот, углекислый газ) выводится в атмосферу. Радионуклиды сорбируются образующимся после биодеградации шлаком биомассы, состоящим из самих микроорганизмов и продуктов их метаболизма; фосфорная кислота способствует микробиологическим процессам денитрификации и дополнительно приводит к образованию осадка фосфата стронция, что способствует увеличению прочности цементной матрицы. Техническим результатом является сокращение объемов нитратсодержащих ЖРО перед включением их в неорганическую (цементную, керамическую) или полимерную матрицу, сокращение объемов конечного продукта, подлежащего длительному хранению (захоронению), предотвращение биодеструкции нитратсодержащих ЖРО в составе цементного компаунда при длительном хранении. 2 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к хранению отработанного ядерного топлива (ОЯТ). Хранилище содержит бассейн 1 с водой, в боковых стенках которого выполнены возвратные охлаждающие трубы 2. На дне бассейна 1 уложены полые диски 3 с перфорацией микроотверстиями в верхней поверхности дисков и конусным посадочным местом в центре дисков 3, к которым подведен трубопровод 4 с сжатым воздухом. Над полыми дисками 3 расположены скрепленные между собой цилиндрические пеналы 5 с отверстиями 6 для пропуска воды в нижней части пеналов 5, в цилиндрические пеналы 5 размещают тепловыделяющие сборки 7. Вода в бассейне 1 полностью накрывает тепловыделяющие сборки 7 и верхние отверстия возвратных охлаждающих труб 2. Загрузочный механизм по координатам центров цилиндрических пеналов 5 осуществляет позиционирование захвата и производит загрузку тепловыделяющей сборки 7 в выбранный цилиндрический пенал 5. Стенки цилиндрических пеналов 5 скреплены между собой и образуют пространственную сотовую структуру. Технический результат - повышение эффективности использования объема бассейна за счет увеличения плотности хранения ОЯТ, а также снижение количества воды в бассейне, приходящегося на единицу веса хранящегося ОЯТ. 2 ил.
Наверх