Способ контроля герметичности

Изобретение относится к области исследований устройств на герметичность. Сущность: перед испытаниями определяют реакцию течеискателя (3) на фоновое содержание контрольного вещества в испытательной камере (1) с контролируемым изделием (2). Затем предварительно взвешенный проницаемый корпус (6) с контрольным веществом помещают в испытательную камеру (1) с контролируемым изделием (2) и выдерживают в течение времени накопления. Определяют реакцию течеискателя (3) на накопленное контрольное вещество. Извлекают проницаемый корпус (6) из испытательной камеры (1) и вновь взвешивают. Очищают испытательную камеру (1) до начального фонового содержания контрольного вещества. Заполняют полость изделия (2) контрольным веществом до требуемого давления и выдерживают в течение того же времени накопления. Определяют реакцию течеискателя (3) на контрольное вещество, накопленное в испытательной камере (1). По полученным данным рассчитывают величину негерметичности изделия (2). Технический результат: повышение точности результатов контроля герметичности за счет исключения влияния на результат испытаний адсорбции молекул контрольного вещества на поверхностях изделия и испытательной камеры. 3 ил.

 

Изобретение относится к области испытательной техники, в частности к испытаниям изделий на герметичность, и может найти применение в тех областях техники, где предъявляются высокие требования к надежности изделий.

Известен способ испытания на герметичность, при котором изделие заключают в замкнутую оболочку, заполняют изделие контрольным веществом, накапливают его в объеме оболочки, измеряют его концентрацию с помощью течеискателя, а о герметичности судят по интенсивности изменения концентрации контрольного вещества в замкнутой оболочке (авт. св. СССР №214851, опубл. 29.03.68 г.).

Недостатком данного способа является сравнительно низкая достоверность измерения, вызванная тем, что при измерении интенсивности изменения концентрации контрольного вещества в замкнутом объеме не учитывается, что часть молекул контрольного вещества адсорбируется на стенках замкнутого объема и изделия, что вносит погрешность в результат измерения величины негерметичности.

Адсорбция - поглощение газов, паров или жидкостей поверхностным слоем твердого тела или жидкости (Советский энциклопедический словарь, 1989). Адсорбция представляет собой явление, происходящее на поверхности; масса адсорбированного газа пропорциональна поверхности, а не объему твердого тела (Р.Шампе. Физика и техника электровакуумных приборов, 1963).

Известен способ контроля проницаемости разделительной оболочки, где разделительную оболочку устанавливают между двумя камерами, заправляют одну камеру рабочей жидкостью, другую камеру заправляют контрольным газом и производят оценку проницаемости разделительной оболочки. В качестве контрольного газа используют диоксид углерода, который заправляют до испытательного давления, затем сбрасывают его до атмосферного давления и одновременно измеряют объем сбрасываемого диоксида углерода, например, с помощью газового счетчика типа ГСБ-400. Сравнивают сброшенное количество диоксида углерода с расчетным, которое определяется по известным величинам испытательного давления и объема газовой камеры. О проницаемости разделительной оболочки судят по количеству сброшенного диоксида углерода (патент РФ №2216003, G01M 3/00, опубл. 10.11.2003 г.).

Недостатком данного способа является то что, при проведении высокочувствительного контроля герметичности, когда требования к уровню негерметичности изделия менее 10-7 м3·Па/с, применение воды может привести к закупорке микронеплотностей.

Наиболее близким к предлагаемому техническому решению является способ испытаний изделий на герметичность, где предварительно оценивают влияние адсорбции молекул пробного вещества на внутренних поверхностях герметичной камеры и емкости с эталонной концентрацией на основе неоднократных измерений концентрации пробного вещества в камере и емкости (патент РФ №2187085, G01M 3/02, опубл. 10.08.2002 г.).

Однако для проведения неоднократных измерений требуется дополнительное время, т.е. увеличивается трудоемкость испытаний. Кроме того, при установке в камеру нового изделия с другой площадью поверхности потребуется новая калибровка камеры и изделия для уточнения поправочного коэффициента.

Задачей настоящего изобретения является повышение точности и достоверности результатов контроля герметичности за счет исключения влияния на результат испытаний адсорбции молекул контрольного вещества на поверхностях изделия и испытательной камеры.

Для достижения этого технического результата в способе контроля герметичности, при котором изделие заключают в испытательную камеру, заполняют его полость контрольным веществом до требуемого давления, выдерживают в течение определенного времени, определяют реакцию течеискателя на контрольное вещество, накопленное в испытательной камере, согласно изобретению перед испытаниями определяют реакцию течеискателя на фоновое содержание контрольного вещества в испытательной камере с контролируемым изделием, после чего предварительно взвешенный проницаемый корпус с контрольным веществом помещают в испытательную камеру с контролируемым изделием и выдерживают в течение времени накопления, определяют реакцию течеискателя на накопленное контрольное вещество, извлекают проницаемый корпус из испытательной камеры и вновь взвешивают, очищают испытательную камеру до начального фонового содержания контрольного вещества, заполняют полость изделия контрольным веществом до требуемого давления, выдерживают в течение того же времени накопления, определяют реакцию течеискателя на контрольное вещество, накопленное в испытательной камере, а величину негерметичности изделия рассчитывают по соотношению

G И = m 0 m 1 τ В α И α К , где

GИ - негерметичность изделия, г/с;

m0 - масса проницаемого корпуса с контрольным веществом до испытаний, г;

m1 - масса проницаемого корпуса с контрольным веществом после испытаний, г;

αИ - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через негерметичности изделия, мкА;

αК - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через проницаемый корпус, мкА;

τВ - время выдержки в испытательной камере изделия (проницаемого корпуса), заполненного контрольным веществом, с.

Отличием предлагаемого способа от аналогичных является то, что в нем эталонная концентрация пробного веществ, предназначенная для определения по ней величины негерметичности изделия, создается непосредственно в испытательной камере с изделием путем измерения массы пробного вещества, поступившего в камеру через проницаемый корпус, и то что, реакция регистрирующего прибора на это количество пробного вещества определяется с учетом того, что часть молекул пробного вещества адсорбировалась на поверхностях изделия и камеры.

Заявляемое решение может быть промышленно применимо, т.к. может быть изготовлено промышленным способом, осуществимо и воспроизводимо, следовательно, оно соответствует условию патентоспособности «промышленная применимость». Сравнение заявляемого технического решения - способа контроля герметичности - с уровнем техники по научно-технической литературе и патентным источникам показывает, что совокупность существенных признаков заявленного решения не была известна. Следовательно, оно соответствует условию патентоспособности «новизна».

Предлагаемый способ контроля герметичности поясняется чертежами, где на фиг.1 изображена схема измерения фонового содержания контрольного вещества в камере, на фиг.2 - схема измерения концентрации контрольного вещества, полученной накоплением в камере через проницаемый корпус, а на фиг.3 - схема измерения концентрации контрольного вещества, полученной накоплением в камере через негерметичности изделия.

Устройство для осуществления способа включает испытательную камеру 1, контролируемое изделие 2, регистрирующий прибор 3, манометр 4, систему подачи контрольного вещества 5, проницаемый корпус с контрольным веществом 6.

Испытательная камера 1 (замкнутый объем, полость) предназначена для размещения в ней контролируемого на герметичность изделия 2 и накопления контрольного вещества в объеме камеры.

Регистрирующий прибор 3 (течеискатель, газоанализатор и т.п.) предназначен для количественной оценки контрольного вещества в испытательной камере.

Система подачи контрольного вещества 5 необходима для заполнения испытуемого изделия контрольным веществом и контроля его в полости изделия с помощь манометра 4 в процессе испытания на герметичность.

Проницаемый корпус 6 с контрольным веществом (корпус с проницаемым элементом) служит для оценки эталонной концентрации контрольного вещества в камере 1 с изделием 2 путем измерения его массы до испытания и после испытания.

Клапаны К1 и К2 предназначены для перекрытия магистралей испытательной камеры и системы подачи контрольного вещества соответственно.

Способ осуществляется следующим образом.

Испытуемое изделие 2 помещают в испытательную камеру 1, которую герметично закрывают крышкой. Определяют реакцию течеискателя 3 на фоновое содержание контрольного вещества в испытательной камере 1 - αФ (фиг.1). Затем определенное количество контрольного вещества заключают в замкнутый проницаемый корпус 6 (или в герметичный корпус с проницаемым элементом), определяют взвешиванием массу корпуса с контрольным веществом - m0. Помещают проницаемый корпус 6 с контрольным веществом в испытательную камеру. Герметизируют камеру 1 и производят начальный отсчет времени. Выдерживают определенное время (от нескольких часов до нескольких суток) корпус с контрольным веществом в камере - τВ. Определяют реакцию течеискателя на содержание накопленного в испытательной камере контрольного вещества - αК (фиг.2). Открывают камеру 1, извлекают корпус 6 с контрольным веществом и взвешивают его, определяя массу - m1. Далее вновь герметизируют испытательную камеру 1. Производят ее очистку от паров контрольного вещества (продувкой, вакуумированием с напуском воздуха или другим способом), контролируя при этом течеискателем фоновое содержание контрольного вещества в камере 1. При достижении фонового содержания паров контрольного вещества в камере 1 до уровня αФ1, равного αФ, очистку прекращают. Испытуемое изделие 2 заполняют контрольным веществом до давления испытания - Рисп. Производят отсчет времени начала испытаний. Выдерживают испытуемое изделие 2, заполненное контрольным веществом, в камере 1 определенное время τВ1, равное τВ. После чего определяют реакцию течеискателя 3 на содержание накопленного в испытательной камере 1 контрольного вещества через негерметичности изделия - αИ (фиг.3). Величину на герметичности изделия определяют по формуле

G И = m 0 m 1 τ В α И α К ,

где GИ - негерметичность изделия, г/с;

m0 - масса проницаемого корпуса с контрольным веществом до испытаний, г;

m1 - масса проницаемого корпуса с контрольным веществом после испытаний, г;

αИ - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через негерметичности изделия, мкА;

αК - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через проницаемый корпус, мкА;

τВ - время выдержки в испытательной камере изделия (проницаемого корпуса), заполненных контрольным веществом, с.

Способ позволяет повысить надежность и точность определения негерметичности, т.к. в этом случае при создании эталонной концентрации, по которой затем определяется величина негерметичности изделия, учитывается адсорбция молекул контрольного вещества на поверхностях испытательной камеры и изделия.

Способ контроля герметичности, при котором изделие заключают в испытательную камеру, заполняют его полость контрольным веществом до требуемого давления, выдерживают в течение определенного времени, определяют реакцию течеискателя на контрольное вещество, накопленное в испытательной камере, отличающийся тем, что перед испытаниями определяют реакцию течеискателя на фоновое содержание контрольного вещества в испытательной камере с контролируемым изделием, после чего предварительно взвешенный проницаемый корпус с контрольным веществом помещают в испытательную камеру с контролируемым изделием и выдерживают в течение времени накопления, определяют реакцию течеискателя на накопленное контрольное вещество, извлекают проницаемый корпус из испытательной камеры и вновь взвешивают, очищают испытательную камеру до начального фонового содержания контрольного вещества, заполняют полость изделия контрольным веществом до требуемого давления, выдерживают в течение того же времени накопления, определяют реакцию течеискателя на контрольное вещество, накопленное в испытательной камере, а величину негерметичности изделия рассчитывают по соотношению

где GИ - негерметичность изделия, г/с;
m0 - масса проницаемого корпуса с контрольным веществом до испытаний, г;
m1 - масса проницаемого корпуса с контрольным веществом после испытаний, г;
αИ - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через негерметичности изделия, мкА;
αК - реакция течеискателя на концентрацию контрольного вещества, накопленного в испытательной камере через проницаемый корпус, мкА;
τВ - время выдержки в испытательной камере изделия (проницаемого корпуса), заполненного контрольным веществом, с.



 

Похожие патенты:

Изобретение относится к области исследований устройств на герметичность и может быть использовано для испытания, например, ракетно-космической техники. Сущность: изделие помещают в испытательную вакуумную камеру.

Изобретение относится к наполнению сосудов высокого давления газами в сжатом состоянии с измерением степени утечки газа. Система контроля герметичности включает пневмоблок, содержащий баллон высокого давления, сообщенный с зарядным краном и с магистралью подачи рабочего газа потребителю, снабженной устройством герметизации, источник гелия избыточного давления и источник рабочего газа высокого давления с магистралями подачи гелия и рабочего газа соответственно, выполненными с возможностью сообщения с зарядным краном пневмоблока, накопительную емкость для течи из пневмоблока, выполненную из тонкостенного эластичного материала с возможностью размещения в ней пневмоблока, снабженную окном для его прохода и устройством герметизации окна, масс-спектрометрический гелиевый течеискатель, снабженный линией отбора пробы со щупом с иглой Льюера и вакуумным насосом, сообщенным с линией отбора пробы через вентиль.

Изобретение относится к наполнению сосудов высокого давления газами в сжатом состоянии с измерением степени утечки газа и может найти применение в различных отраслях народного хозяйства, производящих и эксплуатирующих изделия и объекты с заряженными баллонами высокого давления.

Изобретение относится к области машиностроения, в частности к способам и устройствам проверки качества герметизации транспортного средства при подготовке его к преодолению водной преграды по дну.

Изобретение относится к области испытательной техники и может быть использовано во многих отраслях промышленности, связанных с использованием газообразных материалов, таких как газ или пар.

Изобретение относится к области испытательной техники и может быть использовано при испытаниях на герметичность систем ракетно-космической техники, содержащих в процессе штатной эксплуатации в ампулизированном состоянии рабочие жидкости, а также может найти применение в тех областях техники, где предъявляются высокие требования к надежности изделий по параметру «герметичность».

Изобретение относится к области измерительной техники. .

Изобретение относится к области испытательной техники по проверке герметичности полых изделий и направлено на повышение качества их испытаний для повышения надежности при эксплуатации.
Изобретение относится к области испытательной техники и предназначено для применения в космической отрасли при испытании космических аппаратов (КА), а также может быть использовано в атомной, химической промышленности, в различных отраслях машиностроения.

Изобретение относится к области машиностроения и может быть использовано в электронной, атомной промышленности, в машиностроении, где испытания изделий связаны с высокими требованиями по герметичности.

Изобретение относится к технике контроля герметичности микроэлектромеханических и микроэлектронных устройств, для функционирования которых требуется герметичный корпус с внутренней полостью. Сущность: устройство включает камеру экспозиции микроструктур в пробном газе, спектрометр, работающий в ИК-диапазоне, и блок управления позиционированием волноводов. В камере экспозиции размещены два волновода, один из которых используют для подвода ИК-излучения от спектрометра к микроструктуре, а другой - для приема и передачи излучения, прошедшего через микроструктуру, к ИК-спектрометру. Технический результат: измерение количественных характеристик натекания с высокой точностью, автоматическое тестирование микроструктур групповым способом, в том числе микроструктур, герметизированных интегрально «пластина-к-пластине», измерение больших течей в малых объемах, обнаружение скрытых дефектов корпусирования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Способ контроля герметичности отсоединенных от вакуумного поста моноблочных газовых лазеров включает использование для оценки герметичности пробного газа, выбор аналитических пар спектральных линий пробного и рабочего газов, для оценки концентрации пробного газа, построение калибровочной зависимости относительной интенсивности выбранной аналитической пары от концентрации пробного газа, регистрацию спектра излучения тлеющего разряда контролируемого лазера, определение по калибровочной зависимости концентрации пробного газа, создание замкнутого объема вокруг контролируемой оболочки лазера, заполнение указанного замкнутого объема пробным газом, накопление в контролируемом лазере пробного газа, регистрацию линий пробного газа в спектре излучения тлеющего разряда после хранения в среде пробного газа, определение по калибровочной зависимости концентрации пробного газа и оценку герметичности изделия по разности измеренных концентраций пробных газов до и после контрольного времени хранения. В качестве пробного используют газ, не являющийся рабочим газом для данного лазера или типичным примесным газом и имеющий в выбранной спектральной области линии, не перекрывающиеся линиями основных газов или молекулярных полос типичных примесных газов, обладающих высокой интенсивностью при низких концентрациях пробного газа. При этом время, в течение которого выдерживают контролируемое изделие в среде этого газа, определяют по формуле: где Δt - время выдержки в среде пробного газа, сек; Pмин - минимальное давление пробного газа, которое можно зарегистрировать, Па; V - объем газовой смеси моноблочного газового лазера, м3; Q - минимальный поток натекания, который необходимо зарегистрировать, Па·м3/сек. Технический результат заключается в сокращении времени контроля. 2 ил.

Изобретение относится к области контроля герметичности и может быть использовано для контроля герметичности крупногабаритных объектов. Сущность: устройство контроля герметичности, располагаемое в полости контролируемого объекта (1), содержит два баллона (6, 7), дифманометр (12), соединительные линии (13, 14) и вентили (9-11, 15, 16, 18). Баллоны (6, 7) расположены в герметичной оболочке (8) и подключены к дифманометру (12). Герметичная оболочка (8) помещена в вакуумную камеру (2), снабженную вакуумным насосом (17). В стенку вакуумной камеры (2) встроен гермоввод (4) для капилляров (5), концы которых обращены к полости (3) вакуумной камеры (2). Со стороны вакуумной камеры (2) к гермовводу (4) подсоединен вентиль (9) для напуска контрольной среды в полость (3). Технический результат: повышение достоверности контроля герметичности крупногабаритных объектов. 1 ил.

Предложена клапанная конструкция для обеспечения нулевой утечки через фланцевую задвижку (MV). Фланцевая задвижка выполнена с возможностью полного перекрытия трубопровода согласно заданным требованиям. Основание, или дно, фланцевой задвижки (MV) сообщается по текучей среде с впуском первого управляемого клапана (V1), сообщающегося по текучей среде с впуском второго управляемого клапана (V2). Предусмотрена камера (С) для текучей среды, сообщающаяся по текучей среде с выпуском первого управляемого клапана (V1) и впуском второго управляемого клапана (V2). Через выпуск второго управляемого клапана (V2) может быть осуществлен слив, а управляемые клапаны (V1, V2) выполнены с возможностью приведения в действие сигналом от предусмотренного датчика или датчиков (S1-5). Изобретение направлено на повышение надежности задвижки за счет точности выявления и измерения утечек текучей среды. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области контроля герметичности изделий. Способ масс-спектрометрического контроля герметичности моноблочных газовых лазеров включает создание замкнутых объемов с обеих сторон контролируемой оболочки лазера, откачку внутреннего объема вместе с анализатором пробного газа до высокого вакуума, накопление в контролируемой оболочке, соединенной с анализатором, пробного газа путем прекращения откачки пробного газа при откачке остальных газов и регистрацию изменения фоновой величины пика пробного газа за контрольное время Tк, выбираемое при выходе на линейный участок нарастания величины пика пробного газа, которое определяется до тех пор, пока зависимость интенсивности фонового потока пробного газа от времени при соседних измерениях не будет совпадать по крутизне и интенсивности с точностью до 10%, но не менее 3 раз. Осуществляют возобновление откачки контролируемого объема вместе с газоанализатором, подачу пробного газа во внешний замкнутый объем, выжидают время не меньше установления стационарного потока пробного газа через дефекты поверхностей, соединяемых вакуумно-плотно способом оптического контакта, накопление пробного газа в контролируемом объеме, регистрацию изменения суммарного пика давления пробного газа за контрольное время Tк путем прекращения откачки из газоанализатора пробного газа при откачке остальных газов. Оценку герметичности изделия производят по разности суммарной и фоновой величин пика пробного газа в момент времени Tк. Накопление пробного газа во внутреннем объеме контролируемой оболочки проводят с откачивающимся газоанализатором, отключенным от контролируемого объема. Регистрацию накопленного пробного газа проводят через время Tp, определяющееся конструкцией лазера, пробным газом и являющееся большим, чем время установления стационарного потока пробного газа через дефекты поверхностей, минимум в четыре раза. Технический результат заключается в повышении процента определения течей, а также в повышении точности определения их местоположения.

Изобретение относится к космической технике, а именно к способам испытаний на герметичность гидравлических систем терморегулирования (СТР) космических аппаратов, снабженных гидропневматическими компенсаторами, при их наземной подготовке. Заявленный способ испытаний на герметичность гидравлической системы терморегулирования космического аппарата, снабженной гидропневматическим компенсатором с ограничительной решеткой жидкостной полости компенсатора состоит в том, что сначала вакуумируют жидкостную магистраль и жидкостную полость компенсатора гидравлической системы терморегулирования, а затем - газовую магистраль и газовую полость компенсатора, при этом герметичность газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования определяют по величине газовых потоков, поступающих из газовой магистрали с газовой полостью компенсатора и жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования при их вакуумировании, при этом перед вакуумированием жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора выравнивают давления в жидкостной магистрали с жидкостной полостью компенсатора и в газовой магистрали с газовой полостью компенсатора с атмосферным давлением, вакуумирование осуществляют в два этапа, причем вначале вакуумируют форвакуумным насосом жидкостную магистраль с жидкостной полостью компенсатора и газовую магистраль с газовой полостью компенсатора до установившихся значений равновесного давления, достигаемых с помощью форвакуумного насоса, после чего продолжают их вакуумирование высоковакуумным насосом до установившихся значений равновесного давления, достигаемых с помощью высоковакуумного насоса, а герметичность жидкостной магистрали с жидкостной полостью компенсатора гидравлической системы терморегулирования и газовой магистрали с газовой полостью компенсатора определяют при их вакуумировании высоковакуумным насосом. Технический результат заключается в повышении качества испытаний за счет увеличения точности испытаний на герметичность изделий, за счет увеличения точности испытаний на герметичность изделий, повышения надежности и долговечности изделий при эксплуатации. 3 ил.

Изобретение относится к области транспортного машиностроения. Испытательный стенд для исследовательских и доводочных работ по оценке влияния внешнего воздействия дождя на виброакустику автомобиля содержит установку имитации дождя, состоящую из четырех регулируемых по высоте телескопических стоек с установленным на них дождевальным устройством, устройство подачи воды с расходомером и запорной арматурой, измерительную и анализирующую виброакустическую аппаратуру, установленную в салоне исследуемого ТС, размещенного под дождевальным устройством. Дождевальное устройство выполнено в виде открытого корпуса с дном, перфорированным сквозными отверстиями. Установка имитации дождя выполнена с возможностью перемещения посредством колес со стопорным механизмом, закрепленных на регулируемых телескопических стойках. Стенки открытого корпуса дождевального устройства образованы скрепленными между собой фигурными планками с угловым и Z-образным профилем. Дно открытого корпуса, перфорированное сквозными отверстиями, выполнено в виде съемной панели. Достигается повышение качества исследовательских и доводочных работ за счет реализации возможности исследования влияния внешнего воздействия дождя на виброакустический комфорт в условиях свободного звукового поля внешней среды. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области исследований на герметичность. Сущность: течеискатель имеет испытательное впускное отверстие (10) для соединения проходящей испытание тестовой камеры. Высоковакуумный насос (12) создает в детекторе (11) тестового газа высокий вакуум. Форвакуумный насос (20) содержит две насосные ступени (22, 23). Для откачки тестовой камеры насосные ступени (22, 23) приводятся в действие параллельно, причем их скорости откачки складываются. После достижения необходимого вакуума насосные ступени (22, 23) приводятся в действие последовательно для создания в детекторе (11) тестового газа необходимого высокого вакуума. Технический результат: создание течеискателя с возможностью упрощенного переключения между режимами откачки и детектирования. 5 з.п. ф-лы, 1 ил.

Изобретение относится к способам контроля герметичности изделий. Сущность: контролируемое и контрольное изделия заполняют пробным веществом до требуемого давления, после чего заключают в идентичные замкнутые оболочки и выдерживают в течение определенного времени. В качестве контрольного изделия используют герметичный макет контролируемого изделия. Пробное вещество является одновременно и рабочей средой изделий, число которых при контроле может превышать более одного. Далее производят одновременное вакуумирование замкнутых оболочек до требуемого давления, при котором поддерживается квазистационарный режим. Прекращают вакуумирование, перекрывая откачку оболочки с контрольным изделием, а затем откачку оболочки с контролируемым изделием. Посредством масс-спектрометра определяют сначала фоновое содержание пробного вещества от контрольного изделия, а затем содержание пробного вещества от контролируемого изделия. На основании произведенных измерений рассчитывают степень негерметичности контролируемого изделия. Технический результат: повышение достоверности контроля герметичности газонаполненных изделий. 2 ил.

Изобретение относится к области оптических методов контроля и касается устройства для проведения течеискания в нескольких точках контроля. Устройство включает в себя несколько измерительных ячеек для оптического обнаружения пробного газа, каждая из которых имеет средство возбуждения для перевода пробного газа в метастабильное состояние, источник излучения и приемник излучения, а также базовый блок, соединенный с измерительными ячейками с помощью оптических волокон. Базовый блок включает в себя перестраиваемый по частоте лазер и фотодетектор. Лазер приводится в действие посредством двухтональной частотной модуляции (ДТЧМ) путем генерации для испускаемого лазерного излучения, боковых полос (ω0-ω1)±1/2Ω и (ω0+ω1)±1/2Ω, где ω0 - центральная частота лазера, ω1 - первая частота модуляции, которая больше или равна 1 ГГц, a Ω - вторая частота модуляции, которая меньше или равна 10 МГц. Технический результат заключается в обеспечении возможности обнаружения утечек в нескольких точках контроля и в повышении чувствительности устройства. 2 з.п. ф-лы, 6 ил.
Наверх