Способ испытания на коррозионную стойкость интегральных схем

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость. Сущность: перед испытанием ИС проводят проверку внешнего вида, электрических параметров и проверку герметичности, нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч. и выдерживают в течение 0,5 ч. Проводят не менее 16 непрерывно следующих друг за другом циклов по 3 ч каждый. Технический результат: повышение объективности оценки наличия влаги внутри корпуса ИС. 1 ил.

 

Изобретение относится к микроэлектронике, а именно к способам испытаний интегральных схем (ИС) на коррозионную стойкость вместо испытаний по контролю содержания паров воды внутри корпусов с помощью масс-спектрометра на заводах-изготовителях ИС.

Из техники известно, что даже в нормальных условиях при длительном хранении (как правило, от шести месяцев до нескольких лет) в отдельных схемах появляются отказы, связанные с разрушением алюминиевой металлизации на кристалле (коррозия) из-за появления загрязнения и влаги внутри корпуса.

Известен способ неразрушающего определения содержания влаги в подкорпусном объеме ИС [Патент РФ №2263369, H01L 81/66, G01R 3/18, опубл. 27.10.2005], по которому испытуемые ИС охлаждают от комнатной температуры до минус 65°С со скоростью не более 10°С в минуту, затем с той же скоростью нагревают до исходной температуры, при этом непрерывно при охлаждении и последующем нагревании измеряют влагочувствительный параметр и определяют точку росы в подкорпусном объеме газа. Рассчитывается давление газа в корпусе ИС при температуре точки росы и по номограмме определяется концентрация влаги в подкорпусном объеме газа. Недостатком способа является недостаточная точность определения концентрации влаги.

Изобретение направлено на повышение объективности оценки наличия влаги внутри корпусов ИС. Это достигается тем, что ИС, выдержавшие контроль электрических параметров и проверку внешнего вида перед испытанием, подвергаются воздействию не менее 16-ти непрерывно следующих друг за другом циклов по 3 ч: приведение приборов к исходному состоянию путем выведения влаги из внутренних элементов в подкорпусную атмосферу при Т=+125°С при нагреве корпуса не более 100°С/мин; активация поверхностной влаги с внутренних стенок корпусов при плюс 125°С в течение 1 часа; последующая конденсация влаги на внутренних элементах конструкции путем резкого снижения температуры до минус 55°С со скоростью не более 100°С/мин, выдержка при данной температуре в течение 0,5 ч; плавное повышение температуры с минус 55°С до минус 15°С в течение 0,5 ч для нагнетания влаги на кристалл; достижение самой низкой температуры на кристалле по сравнению с температурой остальных элементов конструкции изделия посредством нагревания крышки с помощью специального стенда от Т=-15°С до Т=+2°С в течение 30 мин с равномерной скоростью при подключении электрического режима; выдержка под электрическим режимом в течение 0,5 ч при поддержании температуры в камере, равной плюс 2°С, пока кристалл влажный; быстрый нагрев для испарения воды со стенок, возможно с взрывной силой для усиления переноса загрязняющего вещества со стенок на кристалл (не более 100°С/мин).Испытания должны проводиться согласно циклограмме, приведенной на рис. Затем необходимо провести контроль электрических параметров и проверку герметичности, а также вскрыть приборы и проверить наличие коррозионных разрушений.

Критерии приемки (отбраковки) по ОСТ 11 073. 013: схемы считают выдержавшими испытания, если после испытания внешний вид микросхем (без оценки стойкости маркировки) соответствует образцам внешнего вида или требованиям, изложенным в «Описании образцов внешнего вида», а электрические параметры и герметичность соответствуют требованиям, установленным в ТУ.

Кроме того, в связи с трудностями в обеспечении непрерывности циклирования, в методике введено допущение перерывов, что по факту является ужесточением, т.к. увеличивается время на прохождение коррозионных процессов.

Способ осуществляется следующим образом: выбрана партия ИС 1264ЕНЗАПИМ, отказавших при испытаниях в одном из циклов по содержанию влаги внутри корпуса со значениями более 6000 ppm (протокол №В41-11 от 12.04.2011). Микросхемы изготавливались без применения органических защитных покрытий кристалла и мест межсоединений.

В качестве стенда для изменения температур от Т=-15°С до Т=+2°С и поддержания температуры Т=+2°С использовался специальный стенд с регулировкой скорости подъема и поддержания температуры.

После воздействия температурных циклов, контроля электрических параметров и проверки герметичности приборы были разгерметизированы для контроля внешнего вида на наличие коррозионных разрушений по методу 405 - 1.1 ОСТ 11 073.013.

ИС 1264ЕРЗАПИМ из партии, забракованной по содержанию влаги в подкорпусном объеме масс-спектрометрическим методом (более 6000 ppm), испытания на коррозионную устойчивость выдержали.

Способ испытаний на коррозионную стойкость интегральных схем (ИС), в соответствии с которым перед испытанием ИС проводится проверка внешнего вида, электрических параметров и проверка герметичности, отличающийся тем, что ИС нагревают до температуры плюс 125°С со скоростью не более 100°С/мин, выдерживают при этой температуре 1 ч, резко охлаждают до минус 55°С со скоростью не более 100°С/мин, выдерживают при данной температуре 0,5 ч, плавно нагревают до плюс 2°С в течение 1 ч и выдерживают в течение 0,5 ч, подвергают воздействию не менее 16 непрерывно следующих друг за другом циклов по 3 ч.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано для измерения температуры активной области светоизлучающих диодов. Заявлен cпособ измерения переходных тепловых характеристик светоизлучающих диодов (СИД), при котором инжекционный ток подают в виде последовательности импульсов нарастающей длительности с периодом между импульсами, достаточными для остывания активной области и не менее времени считывания сигнала с выхода фотоприемной линейки.

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов.

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков.

Изобретение предназначено для использования на выходном и входном контроле качества цифровых КМОП интегральных микросхем и оценки их температурных запасов. Сущность: на входы одного или нескольких логических элементов контролируемой микросхемы подают последовательность высокочастотных переключающих греющих импульсов частотой Fгр, модулированных последовательностью прямоугольных видеоимпульсов с постоянным периодом следования Тсл, длительность τр которых изменяется по гармоническому закону с частотой ΩМ.

Изобретение относится к способам испытаний полупроводниковых приборов на стойкость к воздействию тяжелых заряженных частиц различных энергий космического пространства.
Изобретение относится к полупроводниковой микроэлектронике и может быть использовано при создании и многократном регулировании сопротивления металлических перемычек, соединяющих электроды твердотельных приборов, работа которых основана на полярнозависимом электромассопереносе в кремнии (ПЭМП).

Изобретение относится к технике измерения параметров интегральных микросхем и может быть использовано для контроля качества цифровых интегральных микросхем на основе КМОП логических элементов (ЛЭ).

Изобретение относится к области приборостроения и может быть использовано в контрольно-поверочной аппаратуре, для измерения технических параметров аварийных радиомаяков и радиобуев.

Изобретение относится к области электронной техники, в частности предназначено для разбраковки КМОП микросхем, изготовленных на КНД ("кремний на диэлектрике") структурах, по радиационной стойкости.

Изобретение относится к испытательной технике и может быть использовано для диагностики функционирования микросхем оперативной памяти во всех отраслях микроэлектроники и радиотехники.

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке радиоэлектронной аппаратуры космических аппаратов в диапазоне давлений окружающей среды от атмосферного до соответствующего глубокому вакууму. Технический результат - повышение достоверности испытаний элементов радиоэлектронной аппаратуры на стойкость к дугообразованию при выходе из строя электрорадиотехнического изделия внутри радиоэлектронной аппаратуры, приводящего к инициированию первичного дугового разряда и способного приводить к вторичным самоподдерживающимся дугам при недостаточной стойкости испытываемого элемента аппаратуры. Питание первичного дугового разряда, горящего в промежутке между электродами, осуществляется с использованием напряжения, равного напряжению бортовой кабельной сети космического аппарата, а инициирование разряда осуществляется путем электрического пробоя промежутка высоковольтным импульсом напряжения, длительность которого не превышает времени прохождения плазменным фронтом расстояния от места инициирования разряда до крайней точки электродов, обращенной в сторону испытываемого элемента. 2 ил.

Изобретение относится к области тестирования дискретных объектов большой размерности. Техническим результатом является повышение глубины локализации неисправностей. Устройство содержит m n-разрядных многовходовых сигнатурных анализаторов (СА строк), входы которых соединены со всеми mn выходами одновыходных блоков проверяемого объекта, n m-разрядных многовходовых сигнатурных анализаторов (СА столбцов), входы которых соединены со входами СА строк так, что j-e входы (j=1,…, n) всех m СА строк соединены со всеми m входами j-го СА столбцов. 1 ил.

Изобретение относится к измерительной технике, представляет собой устройство для определения исправности полупроводниковых диодов и может быть использовано для автоматического бесконтактного контроля технического состояния мостовых диодных выпрямителей. Устройство содержит два датчика напряженности внешнего магнитного поля, размещенных на токопроводе первичной обмотки трансформатора выпрямителя и на токопроводе нагрузки выпрямителя соответственно, два узкополосных фильтра, настроенные на частоты 2ω и ω соответственно, три компаратора, настроенные на разные уровни срабатывания, логические элементы И-НЕ и И, индикаторы «обрыв» и «пробой». Техническим результатом является повышение надежности работы устройства за счет исключения влияния положения оси чувствительности датчика напряженности внешнего магнитного поля и исключения возможности ложных срабатываний устройства. 1 ил., 1 табл.

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый n-элементный двухполюсник подают напряжение в виде случайного сигнала, имеющего равномерный амплитудный спектр в диапазоне частот, перекрывающем диапазон частот, за пределами которого модуль импеданса двухполюсника можно считать не зависящим от частоты с заданной погрешностью. На образцовом резисторе, включенном последовательно с двухполюсником, измеряют напряжение, пропорциональное току двухполюсника. По двум параллельным каналам записывают в память ЭВМ временные реализации сигналов, подаваемого на двухполюсник и снимаемого с образцового резистора, после чего рассчитывают спектральные плотности напряжения и тока, рассчитывают частотные зависимости модуля и фазы импеданса двухполюсника, определяют характерные частоты. Составляют и решают систему из n уравнений относительно параметров эквивалентной схемы замещения n-элементного линейного двухполюсника. Технический результат заключается в сокращении времени измерения параметров эквивалентных схем замещения многоэлементных линейных двухполюсников. 2 ил.

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего логического элемента последовательностью периодических импульсов, измерение изменения температурочувствительного параметра, определение теплового сопротивления, при этом греющий логический элемент переключается высокочувствительными импульсами, а в качестве температурочувствительного параметра используют длительность периода следования низкочастотных импульсов, генерируемых мультивибратором, и мультивибратор состоит из логического элемента контролируемой микросхемы и логического элемента образцовой микросхемы, работающей вместе с пассивными элементами мультивибратора при неизменной температуре. Технический результат: обеспечение возможности уменьшения времени измерения и погрешности измерения температурочувствительного параметра. 2 ил.

Изобретение относится к технике измерения тепловых параметров полупроводниковых приборов и интегральных микросхем и может быть использовано для контроля качества и оценки температурных запасов цифровых интегральных микросхем на выходном и входном контроле. Сущность: нечетное число (n>1) логических элементов контролируемой микросхемы соединяют по схеме кольцевого генератора. Замыкая цепь обратной связи кольцевого генератора на некоторое время цикла измерения, включают режим генерации высокочастотных импульсов, что приводит к нагреву микросхемы. В качестве температурочувствительного параметра измеряют частоту следования импульсов кольцевого генератора в начале fнач и в конце fкон цикла измерения. Измеряют средний ток, потребляемый микросхемой от источника питания. Определяют тепловое сопротивление переход-корпус по формуле: , где Δf=fнач-fкон - изменение частоты следования импульсов кольцевого генератора; - средний ток, потребляемый контролируемой микросхемой за время цикла измерения; Епит - напряжение питания микросхемы, Кf - температурный коэффициент частоты следования импульсов кольцевого генератора. Технический результат: уменьшение погрешности измерения. 2 ил.

Использование: для выяснения причин отказов устройства или для оценки качества процесса производства внутренней части электронного устройства. Сущность изобретения заключается в том, что способ, в котором выполняют анализ образца электронного устройства посредством замера некоторого свойства в нескольких точках указанного образца и подвергают, до выполнения анализа, указанные несколько точек, по меньшей мере, одной обработке, увеличивающей различие указанного свойства, по меньшей мере, в двух элементах образца электронного устройства, представляющих собой, по меньшей мере, два слоя пакета слоев, включенного в электронное устройство, при этом указанная обработка включает резку пакета слоев таким образом, что создается различие морфологии в поверхности среза, по меньшей мере, между двумя из указанных слоев пакета. Технический результат: обеспечение возможности облегчения исследования качества электронного устройства. 3 з.п. ф-лы, 1 ил.

Изобретение относится к встроенному логическому анализатору и, в частности, к программируемому встроенному логическому анализатору для анализа электронной схемы. Устройство для тестирования и отладки электронной схемы, содержащее логический анализатор, имеющий первый вход, принимающий множество сигналов, и выход для обеспечения индикации обнаружения, с помощью логического анализатора, по меньшей мере одного запускающего события; и блок со встроенным самотестированием (BIST), имеющий первый вход для приема одного или более сигналов, появляющихся на первом входе логического анализатора, второй вход, соединенный с выходом логического анализатора для избирательного задействования блока BIST, причем блок BIST генерирует и поддерживает сигнатуру на основании первого и второго его входов. Технический результат заключается в расширении функциональных возможностей. 3 н. и 16 з.п. ф-лы, 17 ил.

Использование: для отбраковки полупроводниковых приборов. Сущность изобретения заключается в подаче на каждый прибор из группы однотипных приборов неизменные напряжения питания, приложении последовательности циклов ионизирующего излучения, доза которого накапливается в каждом цикле с тем, чтобы получить вызванное ею приращение интегрального низкочастотного шума прибора над шумами его исходного состояния, анализе приращений интегрального шума с ростом накопленной дозы, определении приращения интегрального шума, достигнутого к моменту окончания М-го цикла, с которого начинают уверенно фиксироваться изменения рабочего тока прибора, выбраковке приборов тех типов, у которых среднее значение приращения интегрального шума на единицу дозы, достигнутое к моменту окончания М-го цикла, оказывается больше, чем у приборов других типов. Технический результат: обеспечение возможности повышения достоверности определения стойкости полупроводниковых приборов к проникающим ионизирующим излучениям. 2 ил.

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых постепенно увеличивается, с тем, чтобы получить вызванное ими изменение вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов радиационных и температурных воздействий путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе полученной скорости деградации РТД. Технический результат: обеспечение возможности определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. 1 з.п. ф-лы, 3 ил.
Наверх