Мембранный реактор

Изобретение относится к области машиностроения и может быть использовано в нефтехимическом производстве при создании аппаратов для проведения процесса дегидрирования легких алканов. Мембранный реактор состоит из цилиндрического кожуха, двух крышек и мембранно-каталитического модуля, помещенного между двумя газораспределительными решетками. Мембранно-каталитический модуль содержит несколько секций для проведения процесса дегидрирования. Каждая секция содержит реакционную камеру и камеру для сбора водорода, которые разделены водородпроницаемой мембраной. Принцип действия реактора состоит в одновременном параллельном проведении процесса дегидрирования в нескольких реакционных камерах с непрерывным отводом водорода через мембрану из зоны реакции. Изобретение позволяет увеличить площадь удельной поверхности мембраны на единицу объема катализатора и повысить тем самым конверсию сырья в целевые продукты за счет увеличения отвода водорода из реакционной зоны и смещения равновесия реакции дегидрирования в сторону образования продуктов. 4 ил.

 

Изобретение относится к области химического машиностроения, в частности к созданию аппаратов для проведения процесса дегидрирования легких алканов (индивидуальных углеводородов и их смесей).

В настоящее время известны различные типы реакторов дегидрирования, в том числе мембранные реакторы. В мембранном реакторе должен осуществляться процесс дегидрирования с отводом водорода из зоны реакции через мембрану. Известно несколько вариантов конструкции мембранного реактора. В основном, это реакторы трубчатого типа (патент РФ №2381207 от 10.02.2010 г., патент РФ №2342988 от 10.01.2009 г., патент США №5202517 от 13.04.1993 г.). Особенностью конструкции этих реакторов является то, что сырье подается в пространство между двумя цилиндрическими элементами, где находится слой катализатора. Один из цилиндров является проницаемым для водорода (изготовлен из металлической или керамической мембраны). Водород выводится из зоны реакции, смещая тем самым равновесие реакции дегидрирования в сторону образования продуктов. Основной недостаток данной конструкции - малая площадь поверхности мембраны, отнесенная к единице объема катализатора.

Наиболее близким по технической сущности к настоящему изобретению является мембранный реактор, описанный в патенте США №5449848 от 12.09.1995 г. (патент Японии №3017026 от 25.01.1991 г.). Реактор состоит из камеры дегидрирования углеводородного сырья и камеры сбора водорода. Камеры разделены водородпроницаемой мембраной для селективного удаления водорода из реакционной зоны. Во избежание накопления водорода в камере сбора и создания высокого градиента концентрации водорода между камерами, он непрерывно окисляется кислородом или кислородсодержащим газом в камере сбора. Продукты реакции вместе с оставшимся водородом выводятся из реактора. Этим обеспечивается непрерывный отток водорода из камеры дегидрирования. Тепловая энергия, выделяющаяся при сгорании водорода в камере сбора, передается в камеру дегидрирования, обеспечивая протекание эндотермического процесса. Для стабилизации температурного режима реакции обе камеры окружены слоем изоляции. Данную конструкцию реактора мы рассматриваем в качестве прототипа.

Основным недостатком прототипа является ограничение площади поверхности мембраны размерами реактора. И, как следствие, ограничение выхода целевых продуктов при заданном объеме катализатора.

Техническим результатом заявленного изобретения является увеличение производительности мембранного реактора.

Заявленный технический результат достигается за счет увеличения площади удельной поверхности мембраны на единицу объема катализатора.

В реакторе установлен мембранно-каталитический модуль, в котором находится несколько секций для проведения процесса дегидрирования. Каждая такая секция содержит реакционную камеру, заполненную катализатором, и камеру для сбора водорода. Камеры внутри каждой секции разделены водородпроницаемой мембраной. Благодаря такой конструкции мембранно-каталитического модуля удается значительно повысить общую площадь используемой в реакторе мембраны при неизменном объеме используемого катализатора. Принцип работы реактора состоит в одновременном, параллельном проведении процесса дегидрирования в нескольких реакционных камерах с непрерывным отводом водорода из камер сбора.

На приведенных ниже чертежах (фиг.1-4) показаны основные особенности предлагаемого нами изобретения. Иллюстрации помогают раскрыть сущность настоящего изобретения. Реактор является сборной конструкцией, состоящей из цилиндрического кожуха, двух крышек и мембранно-каталитического модуля с газораспределительными решетками.

Основной вид реактора представлен на фиг.1. Цилиндрический кожух реактора через фланцы соединен с крышками реактора. В кожухе имеются штуцеры для продувки аппарата азотом, в крышках - штуцеры для ввода сырья, вывода продуктов и водорода (водородсодержащего газа). Эскиз реактора с обозначением элементов его конструкции приведен на фиг.2. Центральным элементом разработанного аппарата является мембранно-каталитический модуль 5. Модуль помещен в цилиндрический кожух из нержавеющей стали 3. Для подвода тепла в пространство между кожухом и модулем с четырех сторон помещены нагревательные элементы 6. Пространство между кожухом и модулем продувается азотом через штуцеры Е и Ж для обеспечения безопасности работы в случае утечки газов.

Мембранно-каталитический модуль находится между двумя газораспределительными решетками 2. Решетки закреплены между фланцами кожуха и крышек 1 (вид И). Эскизный чертеж газораспределительной решетки приведен на фиг.4. Решетка представляет собой диск из нержавеющей стали, в котором просверлены отверстия для потоков углеводорода и водорода из камер мембранно-каталитического модуля. В диске проточены пазы для уплотнения торцевой поверхности модуля. На виде К фиг.2 укрупненным планом изображено торцевое уплотнение крышки модуля в газораспределительной решетке. В отверстия решетки вварены трубки для отвода водорода и продувки камер азотом. Трубки соединены в коллектор 4, который выходит из реактора через отверстие в крышке. В крышках реактора вварены штуцер ввода сырья Б и штуцер вывода продуктов дегидрирования В.

Мембранно-каталитический модуль является сборным элементом. Он состоит из двух стенок и двух крышек (фиг.3). Соединение стенки с крышкой - фланцевое (вид Н). Внутри модуля расположены металлические перегородки, разделяющие объем модуля на несколько камер. Уплотнение соединения перегородки со стенкой выполнено в виде системы «шип-паз» (вид М). По функциональному назначению камеры разделяются на реакционные камеры и камеры сбора водорода, располагающиеся попеременно. Каждая пара «реакционная камера - камера сбора водорода» образует одну из секций мембранно-каталитического модуля. В каждой секции металлическая перегородка между камерами перфорирована (10), на ней находится водородпроницаемая мембрана 9 (вид М). Данная конструкция стягивается по периметру болтами через металлические пластины 7. Реакционная камера заполнена катализатором 8. Образующийся в процессе дегидрирования водород из реакционной камеры через мембрану попадает в камеру сбора водорода.

Мембранный реактор для одновременного параллельного проведения процесса дегидрирования, состоящий из мембранно-каталитического модуля, помещенного в цилиндрический кожух между двумя газораспределительными решетками, для подвода сырья и вывода продуктов, содержащего несколько секций, состоящих из реакционной камеры, заполненной катализатором, и камеры для сбора водорода, которые разделены водородпроницаемой мембраной.



 

Похожие патенты:

Изобретение относится к устройствам для получения серы из сероводородсодержащих газов и для очистки газов от сероводорода с получением серы и может найти применение в нефтегазовой, нефтеперерабатывающей и химической отраслях промышленности.

Изобретение касается способа и устройства для синтеза аммиака из синтез-газа, содержащего азот и водород. Устройство, по меньшей мере, с одним реактором (1) включает первый неохлаждаемый блок слоев катализатора (2), по меньшей мере, одно теплообменное устройство (3), по меньшей мере, два охлаждаемых блока слоев катализатора (4, 41, 42), причем каждый из блоков (4, 41, 42) оснащен совокупностью труб охлаждения (5), и циркуляционную линию (6), по меньшей мере, с одним подающим устройством (61) и, по меньшей мере, одним выпускным устройством (62).

Изобретение относится к способу получения хлора каталитическим окислением хлористого водорода кислородом в газовой фазе, когда взаимодействие проводят на не менее чем двух слоях катализатора в адиабатических условиях, а также к системе реакторов для реализации способа.

Изобретение относится к реакторной системе (10) для получения ксилола. .

Изобретение относится к многореакторной системе и способу для производства продукта, получаемого по ограничиваемой равновесием реакции. .

Изобретение относится к усовершенствованному способу фторирования, в котором осуществляют контактирование потока фторируемого органического соединения с потоком элементного фтора с образованием HF или другого водородсодержащего соединения в качестве побочного продукта, где потоки исходных реагентов попадают в реакционную зону реактора фторирования, которая заполнена стехиометрическим избытком фторид-адсорбирующей композиции по отношению к мольным количествам фторируемого органического соединения и элементного фтора.

Изобретение относится к области химии и может быть использовано в бортовых генераторах для получения синтез-газа. .

Изобретение относится к способу получения алкилбензина путем алкилирования изобутана олефинами в каталитическом реакторе при повышенной температуре и давлении, в котором изобутан подают в верхнюю секцию реактора и последовательно пропускают через все секции с катализатором, а олефинсодержащее сырье распределяют на несколько потоков, число которых равно числу секций катализатора, и подают одновременно в секции с катализатором параллельными потоками для проведения реакции алкилирования, углеводородный поток, содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции, который выводят из реакционной системы или частично направляют на рецикл.

Изобретение относится к устройству для синтеза текучих сред безводных галоидов водорода и диоксида углерода из текучих сред органических галоидов. Система для обработки и/или разложения текучих сред органических галоидов содержит блок двойного реактора, содержащий первый реактор внутри первого теплопоглощающего сосуда, второй реактор внутри второго теплопоглощающего сосуда и третий уравновешивающий теплопоглощающий сосуд, при этом первый реактор и второй реактор гидравлически соединены, так что продукт реакции, происходящей в одном реакторе, подается в другой реактор. Блок двойного реактора содержит первый теплопоглощающий сосуд, содержащий первый реактор, второй теплопоглощающий сосуд, содержащий второй реактор, третий уравновешивающий теплопоглощающий сосуд и циркулятор, при этом первый теплопоглощающий сосуд гидравлически соединен со вторым теплопоглощающим сосудом, с третьим уравновешивающим теплопоглощающим сосудом и с циркулятором. Изобретение обеспечивает эффективную обработку текучих сред при температурах ниже 1300 C° и снижение загрязнений окружающей среды. 2 н. и 18 з.п. ф-лы, 2 ил., 6 табл., 6 пр.

Изобретение относится к реактору со стационарным слоем катализатора, состоящему из многосекционного корпуса, крышки и днища, штуцеров для подачи и вывода продуктов реакции, каждая секция которого состоит из реакционной зоны - цилиндрического корпуса с устройством для удержания мелкозернистого катализатора, и теплообменной зоны - кожухотрубного теплообменника, в трубки которого подается реакционная смесь, а в межтрубное пространство - теплоноситель. Реактор характеризуется тем, что трубное пространство с помощью перегородок разбито на нечетное количество ходов таким образом, что все ходы, кроме последнего, расположены по периферии трубной решетки, а последний - по центру, причем диаметр этого хода по размеру совпадает с диаметром реакционной зоны, а торцы труб равномерно распределяются по сечению этой зоны. Реактор имеет повышенную эффективность работы и для него характерна сниженная металлоемкость. 2 з.п. ф-лы, 6 ил.

Изобретение относится к способу взаимодействия одной или нескольких текучих сред. Способ включает прохождение одной или нескольких текучих сред в камеру из расположенной выше тарелки, при этом камера имеет одну или несколько боковых стенок, содержащих отверстие, а расположенная выше тарелка имеет слив, и создание канала наружу из камеры, соединяющий соответствующий слив с соответствующим отверстием, для увеличения времени и площади контакта внутри канала и камеры. Изобретение обеспечивает эффективное смешивание различных фаз. 9 з.п. ф-лы, 7 ил.

Изобретение представляет устройство распределения текучей среды для соединения с трубопроводом или газоходом для текучей среды с целью улучшения распределения текущей вниз полифазной смеси, включающей в себя одну газовую фазу и одну жидкую фазу выше одного слоя катализатора гранулированного твердого каталитического материала. Устройство распределения текучей среды для получения жидкой и газовой фаз имеет одно или более отверстий в верхней и/или нижней части, по которому газовая фаза может поступать, и газовод, выходящий в смесительную камеру внутри устройства. Устройство распределения текучей среды содержит одно или несколько боковых отверстий для жидкости. Боковое отверстие или отверстия позволяют жидкости поступать в жидкостный трубопровод, который входит во внутреннюю смесительную камеру. Смесительная камера обеспечивает плотный контакт между фазами жидкости и газа. Устройство распределения потока обеспечивает улучшенную устойчивость к негоризонтальности тарелки. 2 н. и 11 з.п. ф-лы, 2 ил., 2 пр.

Изобретение относится к области гетерогенного катализа, а именно каталитическому мультиканальному реактору для проведения гетерогенных реакций, сопровождающихся эндотермическим тепловым эффектом, например паровой конверсии углеводородов с целью получения водородсодержащего газа. Реактор содержит входной патрубок, испаритель жидкой исходной реакционной смеси, устройство, создающее вихревой газовый поток, пористую распределительную мембрану, монолитный мультиканальный блок, дополнительную пористую мембрану и выходной патрубок. При этом мультиканальный блок изготовлен из материала с высокой теплопроводностью, имеет дисковую форму и каналы, направленные перпендикулярно плоскости диска, длина которых значительно меньше диаметра диска. Изобретение обеспечивает равномерное распределение входного потока по каналам, уменьшение градиента температур вдоль направления потока, уменьшение гидродинамического сопротивления в случае неподвижного слоя катализатора и возможность быстрой смены катализатора. 12 з.п. ф-лы, 3 ил.

Изобретение относится к реактору для парциального окисления углеводородного сырья. Реактор включает внешний корпус со средством вывода продуктов реакции из реактора и с хотя бы одним средством ввода сырья или компонентов сырья в размещенную внутри реактора с зазором с внешним корпусом катализаторную гильзу, заполненную катализатором и включающую средства вывода продуктов из ее нижней части. При этом катализаторная гильза снабжена рубашкой, примыкающей хотя бы к части цилиндрической стенки катализаторной гильзы, которая в области примыкания рубашки выполнена со сквозными отверстиями, реактор снабжен средством ввода в рубашку хладоагента, охлаждающего катализаторную гильзу и через отверстия в ее цилиндрической стенке поступающего в катализаторную гильзу. Техническим результатом заявленного изобретения является снижение температуры стенки катализаторной гильзы до 1000°C и ниже, а также снижение коррозии материала катализаторной гильзы. 5 з.п. ф-лы, 2 ил.

Изобретение относится к системам и устройству для контакта и распределения многофазной текучей среды. Распределяющее текучую среду устройство для реактора включает сопловую тарелку, множество каналов, прикрепленных и проходящих вертикально от верхней поверхности сопловой тарелки, и сопло для распределения текучей среды, расположенное в каждом канале. Причем каждый канал имеет открытый ближний конец, открытый дальний конец и стенку, которая образует цилиндрическую полость, и имеет боковое отверстие. Сопло включает корпус, включающий ближнюю часть, промежуточную часть и дальнюю часть, при этом ближняя часть образует цилиндрическую ближнюю полость и содержит газовый впуск, выполненный с возможностью пропускания через него газа в ближнюю часть, промежуточная часть образует цилиндрическую промежуточную полость в сообщении по текучей среде с ближней полостью, дальняя часть содержит стенку корпуса и жидкостный впуск, выполненный с возможностью пропускания через него жидкости в дальнюю часть, и дальняя часть образует цилиндрическую дальнюю полость, причем жидкостный впуск расположен по касательной к внутренней поверхности дальней части. Изобретение обеспечивает улучшение перемешивания и распределения текучей среды к поверхности каждого нижележащего слоя катализатора, а также уменьшение высоты смесительной тарелки, упрощение обслуживания, монтажа и демонтажа, уменьшение количества конструкционного материала. 3 н. и 18 з.п. ф-лы, 36 ил.

Системы и устройства для перемешивания, охлаждения и распределения многофазных текучих смесей в реакторе, при этом внутриреакторное устройство настоящего изобретения обеспечивает не только улучшенное перемешивание и распределение текучей среды по поверхности каждого лежащего ниже слоя катализатора, но также имеет другие преимущества, включающие: уменьшенную высоту смесительной тарелки; облегченное техническое обслуживание, сборку и разборку; сниженную материалоемкость при производстве. В одном из вариантов осуществления изобретения текучая среда может быть равномерно распределена по слою катализатора при помощи распределительного устройства для текучей среды, включающего сопловую тарелку, на которой имеется множество сопел, при этом сопла снабжены, по меньшей мере, одним впуском для жидкости, расположенным тангенциально к внутренней поверхности сопла. 3 н. и 17 з.п. ф-лы, 36 ил.

Изобретение относится к каталитической системе, подходящей для проведения частичного каталитического окисления при малой продолжительности контакта, для получения синтез-газа и, возможно, водорода. Каталитическая система включает по меньшей мере две каталитические зоны, в которой одна зона содержит один или более благородный металл, выбранный из группы, состоящей из родия, рутения, иридия, палладия и платины, и не содержит никеля, и другая зона содержит никель, к которому добавлен один или более металл, выбранный из группы, состоящей из родия, рутения, иридия, палладия и платины, при этом зона, не содержащая никеля, всегда является отдельной, но находится в контакте с другой зоной, содержащей никель. Изобретение обеспечивает высокую степень превращения сырья и высокую селективность относительно синтез-газа и Н2, а также снижение или предотвращение образования сажистых образований. 4 н. и 19 з.п. ф-лы, 10 ил., 2 табл., 10 пр.

Изобретение относится к способу синтеза метанола в изотермических реакторах. Способ включает получение питающего потока свежего газа при риформинге или газификации, подачу свежего газа в замкнутую систему синтеза, конверсию свежего газа в метанол в каталитической среде, при этом тепло напрямую отводят из каталитической среды, в результате среда является изотермической, конденсацию метанола, при этом получают жидкий метанол-сырец и рециркулирующий газ, который направляют в рециркуляционную систему в замкнутой системе синтеза, причем каталитическая среда включает множество изотермических каталитических слоев, часть питающего потока свежего газа смешивают с рециркулирующим газом, при этом получают газообразную смесь свежего газа и рециркулирующего газа и часть газообразной смеси направляют между первым и вторым каталитическим слоем среды, газообразную смесь свежего газа и рециркулирующего газа смешивают с потоком, выходящим из первого каталитического слоя, при этом получают питающий поток второго каталитического слоя. Изобретение обеспечивает эффективный синтез метанола. 8 з.п. ф-лы, 2 ил., 1 табл., 1 пр.
Наверх