Способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов



Способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов
Способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов

 


Владельцы патента RU 2527923:

Закрытое акционерное общество "Конструкторское бюро навигационных систем" (ЗАО "КБ НАВИС") (RU)

Изобретение относится к спутниковой навигации и может быть использовано для испытаний и проверки навигационной аппаратуры потребителей (НАП) спутниковых навигационных систем (СНС), размещенной в замкнутом или экранированном пространстве. Достигаемый технический результат - создание пространственного навигационного поля в замкнутом пространстве, экранированном от внешней среды, соответствующего реальной обстановке, в которой планируется применять НАП. Устройство, реализующее способ, с использованием многоканального имитатора сигнала СНС с пространственно разнесенными излучателями для излучения сигналов, позволяет создать навигационное поле с помощью разнесенных в пространстве источников навигационных сигналов. При этом при перемещении антенны испытуемой НАП амплитудно-фазовые соотношения будут меняться в соответствии с вектором перемещения. Предлагаемый способ позволяет производить испытания навигационных помехозащищенных приемников, снабженных антенной решеткой, которая обеспечивает изменение диаграммы направленности антенны для излучения, приходящего из определенных направлений. 2 з.п. ф-лы, 2 ил.

 

Данное изобретение относится к области радиотехники, а именно к спутниковой навигации, и может быть использовано для испытаний и проверки навигационной аппаратуры потребителей (НАП) спутниковых навигационных систем (СНС), размещенной в замкнутом или экранированном пространстве.

Современное навигационное обеспечение подвижных и неподвижных объектов в основном базируется на использовании навигационных сигналов, излучаемых с навигационных космических аппаратов (НКА) СНС. На основе принимаемых сигналов с помощью навигационной аппаратуры потребитель определяет свое положение в пространстве и во времени.

Высокие требования, предъявляемые к НАП по качеству навигационных и временных определений, скорости их получения, достоверности при кратковременном пропадании навигационных сигналов и в других случаях, приводящих к искажению данных обсерваций, требуют усовершенствования способа ее проверки, например, в имитируемом пространственном навигационном поле.

В настоящее время при проверке НАП широко применяются способы с использованием имитаторов навигационных сигналов СНС, позволяющих формировать навигационное поле, представляющее собой совокупность сигналов имитируемых НКА СНС.

Из уровня техники известен способ для формирования навигационного поля с использованием имитатора сигнала с одним ВЧ-выходом, навигационные сигналы от которого поступают на вход одной излучающей антенны, «Характеристики подавления помех в первом образце помехоустойчивой аппаратуры потребителей СРНС ГЛОНАСС/GPS с адаптивной антенной решеткой», Яскин Н.С., Харисов В.Н., Ефименко B.C. и др., «Радиотехника», 2010 г., №7, фиг.1, который и выбран в качестве прототипа. Преимуществом данного способа является простота построения и калибровки системы.

Недостатком данного способа является то, что при проверке НАП при перемещении антенны в любую точку рабочего пространства, в котором размещена НАП, фазовое соотношение приходящих сигналов будет постоянным, изменению подвергнется лишь амплитуда приходящих сигналов. Вследствие чего навигационный приемник будет иметь одно и то же решение навигационной задачи, заложенное в моделируемой модели, в пределах погрешностей имитатора и самого приемника, что не соответствует реальной обстановке проведения испытаний.

Основной задачей изобретения является создание пространственного навигационного поля в замкнутом пространстве, экранированном от внешней среды, соответствующего реальной обстановке, в которой планируется применять НАП.

Поставленная задача решается тем, что в способе формирования пространственного навигационного поля с распределенными источниками навигационных сигналов формируют пространственное навигационное поле в замкнутом пространстве, экранированном от внешней среды с помощью n-фиксированных излучателей для излучения сигналов от ИС, причем излучатели для излучения сигналов от ИС располагают максимумом диаграмм направленности, ориентированным в центр замкнутого пространства, а их фазовые центры образуют полусферу, внутри которой находится область с навигационным полем, аналогичным внешнему, которая дает возможность определять местоположение с помощью обычного навигационного приемника, при этом сигнал на каждый излучатель подают с многоканального имитатора сигналов, с помощью которого автоматически коммутируют имитируемый сигнал на излучатели, расположенные в различных сегментах полусферы, которые соответствуют азимуту и углу возвышения имитируемого навигационного космического аппарата и получают изменение пространственного направления излучения сигнала, соответствующее реальному.

Частными существенными признаками являются:

- подключение к многоканальному имитатору сигналов навигационного приемника с антенной, которые располагают в реальном навигационном поле, причем навигационный приемник выделяет и передает в многоканальный имитатор сигналов цифровую информацию, передаваемую с борта НКА, и при этом обеспечивают жесткую временную привязку шкалы времени многоканального имитатора сигналов, задержку в радиочастотных (РЧ) кабелях в каждом канале многоканального имитатора сигналов компенсируют с помощью регулируемой линии задержки, формируют навигационное поле, соответствующее внешнему, при этом обеспечивают непрерывное решение навигационной задачи при переходе из внешнего навигационного поля в область навигационного поля, расположенного внутри замкнутого экранированного пространства;

- количество каналов многоканального имитатора сигналов СНС и излучателей для излучения сигналов от ИС выбрано кратным 4.

Технический результат - формирование пространственного навигационного поля в замкнутом пространстве, экранированном от внешней среды, для проведения испытаний НАП, соответствующего реальной обстановке, в которой планируется применять НАП.

На фиг.1 и фиг.2 показаны блок-схемы устройств, реализующие способ.

Устройство на фиг.1 содержит 1 - многоканальный имитатор сигналов спутниковых навигационных систем (ИС); 2 - безэховую экранированную камеру (БЭК); 3 - указана область формирования пространственного навигационного поля; 4, …, n-1, n - излучатели для излучения сигналов от ИС, например антенны.

Устройство на фиг.2 содержит 1 - многоканальный имитатор сигналов спутниковых навигационных систем (ИС); 2 - безэховую экранированную камеру (БЭК); 3 - указана область формирования пространственного навигационного поля; 4, …, n-1, n - излучатели для излучения сигналов от ИС, например антенны, А-антенна для приема сигналов СНС; ПН-приемник навигационный для приема сигналов СНС.

Способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов реализуется следующим образом.

ИС (1) формирует сигналы навигационных космических аппаратов (НКА) СНС ГЛОНАСС/GPS/Galileo. Для этого ИС выдает сигнал на антенну для излучения сигналов от ИС, расположенную в сегменте, соответствующем углу возвышения имитируемого навигационного космического аппарата. По мере перемещения имитируемого навигационного космического аппарата по траектории движения сигнал будет переключаться на соответствующую антенну для излучения сигналов от ИС, тем самым изменяя пространственно плоскость излучения сигнала.

С выходов ИС по коаксиальным кабелям через сигналы поступают на входы излучателей (n-антенн) для излучения сигналов от ИС (4 - n-1, n), размещенных внутри БЭК (2), линия визирования которых направлена в область формирования пространственного навигационного поля (3). Антенны для излучения сигналов от ИС располагаются таким образом, чтобы плоскости излучения образовали полусферу. Внутри этой полусферы образуется область (3), в которой формируется навигационное поле, аналогичное внешнему и позволяющее определять местоположение с помощью обычного навигационного приемника.

На сегодняшний день количество НКА одной ГНСС (ГЛОНАСС, GPS, Galileo), находящихся в зоне видимости НАП и включаемых в решение навигационной задачи, не превышает 12-ти НКА (с вероятностью 0,95 на интервале времени, равном периоду обращения НКА вокруг Земли). В связи с этим количество ВЧ-выходов имитатора сигналов целесообразно иметь равным 12. Количество поддиапазонов для каждой навигационной системы не превышает 3-х, поэтому на каждом ВЧ-выходе достаточно иметь по 4 канала для формирования навигационных сигналов различных поддиапазонов.

Количество каналов имитатора сигналов СНС, который используется в комплексе, кратно 4.

Для реализации способа по пункту 2 к многоканальному ИС (1) дополнительно подключается навигационный приемник (ПН) с антенной (А), расположенной в реальном навигационном поле. Приемник выделяет цифровую информацию, передаваемую с борта навигационного космического аппарата, и передает ее по цепи связи (ЦИ) в ИС (1). Также навигационный приемник (ПН) обеспечивает жесткую временную привязку ИС (1) по цепи 1pps. Для устранения влияния задержки в кабелях РЧ1…РЧn в ИС в каждом канале предусматривается РЛЗ. Предложенный способ позволяет создать область формирования пространственного навигационного поля (3), в которой формируется навигационное поле, соответствующее внешнему и обеспечивающее непрерывное решение навигационной задачи при переходе из внешнего навигационного поля в область формирования пространственного навигационного поля (3), расположенного внутри замкнутого экранированного пространства.

ИС представляет собой многоканальный генератор высокочастотных (ВЧ) сигналов сложной формы. ВЧ-сигналы, генерируемые имитатором сигналов СНС, аналогичны сигналам НКА и соответствуют требованиям интерфейсных контрольных документов на соответствующую СНС, например имитатор разработки ЗАО «КБ НАВИС» СН-3805М-1.

БЭК представляет собой радиочастотную безэховую камеру, стены, потолок и пол которой покрывает радиопоглощающий пористый материал. Размеры БЭК обеспечивают возможность расположения приемных антенн относительно излучающих антенн на расстояниях дальнего поля, при этом в месте размещения испытываемой НАЛ обеспечивается коэффициент отражения не более минус 40 дБ в рабочем объеме размером 6×6×4 м.

Антенны для излучения сигналов от ИС представляют собой пассивные спиральные антенны с диапазоном рабочих частот от 1,1 до 1,7 ГГц с коэффициентом усиления от 8 до 12 дБ, разработанные ЗАО «КБ НАВИС» ТДЦК.464679.001.

Приемник навигационный представляет собой многочастотный спутниковый приемник, например ПСНМ, разработанный в ЗАО «КБ НАВИС».

Антенна для приема сигналов СНС представляет собой антенное устройство, способное принимать сигналы СНС ГЛОНАСС, GPS, Galileo, например антенна ТДЦК.464629.010, разработанная в ЗАО «КБ НАВИС».

Таким образом, способ формирования навигационного поля спутниковых навигационных систем в замкнутом пространстве, заключающийся в том, что формируется пространственное навигационное поле в замкнутом пространстве, экранированном от внешней среды, с помощью фиксированных излучателей для излучения сигналов от ИС, расположенных таким образом, что их излучение образует область, в которой формируется навигационное поле, аналогичное внешнему, при этом сигнал на каждый излучатель подается с многоканального имитатора сигналов, который автоматически коммутирует имитируемый сигнал на излучатели для излучения сигналов от ИС, соответствующие углу возвышения имитируемого навигационного космического аппарата. По мере перемещения имитируемого навигационного космического аппарата по траектории движения, сигнал будет переключаться на соответствующий излучатель, тем самым изменяя пространственно плоскость излучения сигнала.

Устройство с использованием многоканального имитатора сигнала СНС с пространственно разнесенными излучателями для излучения сигналов позволяет создать навигационное поле с помощью разнесенных в пространстве источников навигационных сигналов. Поэтому при перемещении антенны испытуемой аппаратуры амплитудно-фазовые соотношения будут меняться в соответствии с вектором перемещения. Предлагаемый способ позволяет производить испытания навигационных помехозащищенных приемников, снабженных антенной решеткой, которая позволяет изменять диаграмму направленности антенны для излучения, приходящего из определенных направлений.

1. Способ формирования пространственного навигационного поля с распределенными источниками навигационных сигналов, при котором формируют пространственное навигационное поле в замкнутом пространстве, экранированном от внешней среды, с помощью n-фиксированных излучателей для излучения сигналов от многоканального имитатора сигналов спутниковых навигационных систем, причем излучатели для излучения сигналов от многоканального имитатора сигналов спутниковых навигационных систем располагают максимумом диаграмм направленности, ориентированным в центр замкнутого пространства, а их фазовые центры образуют полусферу, внутри которой находится область с навигационным полем, аналогичным реальному, при этом сигнал на каждый излучатель подают с многоканального имитатора сигналов спутниковых навигационных систем, с помощью которого автоматически коммутируют имитируемый сигнал на излучатели, расположенные в различных сегментах полусферы, которые соответствуют азимуту и углу возвышения имитируемого навигационного космического аппарата и получают изменение пространственного направления излучения сигнала, соответствующее реальному.

2. Способ по п.1, отличающийся тем, что дополнительно подключают к многоканальному имитатору сигналов спутниковых навигационных систем навигационный приемник с антенной, которые располагают в реальном навигационном поле, причем навигационный приемник выделяет и передает в многоканальный имитатор сигналов спутниковых навигационных систем цифровую информацию, передаваемую с борта навигационного космического аппарата, и при этом обеспечивают жесткую временную привязку шкалы времени многоканального имитатора сигналов спутниковых навигационных систем, задержку в радиочастотных кабелях в каждом канале многоканального имитатора сигналов спутниковых навигационных систем компенсируют с помощью регулируемой линии задержки, при этом обеспечивают непрерывное решение навигационной задачи при переходе из реального навигационного поля в область навигационного поля, расположенного внутри замкнутого экранированного пространства.

3. Способ по п.1, отличающийся тем, что количество каналов многоканального имитатора сигналов спутниковых навигационных систем и излучателей для излучения сигналов от многоканального имитатора сигналов спутниковых навигационных систем выбрано кратным 4.



 

Похожие патенты:

Изобретение может быть использовано в космической радионавигации и геодезии. Достигаемый технический результат - повышение точности глобального определения в реальном времени местоположения потребителей при работе навигационной аппаратуры потребителя (НАП) в автономном режиме.

Изобретение относится к технике связи и может использоваться в системах связи с тремя или более несущими. Технический результат состоит в повышении скорости определения неоднозначности сигналов GNSS.

Изобретение относится к области систем мониторинга смещения инженерных сооружений и может быть использовано для ведения непрерывного контроля смещений и колебаний элементов конструкций мостов, плотин, башен и других инженерных сооружений с целью ранней диагностики целостности сооружения, а также оперативного обнаружения потери устойчивости сооружения.

Изобретение относится к области радиотехники, а именно, к способу и устройству, предназначенным для получения более точной оценки местоположения путем использования набора измерений.

Изобретение относится к радиотехнике и может использоваться в системе передачи данных. .

Изобретение относится к области радионавигации и, в частности, к комплексным дальномерным радиотехническим системам (ДРТС) ближней навигации (БН). .

Изобретение относится к области навигации и определения местоположения устройства, в частности, методом трилатерации с использованием прогнозирования линий связи в пределах прямой видимости (LOS) и фильтрации трасс в пределах прямой видимости.

Изобретение относится к радионавигации и может быть использовано для определения координат, скорости и углов пространственной ориентации подвижных объектов. .

Изобретение относится к области технологий позиционирования. Техническим результатом является обеспечение возможности эффективной смены виртуального опорного приемника в переделах того же самого сеанса передачи вспомогательных данных с обеспечением непрерывности опорных измерений с помощью выполнения "мягкого хэндовера".

Устройство автоматизированного управления многоопорной дождевальной машиной фронтального действия для точного полива включает установленные на тележках с электроприводом трубопроводы правого и левого крыльев машины, блок синхронизации движения по курсу с направляющим тросом и блок управления скоростью движения машины.

Изобретение относится к области радиотехники, а именно к области навигационных измерений, и может быть использовано в наземном комплексе управления орбитальной группировкой навигационных космических аппаратов (НКА).

Изобретение относится к технике радиоэлектронного подавления и может быть использовано в средствах радиоэлектронной борьбы для активного подавления навигационных приемников высокоточного оружия (ВТО) и беспилотных летательных аппаратов (БПЛА).

Изобретение относится к спутниковым радионавигационным системам позиционирования. Техническим результатом является получение более качественных данных положения с точки зрения безопасного радиуса и доступности, непрерывность контроля достоверности предоставляемых данных.

Изобретения относятся к вычислительной технике и могут быть использованы для обнаружения неисправностей спутников и корректировки таких неисправностей. Техническим результатом является возможность определения типа неисправности.

Изобретение относится к области радиотехники, а именно к навигации летательных аппаратов (ЛА), и может быть использовано при осуществлении навигации ЛА, включая посадку на взлетно-посадочную полосу (ВПП).

Изобретение относится к позиционированию летательного аппарата. Сущность изобретения заключается в том, что устройство (10) трехмерного позиционирования с базовой станцией (12) вторичного радара, которая предназначена для измерения дальности до ретрансляторов (14) и имеет по меньшей мере одну радарную антенну (16), содержит GNSS-приемник (18), который предназначен для измерения GNSS-сигналов, и имеет GNSS-приемную антенну (20), инерциальный измерительный блок (22), который предназначен для определения положения GNSS-приемной антенны, а также по меньшей мере одну радарную антенну в общей системе координат относительно нулевой точки, и интегрирующий процессор (24, 30, 31), в который подводятся измерения псевдодальности GNSS-приемника, радарные измерения дальности, и измеренные инерциальным измерительным блоком (22) перемещения устройства относительно осей общей системы координат, и который определяет трехмерную позицию общей опорной точки путем объединения подведенных измерений и данных, при этом с учетом измеренных перемещений производится компенсация плеча.

Изобретение относится к области радиотехники, а именно к коррекции предсказаний значений изменяющихся во времени сигналов, и может быть использовано для приема навигационных сообщений, посылаемых глобальными навигационными спутниковыми системами.

Изобретение относится к области радиотехники, а именно к оценке положения космического аппарата (6), и может быть использовано, в частности, для оценки положения спутника, вращающегося вокруг Земли.

Изобретение относится к способам определения и прогнозирования местоположения объекта в пространстве. Технический результат состоит в повышении точности определения местоположения движущихся объектов в пространстве при навигационных измерениях на основе использования его динамических характеристик. Для этого на основе динамических свойств объекта прогнозируется область пространства возможного местоположения объекта в момент последующих навигационных измерений. Скорректированным местоположением объекта в пространстве при последующих навигационных измерениях считается пересечение областей пространства последующих навигационных измерений с прогнозируемыми областями. 8 ил.
Наверх