Зеркало с обогревом

Изобретение может быть использовано на всех видах транспорта, а также в качестве зеркальных нагревательных панелей для обогрева помещений. Зеркало с обогревом содержит стеклянную подложку, с тыльной стороны которой последовательно расположены слой из оксида титана геометрической толщиной 50-60 нм, затем слой из оксида кремния геометрической толщиной 66-76 нм, затем отражающий слой из алюминия толщиной 100-300 нм. С внешней стороны подложки расположен токопроводящий слой из оксида олова геометрической толщиной 290-310 нм. На токопроводящем слое расположены электрические контакты и слой из фтористого магния геометрической толщиной 95-105 нм. Изобретение позволяет повысить коэффициент отражения зеркала с обогревом до 95% в видимой области спектра 0,4÷0,7 мкм. 2 ил., 3 пр.

 

Изобретение относится к конструкции зеркал с обогревом, применяемых в качестве автомобильных зеркал, обеспечивающих безопасность эксплуатации транспортных средств, и может быть использовано на всех видах транспорта, а также в качестве зеркальных нагревательных панелей для обогрева помещений.

Обогрев внешнего автомобильного зеркала актуален для территорий с влажным и холодным климатом, поскольку является эффективным и универсальным средством, позволяющим удалять с поверхности зеркала капли воды, иней, снег, лед, а также препятствует обмерзанию зеркала при движении автомобиля в холодное время года.

Известно зеркало с обогревом, содержащее стеклянную подложку с отражающим проводящим слоем из нержавеющей стали на ее тыльной стороне, отражающий слой выполнен в вакуумной камере магнетронным напылением нержавеющей стали, см. Патент RU 2248681, МПК H05B 3/84, 2003.

Недостатком данного зеркала является недостаточно высокий коэффициент отражения, составляющий 50-65% в области спектра 0,4÷0,7 мкм.

Известно зеркало с обогревом, содержащее стеклянную подложку, с тыльной стороны которой расположен отражающий слой из алюминия толщиной 100-300 нм, на отражающем слое расположен барьерный слой из оксида алюминия толщиной 2-3 нм, а на барьерном слое расположен токопроводящий слой из оксида олова толщиной 150-250 нм, на котором расположены электрические контакты, см. Патент RU 2306681, МПК H05B 3/84, 2006.

Недостатком известного зеркала является недостаточно высокий коэффициент отражения, составляющий 83-85% в области спектра 0,4÷0,7 мкм.

Известно зеркало с обогревом, содержащее стеклянную подложку, с тыльной стороны которой, начиная с подложки, последовательно расположены слой из оксида титана толщиной 50-60 нм, затем слой из оксида алюминия толщиной 55-65 нм, затем отражающий слой из алюминия толщиной 100-300 нм, затем барьерный слой из оксида алюминия толщиной 2-3 нм, на барьерном слое расположен токопроводящий слой из оксида олова толщиной 150-250 нм, на токопроводящем слое расположены электрические контакты, см. Патент RU 2426280, МПК8 H05B 3/84, 2006.

Недостатком известного зеркала является недостаточно высокий коэффициент отражения, составляющий 90% в видимой области спектра 0,4÷0,7 мкм.

Наиболее близким по технической сущности является зеркало с обогревом, содержащее стеклянную подложку, с тыльной стороны которой расположен отражающий слой из алюминия толщиной 100-300 нм, на отражающем слое расположен барьерный слой из оксида алюминия толщиной 2-3 нм, на барьерном слое расположен токопроводящий слой из оксида олова толщиной 150-250 нм, на котором расположены электрические контакты, в котором между подложкой и отражающим слоем со стороны подложки дополнительно расположены слой из оксида титана толщиной 50-60 нм, а затем слой из фтористого магния толщиной 70-75 нм, см. Патент RU 2467895, МПК8 H05B 3/84, 2011.

Недостатком известного зеркала является недостаточно высокий коэффициент отражения, составляющий 92-94% в видимой области спектра 0,4÷0,7 мкм.

Технической задачей изобретения является создание зеркала с обогревом с большим значением коэффициента отражения.

Техническая задача решается созданием зеркала с обогревом, содержащим стеклянную подложку, на которой слой из оксида титана геометрической толщиной 50-60 нм, слой из оксида кремния геометрической толщиной 66-76 нм, отражающий слой из алюминия геометрической толщиной 100-300 нм расположены с тыльной стороны подложки, и токопроводящий слой из оксида олова геометрической толщиной 290-310 нм, на котором расположены электрические контакты, и слой из фтористого магния геометрической толщиной 95 - 105 нм расположены с внешней стороны подложки.

Решение технической задачи позволяет увеличить коэффициент отражения зеркала с обогревом до 95%.

На фиг.1 схематически представлено в разрезе зеркало с обогревом. Оно состоит из стеклянной подложки 1, на тыльной стороне которой последовательно расположены слой из оксида титана 2, слой из оксида кремния 3, отражающий слой из алюминия 4, а на внешней стороне подложки расположены токопроводящий слой из оксида олова 5 с двумя электрическими контактами 6, на токопроводящем слое расположен слой из фтористого магния 7.

Заявляемое зеркало с обогревом нагревается за 3-7 секунд до 20°C, обеспечивая быстрое удаление влаги с поверхности зеркала, его коэффициент отражения составляет 94-95% в видимой области спектра 0,4÷0,7 мкм.

Изготовление зеркала с обогревом ведут в вакуумной камере модернизированной вакуумной установки УВН-70-А2 методом магнетронного распыления. Вначале формируют последовательно слои с тыльной стороны стеклянной подложки. Подложку предварительно обезжиривают и помещают в вакуумную камеру, из которой откачивают воздух до давления Рост=2,6·10-3 Па. Подложку прогревают в вакуумной камере до температуры 200°C. Затем подают смесь газов аргона и кислорода до давления Росх=0,26 Па. Подложку закрывают заслонкой и зажигают разряд на магнетроне с мишенью из титана. Происходит удаление оксидной пленки с поверхности мишени в течение 5 минут горения разряда, после чего заслонку убирают и напыляют на подложку слой из оксида титана толщиной 50-60 нм. Подложку закрывают заслонкой и зажигают разряд на магнетроне с мишенью из кремния. Происходит удаление оксидной пленки с поверхности мишени в течение 5 минут горения разряда, после чего заслонку убирают и напыляют слой из оксида кремния толщиной 66- 76 нм. Подачу смеси газов аргона и кислорода прекращают и выдерживают подложки в вакууме в течение 30 мин для их остывания. Затем в вакуумную камеру подают газ аргон до давления Рост=0,26 Па, подложку закрывают заслонкой и зажигают разряд на магнетроне с мишенью из алюминия. Происходит удаление оксидной пленки с поверхности мишени в течение 5 минут горения разряда, после чего заслонку убирают и напыляют отражающий слой из алюминия толщиной 100-300 нм. По окончании напыления алюминия подложку переворачивают и ведут напыление на ее внешнюю поверхность. Из вакуумной камеры откачивают воздух до давления Рост=2,6·10-3 Па. Подложку прогревают в вакуумной камере до температуры 200°C. Затем осуществляют напуск аргона до давления P=0,26 Па. Подложку закрывают заслонкой и зажигают разряд на магнетроне с мишенью из олова. В течение 5 минут горения разряда происходит удаление оксидной пленки с поверхности мишени. Затем подают смесь газов аргона и кислорода до давления Рост=0,26 Па. При давлении P=0,2-0,3 Па на внешнюю поверхность подложки проводят напыление токопроводящего слоя из оксида олова толщиной 290-310 нм. Закрепляют электропроводящие контакты. Затем методом термического испарения наносят слой фтористого магния. Напыление слоя фтористого магния проводят до достижения слоем геометрической толщины 95-105 нм.

Толщину напыления оксида титана, оксида кремния, алюминия, оксида олова и фтористого магния контролируют методом спектрофотометрического контроля, когда по экстремумам отраженного света напыляют требуемую геометрическую толщину покрытия. Все слои наносят на стеклянную подложку путем магнетронного распыления и термического нанесения в вакууме на модернизированной вакуумной установке УВН-70-А2. Заявляемое высокоотражающее зеркало с обогревом нагревается за ~3-7 секунды до 20°C, обеспечивая быстрое удаление влаги с поверхности зеркала на уровне прототипа.

Заявляемое зеркало с обогревом имеет коэффициент отражения R до 95% в видимой области спектра 0,4÷0,7 мкм. Спектральная зависимость коэффициента отражения заявляемого зеркала с обогревом представлена на фиг.2.

Данное изобретение иллюстрируется следующими примерами конкретного исполнения:

Пример 1. Зеркало с обогревом размером 100 мм на 190 мм, сформированное с тыльной стороны подложки последовательно из слоев оксида титана толщиной 55 нм, оксида кремния толщиной 71 нм, алюминия толщиной 300 нм, а с внешней стороны подложки - из токопроводящего слоя из оксида олова геометрической толщиной 297 нм и за ним - слоя из фтористого магния геометрической толщиной 99 нм. Электрические контакты токопроводящего слоя подключают к источнику тока напряжением 12 В. Потребление составляет около 15 Вт. Коэффициент отражения составляет 95%.

Пример 2. Зеркало с обогревом размером 100 мм на 190 мм, сформированное с тыльной стороны подложки последовательно из слоев оксида титана толщиной 50 нм, оксида кремния толщиной 76 нм, алюминия толщиной 200 нм, а с внешней стороны подложки - из токопроводящего слоя из оксида олова геометрической толщиной 290 нм и за ним слоя - из фтористого магния геометрической толщиной 95 нм. Электрические контакты токопроводящего слоя подключают к источнику тока напряжением 12 В. Потребление составляет около 20 Вт. Коэффициент отражения составляет 94%.

Пример 3. Зеркало с обогревом размером 100 мм на 190 мм, сформированное с тыльной стороны подложки последовательно из слоев оксида титана толщиной 60 нм, оксида кремния толщиной 66 нм, алюминия толщиной 150 нм, а с внешней стороны подложки - из токопроводящего слоя из оксида олова геометрической толщиной 310 нм и за ним слоя - из фтористого магния геометрической толщиной 105 нм. Электрические контакты токопроводящего слоя подключают к источнику тока напряжением 12 В. Потребление составляет около 2 Вт. Коэффициент отражения составляет 94%.

Заявленное зеркало с обогревом просто в изготовлении и удобно при использовании на транспортных средствах в качестве декоративных фасадных стекол зданий, а также в качестве зеркальных нагревательных панелей для обогрева помещений.

Решение технической задачи позволяет увеличить коэффициент отражения до 95% в видимой области спектра 0,4÷0,7 мкм. Рассеиваемая мощность на зеркале составляет от 2 до 20 Вт при источнике напряжения 12 В.

Заявленное техническое решение просто в изготовлении и удобно при использовании на транспортных средствах и применении его в качестве декоративных фасадных стекол зданий. Решение технической задачи позволяет обеспечить высокую отражательную способность высокоотражающего зеркала до 95% против 92-94% у прототипа.

Заявленное техническое решение с указанными характеристиками можно также использовать в качестве зеркальных нагревательных панелей для обогрева помещений.

Заявленное техническое решение соответствует критерию «новизна», предъявляемому к изобретениям, т.к. из исследованного уровня техники заявителем не выявлены технические решения с приведенной в заявленном техническом решении совокупностью признаков.

Заявленное техническое решение соответствует критерию «изобретательский уровень», предъявляемому к изобретениям, т.к. не следует явным образом из исследованного заявителем уровня техники.

Заявленное техническое решение соответствует критерию «промышленная применимость», предъявляемому к изобретениям, т.к. может быть изготовлено на известном оборудовании посредством применения стандартных приемов и известных материалов.

Зеркало с обогревом, содержащее стеклянную подложку, на которой слой из оксида титана геометрической толщиной 50-60 нм, слой с низким показателем преломления, отражающий слой из алюминия геометрической толщиной 100-300 нм расположены с тыльной стороны подложки, и токопроводящий слой из оксида олова, на котором расположены электрические контакты, и слой из фтористого магния, отличающееся тем, что слой с низким показателем преломления выполнен из оксида кремния геометрической толщиной 66-76 нм, а токопроводящий слой из оксида олова геометрической толщиной 290-310 нм и слой из фтористого магния геометрической толщиной 95-105 нм расположены с внешней стороны подложки.



 

Похожие патенты:

Изобретение относится к электротермии, а более конкретно к изделиям из многослойных электрообогреваемых стекол, и предназначено как для использования в качестве плоских стеклянных электронагревателей, так и в качестве стеклянных крыш, стеклопакетов, подогревателей различных сред.

Изобретение относится к незапотевающей тепловырабатывающей стеклянной системе, содержащей: тепловырабатывающий стеклянный блок, который отделяет внутреннюю область помещения от наружной области и который включает обычное стекло и тепловырабатывающее стекло; блок измерения температуры поверхности стекла, размещенный на внешней стороне тепловырабатывающего стекла, блок управления, тепловырабатывающий стеклянный блок; и блок источника питания, Способ управления незапотевающей тепловырабатывающей стеклянной системой, содержащий: этап, на котором одновременно измеряют температуру и относительную влажность внутренней области помещения и температуру поверхности тепловырабатывающего стекла; вычисляют точку образования отпотевания на основании температуры и относительной влажности внутренней области помещения; сравнивают температуру поверхности тепловырабатывающего стекла и температуру точки образования отпотевания; и четвертый этап, на котором возвращаются к первому этапу или нагревают тепловырабатывающее стекло в зависимости от результата сравнения на третьем этапе.

Изобретение относится к конструкции высокоотражающих зеркал с обогревом, применяемых в качестве автомобильных зеркал, обеспечивающих безопасность эксплуатации транспортных средств, декоративных фасадных стекол зданий, а также в качестве зеркальных нагревательных панелей для обогрева помещений.

Изобретение может быть использовано на всех видах транспорта, а также в качестве зеркальных нагревательных панелей для обогрева помещений. Зеркало с обогревом содержит стеклянную подложку, с тыльной стороны которой последовательно расположены слой из оксида титана толщиной 50-60 нм, затем слой из оксида алюминия толщиной 55-65 нм, затем отражающий слой из алюминия толщиной 100-300 нм.

Предлагаемое техническое решение относится к области производства зеркал, а именно зеркал с обогревом, используемым, например, в качестве наружных зеркал заднего обзора транспортного средства.

Изобретение относится к конструкции зеркал с обогревом, применяемых в качестве автомобильных зеркал. .

Изобретение относится к конструкции зеркал с обогревом. .

Изобретение относится к области строительства, а именно к конструкциям оконных систем. .

Изобретение относится к конструкции высокоотражающих зеркал с обогревом, применяемых в качестве декоративных фасадных стекол зданий, автомобильных зеркал, обеспечивающих безопасность эксплуатации транспортных средств, а также в качестве зеркальных нагревательных панелей для обогрева помещений.

Изобретение относится к конструкции высокоотражающих зеркал с обогревом, применяемых в качестве декоративных фасадных стекол зданий, автомобильных зеркал, обеспечивающих безопасность эксплуатации транспортных средств, а также в качестве зеркальных нагревательных панелей для обогрева помещений. Высокоотражающее зеркало с обогревом содержит последовательно, начиная со стеклянной подложки, отражающий токопроводящий слой из нержавеющей стали геометрической толщиной от 20 нм до 1000 нм, два электрических контакта, расположенных на слое из нержавеющей стали, слой из оксида титана геометрической толщиной 80-90 нм, слой из оксида кремния геометрической толщиной 90-96 нм, слой из оксида титана геометрической толщиной 50-60 нм, слой из оксида кремния геометрической толщиной 90-96 нм, слой из оксида титана геометрической толщиной 50-60 нм. Изобретение позволяет увеличить коэффициент отражения зеркала с обогревом до 90% в видимой области спектра 0,45÷0,65 мкм при стабильном электрическом сопротивлении нагревательного элемента. 1 ил.

Электроимпульсное противообледенительное устройство может использоваться для удаления льда с листовых металлических поверхностей, например с обшивок крыльев самолетов. Заявленное устройство содержит ряд индукторов, расположенных вблизи от очищаемой ото льда металлической поверхности. Индукторы связаны с выходами соответствующих модулей, входы которых через выключатель подключены к питающей сети. Каждый из модулей включает в себя зарядное устройство, накопительный конденсатор, управляемый ключ, защитный диод и генератор управляющих импульсов. Вход зарядного устройства соединен с выходом модуля, а выход - с накопительным конденсатором. Выход накопительного конденсатора через управляемый ключ связан с выходом модуля. Параллельно модулю подключен защитный диод. Кроме того, заявленное устройство снабжено блоком регулируемой задержки управляющих импульсов и маломощным источником питания. С входом источника питания соединен вход модуля, а с выходом - питающие входы генератора и блока регулируемой задержки управляющих импульсов. Генератор и блок регулируемой задержки управляющих импульсов соединены последовательно. К выходу блока регулируемой задержки управляющих импульсов подключен вход управляющего ключа. Предлагаемое устройство позволяет обеспечить равномерное распределение работы модулей во времени, а также снижает нагрузку на питающую сеть. 1 з.п. ф-лы, 2 ил.

Изобретение относится к остеклениям с подогревом, для которых, в частности, есть необходимость в быстром нагреве, например остекление транспортного средства. Раскрыто остекление (4) с подогревом, в котором электрические нагревательные элементы (6а, 6в), такие как тонкие провода (8), соединены с шинами низкого и высокого сопротивления (10а, 10в), (12а, 12в). Сопротивление шин выбрано таким образом, чтобы при подаче напряжения ввода в эксплуатацию шина обеспечивала нагрев части остекления, в которой она расположена. При этом шины независимо друг от друга соединены с источником электроэнергии. Изобретение обеспечивает быстрый нагрев части остекления. 10 з.п. ф-лы, 3 ил.

Изобретение относится к нагреваемым прозрачным элементам. Прозрачный элемент воздушного судна имеет нагреваемый элемент для удаления конденсата, льда и снега с внешней поверхности прозрачного элемента. Нагреваемый элемент включает в себя пару расположенных на расстоянии друг от друга параллельных шин, причем концы шин смещены относительно друг друга, и покрытие, включающее в себя несколько расположенных на расстоянии друг от друга сегментов электропроводного покрытия, электрически соединенных с шинами. Отношение главной диагонали к второстепенной диагонали лежит в диапазоне от 1 до 1,25, чтобы более равномерно нагревать покрытие и внешнюю поверхность прозрачного элемента. 2 н. и 13 з. п. ф-лы, 9 ил.
Наверх