Способ переработки слабокислого гидрофуза



 


Владельцы патента RU 2528028:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный аграрный университет" (RU)

Изобретение относится к масложировой промышленности. Способ включает разделение гидрофуза на фракции введением в него активатора, перемешивание смеси и отстаивание. При этом предварительно определяют объем Vгф, коэффициент водонасыщения Кв.гф, водородный показатель исходного гидрофуза pHгф и изоэлектрическую точку белков гидрофуза pHиз. Если параметр pHгф оказывается более 5,0 единиц (слабокислый гидрофуз), то нагревают гидрофуз до температуры 90-95°C, постепенно малыми порциями вводят активатор, в качестве которого используют ортофосфорную кислоту, и, контролируя, доводят водородный показатель гидрофуза до величины pHгф, равной 5. Для электрохимической активации воды изготавливают анолит, необходимый для достижения величины параметра pH, соответствующего изоэлектрическому состоянию белка рНиз, который определяют по формуле:

V a = V г ф К в г ф ( 5 p H и з ) ( p H и з p H a ) , м 3

где Vгф - объем гидрофуза, м3;

Квгф - коэффициент водонасыщения гидрофуза, доли единицы;

pHa - водородный показатель анолита;

pHиз - водородный показатель среды, соответствующий изоэлектрическому состоянию белков в подсолнечном масле.

Изобретение позволяет упростить процесс переработки, повысить эффективность извлечения фосфатидов и масла из гидрофуза. 3 пр.

 

Изобретение относится к масложировой промышленности и может быть использовано для получения фосфатидного концентрата из гидрофуза в процессе безотходного производства растительных масел.

Природные масла представляют собой сложную многокомпонентную систему, состоящую в основном из триацил глицеринов (триглицеридов) различного состава, строения и степени непредельности, из разнообразных сопутствующих веществ, молекулярно- и коллоидно-растворимых в глицеридах. В настоящее время технология рафинации растительных масел в отечественной и зарубежной практике реализуется путем удаления из масел сопутствующих им веществ.

Существуют различные способы очистки или рафинирования масла: физические (отстаивание, центрифугирование, фильтрование), химические (гидратация, щелочная рафинация и др.) и физико-химические (отбеливание, дезодорация и др.).

Гидратационный фуз, известный под названием «гидрофуз», образуется на маслозаводах как вторичный побочный продукт в процессе химической гидролизной очистки различных видов растительных масел. Так, при производстве подсолнечного масла получается подсолнечный гидрофуз. Гидрофуз, водородный показатель которого pHгф>5,0, можно отнести к категории слабокислого гидрофуза.

Известен способ получения концентрата фосфолипидов (патент РФ №2242142), в котором проводят экстракцию фосфолипидов из гидрофуза сжиженными газами ряда углеводородов, их фтор- и хлорпроизводными при повышенной температуре и пониженном давлении.

Недостатком известного способа является использование углеводородов, а также их фтор- и хлорпроизводных, что оказывает негативное влияние на качественные показатели фосфолипидов, значительно удорожает их производство и создает экологические проблемы последующей утилизации отходов производства.

Известен способ получения пищевого эмульгатора из гидрационного осадка растительных масел (патент РФ №2103337), в котором обработка гидрофуза проводится этиловым спиртом, а отделение фосфатидного концентрата путем осаждения и сушки.

Недостатком этого способа является использование дефицитного пищевого этилового спирта, его повышенная пожароопасность и необходимость регенерации.

Известен способ переработки отстоя растительного масла (гидрофуза, фуза) (патент РФ №2102445 - прототип), включающий его разделение на масло и осадок с помощью гидромеханизации и гравитации с использованием активатора. Процесс переработки осуществляется следующим образом. Гидрофуз нагревают до температуры не более 60°C выше температуры свертывания немасляной плотной части, вводят в него 15÷50% от массы гидрофуза, нагретого до такой же температуры, активатор в виде 0,4÷2,6%-ного водного раствора солей щелочных и/или щелочноземельных металлов, cахаров, перемешивают компоненты 5-50 мин, разделяют смесь на масло и осадок отстаиванием смеси в течение 3÷25 ч, отводят из верхних слоев масло, подразделяют его по качеству на пищевое и непищевое, пищевое используют по назначению, непищевое перерабатывают на олифу, а в осадок вводят 0,05÷0,5% от массы осадка антиоксидант и 0,05÷2,0% от массы осадка антисептик и используют в качестве кормовой добавки животным.

К недостаткам этого способа можно отнести трудности переработки гидрофузов, получаемых с разных заводов, в которых технология рафинации масел различна. В результате каждая партия гидрофуза характеризуется своими свойствами, в том числе значениями pH среды, которые меняются в широких диапазонах от 3,2 до 6,5. В этих условиях каждую партию гидрофуза предварительно необходимо довести до определенной величины параметра pH=4,0÷4,5, соответствующего неустойчивому изоэлектрическому состоянию белка, для выделения и осаждения последних. При этом большие трудности возникают в случае наличия слабокислого гидрофуза, водородный показатель которого pHгф более 5 единиц (может изменяться в диапазоне >5,0÷≤6,5 единиц).

Техническим результатом является упрощение процесса переработки, повышение эффективности извлечения фосфатидов и масла из гидрофуза.

Технический результат достигается тем, что в способе переработки слабокислого гидрофуза, включающем его разделение на фракции введением в него активатора, перемешивание компонентов смеси, отстаивание, согласно изобретению, предварительно определяют исходный объем гидрофуза, коэффициент водонасыщения гидрофуза в долях единицы (Kвгф), водородный показатель исходного гидрофуза pHгф и изоэлектрическую точку белков исходного гидрофуза pHиз; затем, при значении водородного показателя pHгф больше 5, в гидрофуз постепенно, малыми порциями вводят активатор, в качестве которого используют ортофосфорную кислоту, и, контролируя, доводят водородный показатель pH смеси гидрофуза с кислотой до величины 5 единиц, после чего в смесь гидрофуза с кислотой вводят продукт электролиза воды в виде анолита для доведения водородного показателя смеси до состояния изоэлектрической точки белка гидрофуза pHиз, при этом необходимый объем анолита определяют по формуле:

V a = V г ф K в г ф ( 5 p H и з ) ( p H и з p H a ) , м 3 ( 1 )

где Угф - объем гидрофуза, м3;

Квгф - коэффициент водонасыщения гидрофуза, доли единицы;

pHa - водородный показатель анолита;

рНиз - изоэлектрическая точка белков гидрофуза;

после перемешивания компонентов смеси отстаивание ведут не менее 18 минут.

Новизна заявляемого предложения заключается в том, что найдено комплексное решение по безотходному использованию слабокислого гидрофуза с более эффективным извлечением фосфатидов и масла из гидрофуза при использовании оптимального количества анолита, так как при параметре рНгф>5 для доведения водородного показателя гидрофуза до состояния изоэлектрической точки белков необходимо использовать повышенное количество анолита в объемах, сопоставимых с объемом гидрофуза.

По данным научно-технической и патентной литературы не обнаружена аналогичная заявляемой совокупность признаков, позволяющая получить технический результат, который ранее не достигался известными средствами, что позволяет судить об изобретательском уровне заявляемого предложения.

Предложенное техническое решение соответствует критерию «промышленная применимость», поскольку воспроизводимо и в исполнении доступно и может быть использовано при переработке слабокислого гидрофуза.

Предлагаемый способ обезвоживания фосфолипидов основан на следующем механизме взаимодействия фосфолипидов с белками. В подсолнечном гидрофузе содержатся в основном гидрофильные, водорастворимые глобулярные белки, имеющие глобулярную структуру, а также частично, либо полностью гидрофобные мембранные белки, находящиеся в мембранах. Гидрофильность и водорастворимость белков связана с наличием в структуре их молекул гидрофильных полярных - заряженных и незаряженных групп в составе аминокислот. Эти группы притягивают диполи воды. Таким образом, вокруг молекулы белка образуется "водная оболочка", которая удерживает белковую молекулу в растворе. Глобулярные белки состоят из одной полипептидной цепи или нескольких, плотно свернутых за счет нековалентных и ковалентных связей в компактную частицу - глобулу. Почти все их полярные группы находятся на поверхности молекулы и гидратированы, гидрофобные группы находятся внутри молекулы. Аминокислоты представляют собой биполярные ионы. Значение рН среды, при котором устанавливается равенство их положительных и отрицательных зарядов, называется изоэлектрической точкой (ИЭТ) (В.Г.Щербаков, В.Г.Лобанов и др. Биохимия, издание третье, Изд-во «ГИОРД», Санкт-Петербург, 2009 г., с. 76).

Проявляя положительный заряд в кислой среде, свободные белки (неструктурированные в фосфолипидных мембранах) за счет электростатического притяжения образуют белковую весьма гидратированную оболочку вокруг отрицательно заряженных фосфатных групп фосфолипидных агрегатов (мицелл), способствуя устойчивости их эмульсий в водной среде. В изоэлектрическом состоянии белок, содержащийся в гидрофузе, теряет заряд и свои эмульгирующие свойства и способность растворяться в воде, тем самым способствуя эффективному отделению фосфатидного концентрата.

В качестве сырья для получения фосфатидного концентрата используется гидрофуз, являющийся отходом производства подсолнечного масла, широко развитого в Краснодарском крае.

Знание объема гидрофуза и его коэффициента водонасыщения необходимы для количественной оценки активатора в виде ортофосфорной кислоты, а также анолита.

Разделение слабокислого гидрофуза с рН>5 на отдельные фракции наиболее активно происходит в условиях приближения водородного показателя гидрофуза рНгф к изоэлектрической точке белков гидрофуза рНиз, поэтому количество кислоты и анолита, добавляемые в гидрофуз, и необходимое для разделения гидрофуза на фракции, зависит от параметров рНиз и рНгф, которые необходимо предварительно определять в лабораторных условиях, что позволит повысить эффективность извлечения фосфатидов из гидрофуза и уменьшить энергозатраты.

Применение в качестве активатора ортофосфорной кислоты для доведения водородного показателя гидрофуза до 5 единиц обусловлено нецелесообразностью использовать в условиях слабокислого гидрофуза в очень больших объемах анолит, что позволит уменьшить энергозатраты на приготовление анолита.

Применение анолита в качестве активатора для снижения водородного показателя от 5 единиц до состояния изоэлектрической точки белков гидрофуза позволит уменьшить расход кислоты.

Способ переработки слабокислого гидрофуза осуществляется следующим образом.

Предварительно определяют объем полученной партии гидрофуза (Угф), коэффициент водонасыщения гидрофуза, доли единицы (Kв.гф), водородный показатель исходного гидрофуза (pHгф) и изоэлектрическую точку белков гидрофуза (pHиз). Если параметр pHгф оказывается более 5 единиц (слабокислый гидрофуз), в гидрофуз постепенно, малыми порциями вводят активатор, в качестве которого используют ортофосфорную кислоту, и, контролируя, доводят водородный показатель pH смеси гидрофуза с кислотой до величины 5 единиц.

На промышленной установке для электрохимической активации воды изготавливается необходимый объем анолита (Va) с фиксированной величиной водородного показателя (pHа) и добавляется в смесь гидрофуза с кислотой для достижения величины параметра pH, соответствующего изоэлектрическому состоянию белка (pHиз).

Необходимый объем анолита Va с полученной фиксированной величиной водородного показателя pHа определяется по формуле:

V a = V г ф K в г ф ( 5 p H и з ) ( p H и з p H a ) , м 3

где Vгф - объем гидрофуза, м3;

Kвгф - коэффициент водонасыщения гидрофуза, доли единицы;

pHа - водородный показатель анолита;

pHиз - водородный показатель среды, соответствующий изоэлектрическому состоянию белков в подсолнечном масле.

Эффективность способа подтверждается данными, описанными в нижеследующих примерах.

Пример 1. Исходная партия гидрофуза объемом 10,2 м3 и коэффициентом водонасыщения Kвгф=0,71 характеризовалась параметром pHгф5,7, значением изоэлектрического состояния его белков pHиз4,2. Для достижения параметра pH=5 гидрофуза нагрели его до температуры 90°C, постепенно малыми порциями ввели активатор, в качестве которого использовали 52 кг 85% ортофосфорной кислоты с pH1. Для достижения изоэлектрического состояния белков (pHиз=4,2) данного гидрофуза в соответствии с формулой (1) добавили 4,74 м анолита с pHа=2,8. Провели перемешивание смеси и через 18 минут началось разделение системы на масло, воду и фосфатидный концентрат.

Пример 2. Исходная партия гидрофуза объемом 9,7 м3 и коэффициентом водонасыщения Kвгф=0,65 характеризовалась параметром pHгф5,6, значением изоэлектрического состояния его белков pHиз4,1. Для достижения параметра pHгф=5 такого гидрофуза нагрели его до температуры 93°C и постепенно, малыми порциями ввели активатор, в качестве которого использовали 47 кг 85% ортофосфорной кислоты с pH1. Для достижения изоэлектрического состояния белков (pHиз=4,1) данного гидрофуза в соответствии с формулой (1) добавили 5,27 м3 анолита с pHа=2,9. Провели перемешивание смеси и через 21 минуту началось разделение системы на масло, воду и фосфатидный концентрат.

Пример 3. Исходная партия гидрофуза объемом 8,9 м3 и коэффициентом водонасыщения Kвгф=0,69 характеризовалась параметром pHгф5,8, значением изоэлектрического состояния его белков pHиз4,1. Для достижения параметра pHгф=5 такого гидрофуза нагрели его до температуры 92°C и постепенно, медленно ввели активатор, в качестве которого использовали 44 кг 85% ортофосфорной кислоты с pH 1. Для достижения изоэлектрического состояния белков (pHиз=4,1) данного гидрофуза в соответствии с формулой (1) добавили 5,8 м3 анолита с pHа=3,0. Провели перемешивание смеси и через 30 минут началось разделение системы на масло, воду и фосфатидный концентрат.

Применение данного способа позволяет повысить эффективность извлечения фосфатидов и масла из гидрофуза, уменьшить энергозатраты и расходы кислоты.

Способ переработки слабокислого гидрофуза, включающий его разделение на фракции введением в него активатора, перемешивание компонентов смеси, отстаивание, отличающийся тем, что предварительно определяют исходный объем гидрофуза Угф, коэффициент водонасыщения гидрофуза Квгф, водородный показатель исходного гидрофуза pHгф и изоэлектрическую точку белков исходного гидрофуза pHиз; затем, при значении водородного показателя pHгф больше 5, нагревают гидрофуз до температуры 90-95°C, постепенно малыми порциями вводят активатор, в качестве которого используют ортофосфорную кислоту, и, контролируя, доводят водородный показатель гидрофуза до величины pHгф, равной 5, после чего в смесь гидрофуза с кислотой вводят продукт электролиза воды в виде анолита для доведения водородного показателя смеси до состояния изоэлектрической точки белков гидрофуза pHиз, при этом необходимый объем анолита определяют по формуле:
V a = V г ф K в г ф ( 5 p H и з ) ( p H и з p H а ) , м 3
где Угф - объем гидрофуза, м3;
Квгф - коэффициент водонасыщения гидрофуза, доли единицы;
pHа - водородный показатель анолита;
pHиз - изоэлектрическое состояние белков гидрофуза;
после перемешивания компонентов смеси отстаивание ведут не менее 18 минут.



 

Похожие патенты:
Изобретение относится к масложировой промышленности и может быть использовано для очистки растительных масел. Способ предусматривает гидратацию раствором электролита, отделение фосфатидной эмульсии от масла, нейтрализацию электролизатом воды с рН>7 с добавлением соли с получением активированного раствора соли с концентрацией 0,1-1% и отделение нейтрализованного масла.

Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение изоэлектрического состояния его белков.

Изобретение относится к масложировой промышленности. Способ очистки растительных масел от восков предусматривает вымораживание масла с добавлением вспомогательных фильтровальных порошков.

Способ переработки гидрофуза осуществляется следующим образом.Для полученной партии гидрофуза с известным объемом (Vгф) предварительно определяется водородный показатель исходного гидрофуза (рНгф) и процентное содержание в нем воды (Kвгф)6 изоэлектрическая точка белка гидрофуза (рНиз).

Изобретение относится к масложировой промышленности. Способ включает получение раствора жира путем растворения материала на основе жира в растворителе.
Изобретение относится к масложировой промышленности. Способ предусматривает охлаждение масла, введение в него активированного инициатора кристаллизации, выдержку при перемешивании фаз и отделение примесей с помощью фильтра.
Изобретение относится к масложировой промышленности и может быть использовано для очистки растительного масла от воскоподобных веществ. В охлажденное гидратированное масло вводят при перемешивании комплексный реагент, полученную смесь подвергают экспозиции и разделению.
Изобретение относится к масложировой промышленности и может быть использовано для получения фосфатидного концентрата. .

Изобретение относится к ферментативным способам удаления фосфолипидов из растительных масел. .

Изобретение относится к методам очистки отработанных фритюрных жиров и может быть использовано в кулинарном и кондитерском производствах. .

Изобретение относится к масложировой и пищевой промышленности, именно к методам очистки отработанных фритюрных масел. Способ очистки фритюрного жира с использованием природных адсорбентов, в котором термообработанный фритюрный жир, имеющий температуру 180оC, отстаивают от механических примесей, одновременно охлаждая. Жир наливают в адсорбционную ванну, одетую в тепловую рубашку, и соединяют с опокой, доломитом и силикатом магния в следующем соотношении: опока 2% от массы жира, доломит 2% от массы жира, силикат магния 1% от массы жира. Изобретение позволяет повысить качество и упростить технику очистки фритюрного жира, уменьшить количество адсорбента.1 табл., 1 ил.

Изобретение относится к масложировой промышленности. Способ обработки сильнокислого гидрофуза включает нагревание гидрофуза, разделение на фракции при помощи активатора, перемешивание смеси и отстаивание. Предварительно определяют объем гидрофуза, водородный показатель исходного гидрофуза и изоэлектрическую точку белков исходного гидрофуза. Затем нагревают гидрофуз до температуры 85-90°C. Если pH гидрофуза составляет <3,7, то нагретый гидрофуз вводят при одновременном перемешивании в емкость с активатором. В качестве активатора используют буферную смесь, например ацетатную, с фиксированным водородным показателем на 0,09-0,1 единицы ниже изоэлектрической точки белков гидрофуза и объемом в 40-50 раз меньше объема исходного гидрофуза. Изобретение позволяет повысить эффективность извлечения фосфатидов из сильнокислого гидрофуза, уменьшить энергозатраты, а также улучшить экологию производства и окружающей среды за счет исключения химических реагентов - неорганических кислот и щелочей. 2 табл., 3 пр.
Изобретение относится к масложировой промышленности. Способ рафинации растительного масла предусматривает смешивание нерафинированного растительного масла с водным раствором гидратирующего агента - раствором поваренной соли концентрацией 11- 16% в количестве 0,5-0,8% от массы масла, после смешивания производят перемешивание полученной смеси в течение 16-20 минут, затем обрабатывают раствором кислотного реагента концентрацией 21-25% в количестве 0,35-0,80% от веса масла и перемешивают в течение 16-25 минут, добавляют в полученную смесь водный раствор щелочного реагента - раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного, далее непрерывно перемешивают для образования геля кремниевой кислоты, затем определяют кислотное число масла и для нейтрализации свободных жирных кислот добавляют раствор жидкого натриевого стекла, или раствор реагента для рафинации растительных масел SilicaGel RAF 200 в количестве 50% необходимого расчетного. После нейтрализации и образования хлопьев соапстока в полученную смесь добавляют 5-6%-ный раствор поликатионита FL 45 С в количестве 60-70 г на 1 тонну растительного масла и перемешивают в течение 16-25 минут, затем осуществляют отстаивание масла, его фильтрацию и вымораживание, при этом обработку реагентами осуществляют при температуре 25-30°С.Изобретение позволяет создать высокотехнологичный способ рафинации, который позволил бы повысить производительность получения рафинированного масла с улучшенными органолептическими свойствами, снизить себестоимость производства продукта, а также сократить время рафинации растительного масла и повысить его органолептические показатели за счет однородности смеси. 4 з.п. ф-лы, 2 пр.

Группа изобретений относится к биотехнологии. Предложены способ получения лизогликолипида, способ биоконверсии гликолипидов и способ получения пищевого продукта. Способы заключаются в применении липолитического фермента, обладающего гликолипазной активностью, выделенного из Corynebacterium и содержащего по меньшей мере один мотив GDSX, где X представляет собой гидрофобный аминокислотный остаток; или блок GANDY, содержащий аминокислотный мотив GGNDA или GGNDL, или блок HPT. При этом указанный фермент содержит аминокислотную последовательность SEQ ID NO:8 или аминокислотную последовательность, которая по меньшей мере на 70% идентична ей, или кодируется нуклеотидной последовательностью SEQ ID NO:9 или нуклеотидной последовательностью, которая по меньшей мере на 70% идентична ей, и которая кодирует указанный липолитический фермент. При применении в указанных способах липолитические ферменты из Corynebacterium обладают значительной гидролизующей галактолипиды активностью и/или значительной ацилтрансферазной активностью в отношении галактолипида. 6 н. и 15 з.п. ф-лы, 17 ил., 4 табл., 12 пр.

Изобретение относится к области пищевой промышленности, а именно направлено на решение задач упрощения и повышения эффективности процессов микрокапсулирования при производстве дезодорированных и капсулированных жирорастворимых пищевых продуктов, в частности улучшение органолептических показателей рыбных жиров, используемых для обогащения продуктов питания. Улучшение органолептических показателей достигается способом получения микрокапсул рыбного жира, характеризующимся получением эмульсии масло-в-воде путем смешивания в воде рыбного жира и капсулирующего компонента, взятых в соотношении 30-35 и 25-30 мас.%, остальное - вода, гомогенизацией и диспергированием полученной эмульсии в ультразвуковом поле и последующей распылительной сушкой микроэмульсии, при этом ультразвуковое диспергирование ведут с частотой озвучивания 28 кГц и интенсивностью 40 Вт/см2, а распылительную сушку ведут с параллельным потоком горячего воздуха с температурой на входе и выходе соответственно 160-180°C. 3 з.п. ф-лы, 6 пр., 1 табл.

Изобретение относится к масложировой промышленности. Аппарат для очистки растительных масел и жиров, состоящий из вертикального цилиндрического корпуса с коническим днищем, заключенных в паровую рубашку, вертикального вала с прямоугольными вертикальными лопастями, привода, патрубков для подвода и отвода масла, греющего пара и конденсата, а также газовой фазы, прямоугольные вертикальные лопасти выполнены перфорированными, при этом с их тыльной стороны соответственно для каждого отверстия установлены наклонные п-образные направляющие. Изобретение позволяет повысить эффективность перемешивания растительного масла с капельками реагента или частичками отбельного порошка, что снижает продолжительность процессов хемосорбции и адсорбции, и уменьшить энергетические затраты на перемешивание за счет создания преобладающей смешанной радиально-осевой и тангенциальной циркуляции жидкой фазы в аппарате при снижении лобового сопротивления вертикальных прямоугольных лопастей, обусловленного их перфорацией и наличием наклонных п-образных направляющих. 1 ил.

Изобретение относится к масложировой промышленности. Способ комплексной очистки растительных масел предусматривает холодную гидратацию масла с последующей вакуумной мембранной фильтрацией с использованием половолоконных мембран из полимерного материала, имеющего диаметр пор в диапазоне от 0,01 до 5 мкм, волокно мембраны имеет внутренний диаметр в диапазоне от 0,1 до 10 мм, внутреннее пространство полых волокон мембраны соединено с вакуумной системой для создания градиента давлений с разных сторон мембранной полупроницаемой перегородкой и формирования внутри волокон разряжения величиной от 0,1 до 0,9 кгс/см2 с возможностью обеспечения направленного движения очищаемого масла по всей площади мембраны, при этом полимерный материал выбран из группы, включающей поливинилиденфторид, поливинилхлорид, полипропилен, полиэтилен, полиэфирсульфон, полиакриламид, ацетатцеллюлозу или их комбинации, или их сополимеры. Изобретение позволяет создать экономически эффективный и высокотехнологичный способ комплексной очистки растительных масел, который позволяет получить продукт повышенного качества с более низкими, по сравнению с существующими технологиями очистки масел, затратами на очистку растительных масел от фосфатидов, воскоподобных веществ и тугоплавких глицеридов, и других примесей, а также с минимальным количеством образующихся отходов и малоценных продуктов. 8 з.п. ф-лы, 1 ил., 1 табл., 2 пр.

Изобретение относится к способу очистки и обработки натуральных масляных глицеридов, который включает обеспечение (а) исходного сырья, включающего натуральные масляные глицериды, и (b) низкомолекулярных олефинов; перекрестный метатезис натуральных масляных глицеридов с низкомолекулярными олефинами в реакторе реакции метатезиса в присутствии катализатора метатезиса для формирования полученного реакцией метатезиса продукта, включающего олефины и сложные эфиры; отделение олефинов в полученном реакцией метатезиса продукте от сложных эфиров в полученном реакцией метатезиса продукте с получением отделенного потока олефинов; и рециркуляцию отделенного потока олефинов в реактор реакции метатезиса. Натуральное масляное исходное сырье может быть преобразовано в полезные химикаты, например воски, пластические массы, косметические препараты, биотоплива и т.д. любым числом различных реакций обмена. 19 з.п. ф-лы, 2 ил., 13 пр., 1 табл.

Изобретение относится к пищевой промышленности. Способ уменьшения эмульгируемости растительного масла в водных фазах, вклчающий приведение в контакт неочищенного растительного масла или слизи растительного масла с составом, включающим в себя первый ферментный компонент, включающий в себя по меньшей мер, один расщепляющий фосфолипид фермент, а также второй ферментный компонент, включающий в себя по меньшей мере один не расщепляющий фосфолипид фермент, причем вторым ферментным компонентом является альфа-амилаза. Далее осуществляют отделение слизей от растительного масла, причем до приведения в контакт, согласно первому этапу, неочищенное растительное масло контактирует с водой и/или кислотой, но отделения водной фазы до первого этапа не происходит, наоборот, предварительно кондиционированное масло используется непосредственно на первом этапе. Изобретение позволяет за счет комбинации двух видов ферментов снизить содержание фосфолипидов растительного масла, увеличить выход масла, повысить скорость реакции при ферментативном удалении слизи, уменьшить объем слизи и улучшить отделяемость образовавшейся слизистой фазы. 9 з.п. ф-лы, 8 ил., 9 табл., 2 пр.
Наверх