Способы определения химической стойкости порохов



Способы определения химической стойкости порохов

 


Владельцы патента RU 2528125:

Федеральное казённое предприятие "Государственный научно-исследовательский институт химических продуктов" (ФКП "ГосНИИХП") (RU)

Изобретение относится к физико-химическому анализу и может быть использовано в производстве порохов, в частности к оценке их эксплуатационной пригодности. Определение химической стойкости производится по содержанию эффективного стабилизатора, представлющего сумму ДФА и его мононитро-и нитрозопроизводных с учетом их коэффициентов эффективности, в экстрактах пороха ацетонитрилом методом высокоэффективной жидкостной хроматографии путем растворения пороха в ацетонитриле в течение 1 часа при интенсивности перемешивания 600±100 мин-1. При этом хроматографирование ведут в среде ацетонитрил-вода в соотношении 70:30, со скоростью расхода подвижной фазы 0,5 мл/мин при температуре 50°C. Определение гарантийных сроков хранения порохов производят по формуле: K = C и с х C C и с х ,где Cисх - концентрация эффективного стабилизатора в порохе до термостатирования, C - концентрация эффективного стабилизатора в порохе после термостатирования, CэфДФА+0,65·Co-нитроДФА+0,7·CP-НИТРОДФА+0,9·CНИТРОЗОДФА, CДФА - содержание ДФА в порохе после термостатирования, Co-НИТРОДФА - содержание o-нитроДФА в порохе, CP-НИТРОДФА - содержание p-нитроДФА в порохе, CНИТРОЗОДФА - содержание нитрозоДФА в порохе. Показателем удовлетворительной химической стойкости считается значение K≤0,9. Техническим результатом является разработка колическтвенного метода определения в порохе содержания эффективного СХС (сумма содержаний ДФА и его нитрозопроизводных, обладающих стабилизирующим эффектом). 1 ил.

 

Изобретение относится к физико-химическому анализу и может быть использовано в производстве порохов, в частности к оценке их эксплуатационной пригодности.

Известны различные методы определения химической стойкости порохов. Самыми простыми, но наименее точными (субъективными) являются индикаторные методы, основанные на фиксации момента появления оксидов азота, образующихся при термическом разложении порохов при температуре 106,5±0,5°C [1]. В качестве индикатора применяется лакмусовая бумага, которая под воздействием оксидов азота синеет.

Гравиметрический метод основан на измерении потери массы навески пороха (10 г), термостатируемой при температуре 95±5°C в колбе с притертой пробкой и газоотводным капилляром [2]. Недостаток метода - большая масса взрывоопасного материала.

Наибольшее распространение в настоящее время получил метод определения химической стойкости порохов на установке «Вулкан» по давлению газовыделения за 3,5 часа термостатирования при температуре 125±0,5°C (для пироксилиновых порохов) или 110±0,5°C (для сферических порохов) [3]. Химическую стойкость выражают давлением газовыделения за определенное время термостатирования. Давление газовыделения регистрируется автоматически. Одновременно может определяться до 6 образцов пороха. Недостаток метода: необходимость тщательного удаления остаточного содержания воды, растворителя. Компоненты, входящие в состав пороха, не должны обладать летучестью или разлагаться при повышенных температурах. В противном случае фиксируется увеличение давления газов и необоснованно снижается показатель стойкости пороха (недостоверный результат).

Известно, что во все пороха для исключения автокаталитического разложения нитратов целлюлозы вводятся стабилизаторы химической стойкости (СХС), содержание которых определяет срок эксплуатационной пригодности с порохов. В России и в ряде зарубежных стран наиболее распространенным штатным СХС является дифениламин (ДФА).

Наиболее близким техническим решением, принятым за прототип предлагаемого изобретения, является определение содержания ДФА в порохе методом газожидкостной хроматографии [4, 5], заключающемся в разложении пороха 30% раствором едкого натрия и экстрагировании компонента п-ксилолом с последующим хроматографированием на колонке, заполненной хроматоном NAW, на который нанесено 15% (мас.) двадцатипятипроцентного раствора трифторпропила в метилсиликоне (СКТФТ-50Х), при температуре испарителя 200°C.

Недостатком метода является невозможность определения нитро- и нитрозопроизводных ДФА в составе пороха из-за наложения хроматограмм и высокой температуры процесса, что приводит к разложению вышеупомянутых производных.

Основной задачей изобретения является разработка количественного метода определения в порохе содержания эффективного СХС (сумма содержаний ДФА и его нитропроизводных, обладающих стабилизирующим эффектом).

Поставленная задача достигается тем, что способ определения химической стойкости пороха включает разделение компонентов на двух последовательно соединенных колонках (первая колонка - силикагель с привитыми октадецильными группами (C18), зернение сорбента - 5 мкм, размер пор - 100 Å, размеры колонки 4,6×250 мм; вторая колонка - phenyl-hexyl - силикагель с привитыми фенил-гексильными группами, зернение сорбента - 5 мкм, размер пор - 100 Å, размеры колонки 4,6×150 мм). При этом порох растворяют в ацетонитриле в течение 1 часа при интенсивности перемешивания 600±100 мин-1, хроматографирование осуществляют в среде ацетонитрил-вода в соотношении 70:30 со скоростью расхода подвижной фазы 0,5 мл/мин при температуре 50°C.

Подобная комбинация колонок в сочетании с подобранным составом подвижной фазы (ПФ) обеспечивает полное разделение исследуемых компонентов. Увеличение содержания воды в составе ПФ приводит к увеличению времени анализа, а снижение - не обеспечивает полного разделения ДФА и его производных. Увеличение температуры увеличивает селективность колонки и снижает время анализа, но верхний предел температуры колонки ограничен температурой кипения ацетонитрила (81,6°С). Снижение скорости расхода подвижной фазы менее 0,5 мл/мин приводит к увеличению времени анализа, а увеличение скорости расхода повышает давление в системе до критических для колонок значений, в результате чего может произойти сминание сорбента и, как следствие, потеря колонкой селективных свойств.

В таблице приведены времена удержания для ДФА и его нитропроизводных при данных условиях разделения, а на рисунке - хроматограмма искусственной смеси ДФА и его нитро- и нитрозопроизводных.

Поскольку хроматографирование проводится при достаточно низких температурах (температура 50°C), не происходит разложения нитрозо-ДФА. Кроме того, обеспечивается хорошее разделение ДФА и его нитро-, нитрозопроизводных.

Таблица
Времена удержания ДФА и его нитро- и нитрозопроизводных
Компонент Время удержания, мин
ДФА 14,02
о-нитроДФА 16,04
р-нитроДФА 12,06
N-нитрозо ДФА 13,21

Нами проводились опыты с порохами, подвергшимися искусственному старению, чтобы оценить стабилизирующую способность вышеупомянутых производных. С этой целью были изготовлены пороха, содержащие в качестве стабилизатора следующие вещества: ДФА, о-нитро-ДФА, р-нитро-ДФА, нитрозо-ДФА и порох без стабилизатора. Стабилизирующее действие оценивалось по стойкости порохов по повторной лакмусовой пробе и по скорости расходования стабилизаторов при термостатировании пороха. На основании проведенных исследований было доказано, что активными стабилизаторами в порохе являются ДФА, нитрозо-ДФА, р- и о-нитро-ДФА: коэффициент эффективности по отношению к ДФА для нитрозо-ДФА равен 0,9, для р-нитро-ДФА - 0,7, о-нитро-ДФА - 0,65. Коэффициенты эффективности были рассчитаны с учетом степени нитрования 1 грамм-моль соединения.

Определение химической стойкости пороха проводят по величине коэффициента K по формуле

K = C и с х C C и с х ,

где Cисх - концентрация эффективного стабилизатора в порохе до термостатирования,

C - концентрация эффективного стабилизатора в порохе после термостатирования,

CэфДФА+0,65·Co-нитроДФА+0,7·Cp-нитроДФА+0,9·CнитрозоДФА,

Cдфа - содержание ДФА в порохе после термостатирования,

Co-нитроДФА - содержание o-нитроДФА в порохе,

Cp-нитроДФА - содержание p-нитроДФА в порохе,

CнитрозоДФА - содержание нитрозоДФА в порохе.

Термостатирование проводят при температуре 106,5°C в течение 7 часов (что соответствует 10 годам хранения в нормальных условиях) либо в течение 18 часов (соответствует 25 годам хранения в нормальных условиях).

Показателем удовлетворительной химической стойкости можно считать значение K≤0,9. В этом случае гарантируется хранение пороха без автокаталитического разложения в нормальных условиях в течение 10 либо 25 лет.

Определение химической стойкости пороха без установления срока хранения возможно также по определению остаточного содержания эффективного стабилизатора. Порох считается стойким при Сэф≥0,5% (мас.).

Литература

1. Пороха пироксилиновые, баллиститные и лаковые. Методы определения стойкости по лакмусовой пробе. ОСТ В 84-2376-88.

2. Пороха пироксилиновые. Метод испытания на химическую стойкость. ГОСТ 7109-73.

3. ВВ и ТРТ. Метод определения химической стойкости по газовыделению. ОСТ В 84-744-73.

4. Порох сферический. Метод определения дифениламина и централита. ОСТ 84-1604-78.

5. Пороха пироксилиновые. Метод определения массовой доли дифениламина, камфары, этилового спирта и этилового эфира. ОСТ 684-2288-86.

Способ определения химической стойкости порохов, включающий разделение компонентов на двух последовательно соединенных колонках, отличается тем, что производится определение количественного содержания эффективного стабилизатора, представлющего сумму ДФА и его мононитро- и нитрозопроизводных с учетом их коэффициентов эффективности, в экстрактах пороха ацетонитрилом методом высокоэффективной жидкостной хроматографии; определение гарантийных сроков хранения порохов производят по формуле:
,
где Cисх - концентрация эффективного стабилизатора в порохе до термостатирования,
C - концентрация эффективного стабилизатора в порохе после термостатирования,
CэфДФА+0,65·Co-нитроДФА+0,7·Cp-нитроДФА+0,9·CнитрозоДФА,
CДФА - содержание ДФА в порохе после термостатирования,
Co-нитроДФА - содержание o-нитроДФА в порохе,
Cp-нитроДФА - содержание p-нитроДФА в порохе,
CнитрозоДФА - содержание нитрозоДФА в порохе.



 

Похожие патенты:

Изобретение относится к области хроматографии. Описаны варианты способов и устройств для непрерывной или квазинепрерывной очистки многокомпонентной смеси (Fd).

Изобретение относится к устройству интерфейсного инжектора для прямой стыковки жидкостного хроматографа с газовым хроматографом. .

Изобретение относится к аналитической химии, а именно к способам газохроматографического определения закиси азота, и может быть использовано в химической промышленности при аналитическом контроле производства минеральных удобрений.

Изобретение относится к газохроматографическому анализу микроконцентраций органических веществ в воздухе, в частности к качественному и количественному анализу суммы и индивидуальных полярных малолетучих органических соединений в атмосферном воздухе населенных мест или в воздухе рабочей зоны.

Изобретение относится к аналитической химии, в частности к газовой хроматографии, и может быть использовано в лабораториях химических производств, научно-исследовательских лабораториях, при анализе загрязнений окружающей среды, лекарственных препаратов, пестицидов, продуктов переработки нефти и пр.

Изобретение относится к газовой хроматографии и может быть использовано для определения качественного и количественного состава многокомпонентных смесей в различных отраслях народного хозяйства: химической, нефтяной, газовой, нефтеперерабатывающей, металлургии, медицине, биологии, экологии и др.

Изобретение относится к области газохроматографического анализа сложных смесей веществ, в частности, для идентификации неизвестных компонентов по заранее собранному банку данных, индексам удерживания веществ и величинам относительных сигналов селективных и универсального детекторов, и может быть использовано в экологических исследованиях атмосферного воздуха, почвы, воды и лабораторной практике.
Наверх