Способ анализа структурных и оптических изомеров

Изобретение относится к газовой хроматографии, в частности к использованию бинарных сорбентов, обеспечивающих разделение близкокипящих структурных и оптических изомеров органических веществ, например, пара- и мета-ксилолов, малополярных и полярных оптически активных форм камфена, пинена, лимонена, бутандиола-2,3 и ментола, и может быть использовано при анализе различных смесей в химической, фармацевтической, медицинской, пищевой и других отраслях промышленности. Способ анализа структурных и оптических изомеров включает разделение анализируемой смеси на бинарном сорбенте, содержащем супрамолекулярный жидкий кристалл 4-(3-гидроксипропилокси)-4'-формилазобензол с хиральной добавкой гептакис-(2,3,6-три-O-ацетил)-β-циклодекстрин в количестве 10% от массы жидкого кристалла. Техническим результатом является повышение селективности бинарного сорбента при разделении структурных и оптических изомеров, что позволяет анализировать эти изомеры в одном цикле хроматографического анализа. 3 табл.

 

Изобретение относится к газовой хроматографии, в частности к использованию бинарных сорбентов, обеспечивающих разделение близкокипящих структурных и оптических изомеров органических веществ, например, пара- и мета-ксилолов, малополярных и полярных оптически активных форм камфена, пинена, лимонена, бутандиола-2,3 и ментола, и может быть использовано при анализе различных смесей в химической, фармацевтической, медицинской, пищевой и других отраслях промышленности.

Известны способы газохроматографического анализа различных структурных изомеров органических веществ, где в качестве неподвижной фазы использовались нематические и смектические жидкие кристаллы (см. Вигдергауз М.С., Вигалок Р.В., Дмитриева Т.В. Хроматография в системе газ-жидкий кристалл // Успехи химии, 1981. Т. 50. №5. С.943-972).

Разделение энантиомеров можно осуществить только с помощью систем, содержащих хиральный селектор, который призван распознавать пространственную конфигурацию двух идентичных по химическим и физическим свойствам изомеров (см. Алленмарк С. Хроматографическое разделение энантиомеров. М.: Мир, 1991, 268 с).

Особенно сложной проблемой является анализ систем, содержащих наряду с оптическими и другие типы изомеров. Одним из способов получения универсального сорбента с высокой структурной и энантиоселективностью является внесение в жидкокристаллическую систему хиральных добавок. Из большого числа известных хиральных селекторов наиболее широкое применение в хроматографии получили циклодекстрины (см. Шпигун О.А., Ананьева И.А., Буданова Н.Ю., Шаповалова Е.Н. Использование циклодектринов для разделения энантиомеров // Успехи химии. 2003. Т. 72. №12. С.1167-1180).

Наиболее близким к изобретению по совокупности существенных признаков является способ анализа оптических и структурных изомеров на бинарном сорбенте, содержащем смектико-нематический ЖК 4-н-октилокси-4'-цианобифенил с хиральной добавкой гептакис-(2,3,6-три-O-ацетил)-β-циклодекстрин в количестве 10% от массы жидкого кристалла (см. Онучак Л.А., Арутюнов Ю.И., Жосан А.И., Степанова Р.Ф. Способ анализа оптических и структурных изомеров. Патент РФ №2413936 от 10 марта 2011 г.// Бюл. изобр. №7 от 10. 03.2011).

Недостатком известного способа газохроматографического анализа является недостаточно высокая селективность сорбента по отношению к структурным изомерам ксилола и к полярным и малополярным оптически активным изомерам камфена, пинена, лимонена, бутандиола-2,3 и ментола.

Задачей изобретения является повышение селективности бинарного сорбента для разделения структурных и оптических изомеров.

Эта задача решается за счет того, что в способе анализа структурных и оптических изомеров, при котором анализируемую смесь разделяют методом газо-жидкостной хроматографии на бинарном сорбенте, содержащем жидкий кристалл с хиральной добавкой гептакис-(2,3,6-три-O-ацетил)-β-циклодекстрин в количестве 10% от массы жидкого кристалла, причем в качестве жидкого кристалла используют супрамолекулярный жидкий кристалл 4-(3-гидроксипропилокси)-4'-формилазобензол.

При решении поставленной задачи создается технический результат, заключающийся в повышении энантиоселективности и селективности универсального бинарного сорбента, что позволяет разделять структурные и оптические изомеры в одном цикле газохроматографического анализа.

Это достигается за счет следующих особенностей сорбента.

1. Жидкий кристалл 4-(3-гидроксипропилокси)-4'-формилазобензол (ГПОФАБ) является новым супрамолекулярным смектико-нематическим жидким кристаллом, физико-химические свойства которого существенно отличаются от традиционных (классических) нематических (МЭАБ, АОФ) и смектико-нематических (8ОЦБ) жидких кристаллов. Супрамолекулярные жидкие кристаллы образуются в результате супрамолекулярной самосброки за счет специфических взаимодействий активных заместителей, что, в свою очередь, приводит к существенному ограничению их подвижности и повышению параметра ориентационного порядка.

2. Образование цепочечных ансамблей в супрамолекулярном жидком кристалле за счет специфических взаимодействий комплементарных терминальных заместителей позволяет достичь высокой структурной селективности, чем при использовании классических жидких кристаллов.

3. Бинарный сорбент, содержащий супрамолекулярный жидкий кристалл (ГПОФАБ) с хиральной добавкой гептакис-(2,3,6-три-O-ацетил)-β-циклодекстрин (Acetyl-β-ЦД), обладает высокой энантиоселективностыо к разделению оптических изомеров. Это связано с тем, что ассоциированная смектическая структура супрамолекулярного жидкого кристалла способствует взаимодействию молекул сорбата с хиральной полостью макроциклической добавки по принципу комплексообразования типа «гость-хозяин».

Пример конкретного выполнения способа

В предлагаемом способе в качестве неподвижной фазы использовали смесь смектико-нематического супрамолекулярного жидкого кристалла (ГПОФАБ) с хиральной добавкой (Acetyl-β-ЦД) в количестве 10% от массы жидкого кристалла.

Таблица 1
Структурные формулы и физико-химические характеристики объектов исследования
Структурная формула Сокращение М, г/моль Температура плавления/температуры фазовых переходов, °C
ГПОФАБ 284 C91 SA 135 N 141 I
Acetyl-β-ЦД 2034 175-178

В качестве твердого носителя использовали отмытый кислотой хроматон NAW зернением 0,125-0,160 мм. Масса твердого носителя составила 4,4083 г, а масса неподвижной фазы - 0,4004 г. Процент пропитки составил 9,08%. Жидкий кристалл ГПОФАБ и Acetyl-β-ЦД были взяты в соотношении 90,92:9,08 по массе соответственно. Масса жидкого кристалла ГПОФАБ составила 0,3604 г, масса Acetyl-β-ЦД - 0,04 г. Для нанесения компонентов неподвижной фазы на твердый носитель был использован хлороформ. Жидкий кристалл и модифицированный β-циклодекстрин растворяли в разных колбах в небольшом количестве хлороформа, затем полученные растворы смешивали и приливали к твердому носителю так, чтобы он был полностью погружен в раствор. Осторожно вращая колбу, удаляли растворитель при нагревании на песчаной бане, чтобы температура раствора не превышала температуру кипения растворителя. Полученным сорбентом (хроматон NAW с нанесенной на него неподвижной фазой ГПОФАБ - Acetyl-β-ЦД) заполнили стальную колонку длиной 1,17 м и внутренним диаметром 3 мм.

Перед заполнением колонку промывали последовательно дистиллированной водой и ацетоном, затем высушивали при комнатной температуре в течение двух дней и заполняли приготовленным сорбентом. Колонку кондиционировали в потоке газа-носителя - водорода (расход 5 см3/мин) в течение полутора часов при температуре 100°C.

В известном способе в качестве неподвижной фазы использовали смектико-нематический жидкий кристалл 4-н-октилокси-4'-цианобифенил (8ОЦБ) с хиральной добавкой Acetyl-β-ЦД в количестве 10% от массы жидкого кристалла. В таблице 2 приведена структурная формула и физико-химические характеристики жидкого кристалла 8ОЦБ.

Таблица 2
Структурная формула и физико-химические характеристики жидкого кристалла 8ОЦБ
Структурная формула М, г/моль Температуры фазовых переходов, °C
307 C 54 SA 67 N 78 I

В качестве твердого носителя использовали отмытый кислотой хроматон NAW зернением 0,125-0,160 мм. Масса твердого носителя составила 3,4123 г, а масса неподвижной фазы - 0,3412 г. Процент пропитки составил 10%. Жидкий кристалл 8ОЦБ и Acetyl-β-ЦД были взяты в соотношении 90,91:9,09 по массе соответственно. Масса 8ОЦБ составила 0,3102 г, масса Acetyl-β-ЦД - 0,03 г. Жидкий кристалл и модифицированный β-циклодекстрин растворяли в разных колбах в небольшом количестве хлороформа, затем полученные растворы смешивали и приливали к твердому носителю в колбе. После удаления растворителя при нагревании колбы на водяной бане при температуре ниже температуры кипения растворителя бинарный сорбент 8ОЦБ - Acetyl-β-ЦД использовали для заполнения колонки длиной 1,0 м и внутренним диаметром 3 мм.

Перед заполнением колонку промывали последовательно дистиллированной водой и ацетоном, затем высушивали при комнатной температуре в течение двух дней и заполняли приготовленным сорбентом. Колонку кондиционировали при условиях, описанных для предлагаемого способа.

Селективность исследуемых бинарных жидкокристаллических сорбентов с хиральной добавкой Acetyl-β-ЦД оценивали по значениям фактора разделения для структурных и оптических изомеров:

α 1 / 2 = t R 1 t M t R 2 t M ,

где tR1>tR2 - времена удерживания исследуемых изомеров, мин.; tM - мертвое время или время удерживания несорбирующегося вещества (метана), мин.

Эксперименты проводили на хроматографе Цвет-500 с пламенно-ионизационным детектором. Обработку результатов измерения проводили с использованием программно-аппаратного комплекса «Мультихром», ЗАО «Амперсенд», версия 1,5х, г. Москва.

Результаты экспериментов сведены в таблицу 3.

Таблица 3
Сравнительные экспериментальные данные для колонок с бинарными сорбентами
№п/п Фактор разделения изомеров, α1/2 Предлагаемый способ, колонка с ГПОФАБ-Acetyl-β-ЦД Известный способ, колонка с 8ОЦБ-Acetyl-β-ЦД
1 Структурные изомеры: пара- и мета-ксилолы Тс=98°C, 1,18 Тс=72°C, 1,042
2 Оптические изомеры малополярные: Камфен, -/+ Тс=90°C, 1,63 Тс=100°C, 1,152
Пинен, +/- Тс=100°C, 1,10 Тс=100°C, 1,013
Лимонен, +/- Тс=90°C, 1,75 Тс=100°C, 1,015
3 Оптические изомеры полярные: Бутандиол-2,3, -/+ Тс=100°C, 1,13 Тс=100°С, 1,002
Ментол, -/+ Тс=98°C, 1,33 Тс=100°C, 1,002

Как видно из приведенных в таблице 3 данных предлагаемый способ с новым бинарным сорбентом на основе супрамолекулярного жидкого кристалла ГПОФАБ и хиральной макроциклической добавки Acetyl-β-ЦД обладает высокой способностью к разделению структурных изомеров (αn/м увеличилось в 1,13 раза по сравнению с известным способом) и уникальной энантиоселективностью как к малополярным оптическим изомерам (камфен, пинен, лимонен), так и к полярным оптическим изомерам (ментол, бутандиол-2,3). Порядок удерживания правовращающих и левовращающих изомеров на бинарном сорбенте и, следовательно, их разделение определяется механизмом взаимодействия энантиомеров либо со структурой жидкого кристалла, либо по принципу комплексообразования типа «гость-хозяин» с Acetyl-β-ЦД. Так, фактор разделения для изомеров камфена увеличился в 1,41 раза, а для изомеров пинена - в 1,72 раза по сравнению с известным способом.

Использование предлагаемого способа анализа структурных и оптических изомеров методом газожидкостной хроматографии с бинарным сорбентом, содержащим супрамолекулярный жидкий кристалл ГПОФАБ с хиральной добавкой Acetyl-β-ЦД в количестве 10% от массы жидкого кристалла позволяет значительно повысить селективность при разделении как структурных изомеров пара- и мета-ксилолов, так и малополярных и полярных оптически активных изомеров камфена, пинена, лимонена, бутандиола-2,3 и ментола.

Способ анализа структурных и оптических изомеров путем разделения анализируемой смеси методом газожидкостной хроматографии на бинарном сорбенте, содержащем жидкий кристалл с хиральной добавкой гептакис-(2,3,6-три-O-ацетил)-β-циклодекстрин в количестве 10% от массы жидкого кристалла, отличающийся тем, что в качестве жидкого кристалла используют супрамолекулярный жидкий кристалл 4-(3-гидроксипропилокси)-4'-формилазобензол.



 

Похожие патенты:

Изобретение относится к аналитической химии и может быть использовано для определения химических соединений в различных областях химии, фармации, медицины, контроле окружающей среды и технологических процессах в нефтегазовой, химической и пищевой промышленности и так далее.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных и промышленных газовых хроматографах. Пламенно-ионизационный детектор содержит выполненный в виде стакана с крышкой корпус из нержавеющей стали с расположенными в нем каналами для подачи воздуха, водорода, газообразной пробы и размещенный в крышке канал для выхода продуктов горения и элемент поджига пламени.
Изобретение относится к медицинским токсикологическим исследованиям, в частности к санитарной токсикологии, и может быть использовано для количественного определения N-нитрозаминов в биологических жидкостях, в частности в моче.

Изобретение относится к аналитической химии, а именно к способам исследования свойств каменноугольных продуктов по результатам хроматографического анализа. Способ определения качества каменноугольных продуктов включает нанесение жидкой пробы с растворенным в ней исследуемым каменноугольным веществом на линию старта на хроматографическую пластину, содержащую слой сорбента.

Изобретение относится к области аналитической химии и предназначено для использования при определении фракционного состава каменноугольных смол. Способ определения фракционного состава каменноугольной смолы включает нанесение на хроматографическую пластину со слоем сорбента капли пробы, представляющей собой раствор смолы в растворителе.

Изобретение относится к аналитическому приборостроению и может использоваться в газовых хроматографах для ввода проб в капиллярную колонку. Устройство состоит из стеклянной трубки, помещенной в выполненный в виде втулки металлический корпус, в нижней части которого расположен штуцер для подключения колонки и канал для сброса части пробы, соединенный через трехходовой кран и фильтр-ловушку с регулятором давления «до себя», датчик давления которого подключен к каналу для сброса части пробы, а вход его пропорционального клапана подключен к выходу фильтра-ловушки.

Изобретение относится к области аналитической химии, а именно к определению летучих фитонцидов в воздухе хвойного леса методом газожидкостной хроматографии. Способ заключается в том, что пропускают воздух хвойного леса со скоростью 40-100 мл/мин в течение 60-180 мин через склянку Дрекселя диаметром 30 мм с 50 мл 96% этанола, для получения столба поглощающей жидкости не менее 40 мм.

Изобретение относится к биохимическим методам исследования с использованием измерения по селективным ионам, характеризующим маркеры микроорганизмов, для молекулярного микробиологического анализа.

Изобретение относится к нефтегазодобыче и может быть использовано на стадиях строительства, эксплуатации, консервации и ликвидации скважин многопластовых нефтегазоконденсатных месторождений для определения природы углеводородных газов, поступивших в межколонные пространства скважин, или газов бурового раствора.

Изобретение относится к способу исследования, обеспечивающего оценку части природного газа, добываемого из плотных газовых коллекторов, с помощью анализа изотопного состава извлеченного газа и корреляции этого изотопного состава с коэффициентом газоотдачи.

Изобретение относится к области электронной техники и приборостроения, в частности к устройствам для детектирования и анализа органических соединений в составе воздуха атмосферного давления с использованием явления селективной поверхностной ионизации органических молекул на нагретой поверхности термоэмиттера ионов. Термоэмиттер ионов органических соединений выполняют из монокристалла оксидной бронзы, имеющего химическую формулу MexV2O5 , где Me - литий, натрий или калий, V - ванадий, О - кислород, при этом рабочая поверхность термоэмиттера совпадает с кристаллографической плоскостью [020] монокристалла оксидной бронзы, на рабочей поверхности термоэмиттера имеется пленка тугоплавкого металла. При этом тугоплавкий металл выбран из группы молибден, вольфрам, рений, рутений, родий. Техническим результатом является повышение эффективности ионизации органических нитросоединений на поверхности термоэмиттера и повышение долговечности термоэмиттера на основе оксидной бронзы щелочного металла при работе термоэмиттера в условиях воздуха атмосферного давления. 3 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к аналитическому приборостроению и может найти применение в лабораторных газовых хроматографах. Термостат состоит из снабженного дверцей, входным и выходным каналами с управляемыми заслонками теплоизолированного корпуса, внутренний объем которого разделен установленным с зазором по периметру кожухом на две камеры - рабочую и смесительную с крыльчаткой осевого вентилятора и выполненного в виде двух подключенных через коммутатор к терморегулятору кольцеобразных спиралей нагревателя, закрепленных через изоляторы на плоскости кожуха, перпендикулярной оси крыльчатки вентилятора, напротив напорной части лопастей крыльчатки и заключенных в ограниченный с трех сторон объем, сформированный кожухом и двумя закрепленными на нем кольцеобразными отражателями воздуха, обращенными в сторону крыльчатки. На кожухе закреплен датчик температуры терморегулятора, расположенный в выполненном в кожухе соосно с осью крыльчатки отверстии, по размеру соответствующем центральному отражателю потока воздуха. На оси крыльчатки вентилятора в зазоре между двигателем и задней стенкой термостата установлена центробежная крыльчатка, а двигатель помещен в кожух в виде стакана, обращенного к термостату дном с отверстием, соответствующим крыльчатке. Заслонки каналов охлаждения закреплены на задней стенке термостата через теплоизолирующие прокладки и выполнены в виде функционально законченных узлов с элементами привода и уплотнения. Входной канал термостата соединен каналом с нижней частью внутреннего объема морозильной камеры, верхняя часть которого дополнительным каналом связана с рабочей камерой термостата, при этом внутренний объем морозильной камеры заполнен материалом с большой теплоемкостью, имеющим ребристую наружную поверхность. Техническим результатом является снижение шума и дрейфа выходного сигнала хроматографа за счет повышения относительной точности поддержания температуры и равномерности распределения теплового поля по длине колонки, повышение линейности и снижение относительных колебаний температуры при программировании температуры во всем диапазоне температур и скоростей подъема температуры, снижение теплопотерь и скорости охлаждения термостата, расширение диапазона поддерживаемых температур до отрицательных без применения криожидкости (жидкого азота, CO2). 3 з.п. ф-лы, 2 ил.

Изобретение относится к области аналитической химии и непосредственно касается хроматографического метода определения содержания органических примесей в макроциклических полиэфирах, а именно в бензокраун-эфирах, которые применяются в аналитической химии, биохимии, медицине, фармации. В качестве хроматографического метода для определения органических примесей в бензокраун-эфирах используется метод газожидкостной хроматографии, включающий стадию смешения раствора анализируемого бензокраун-эфира с веществом-стандартом (незамещенными краун-эфирами). Способ включает отбор анализируемой пробы, ее испарение, пропускание в токе инертного газа-носителя через капиллярную хроматографическую колонку. Затем осуществляют регистрацию сигналов на пламенно-ионизационном детекторе. При этом анализируемый бензокраун-эфир используют в виде (1-4)%-ного раствора в полярном растворителе, а вещество-стандарт в виде 1%-ного раствора в том же растворителе. После смешения полученную смесь встряхивают при температуре (30-70)°C, отобранную из нее пробу испаряют и пропускают в потоке инертного газа со скоростью (2,6-3,2) см3/мин при делении потока (1:10)-(1:25) через кварцевую капиллярную хроматографическую колонку с внутренним диаметром (0,25-0,5) мм и длиной (15-30), имеющую пленочную неподвижную жидкую фазу, содержащую 5% фенилполисилоксана и 95% диметилполисилоксана. После встряхивания анализируемых веществ возможно проведение центрифугирования со скоростью 5000-6000 оборотов в минуту. При этом количественное определение органических примесей в дибензо-18-краун-6 проводят при следующих температурных условиях: начальной температуре колонки 150°C, конечной температуре колонки 300°C, скорости повышения температуры 20°C/мин, температуре испарителя 350°C, температуре детектора 370°C; а в дибензо-21-краун-7 при начальной температуре колонки 180°C, конечной температуре колонки 340°C, скорости повышения температуры 10°C/мин, температуре испарителя 390°C, температуре детектора 400°C. Техническим результатом является повышение предела обнаружения органических примесей (до содержания их в бензокраун-эфирах на уровне 10-3% масс.) и снижении продолжительности анализа. 5 з.п. ф-лы.

Изобретение относится к области масс-спектрометрии, а именно к источникам ионов с мягким методом ионизации с использованием электрораспыления анализируемых растворов в неоднородном постоянном электрическом поле при атмосферном давлении, и найдет широкое применение в масс-спектрометрии, спектрометрии подвижности ионов при решении задач органической и биоорганической химии, иммунологии, медицины, диагностике заболеваний, биохимических исследований, фармацевтике, проведении анализов в протеомике, метаболомике и криминалистике. Особенностями способа являются вертикальная ориентация мениска жидкости в пространстве, из вершины которого происходит эмиссия заряженных микрокапель в неоднородном постоянном электрическом поле и организации встречного потока фонового газа при нормальных условиях. При этом встречный поток фонового газа при нормальных условиях устраняет излишки нераспыленного раствора (жидкости), образующиеся на внешней стороне капилляра из области распыления, не влияя на стабильность распыления и монодисперсность заряженных микрокапель. Техническим результатом является возможность получать поток заряженных микрокапель электрораспылением для больших объемных скоростей растворов анализируемых веществ без образования крупных капель во все время проведения распыления при нормальных условиях, не прибегая к нагреву газа носителя, что существенно упрощает процесс получения стабильного и монодисперсного потока заряженных микрокапель в широком диапазоне объемных скоростей потоков распыляемой жидкости и соответственно стабильный ионный ток анализируемых веществ, поступающих в анализатор. 2 ил.

Изобретение относится к области аналитической химии и может быть использовано в химической, косметической, фармацевтической и других отраслях промышленности при анализе парабенов методом высокоэффективной жидкостной хроматографии (ВЭЖХ). Изобретение позволяет проводить идентификацию и количественный анализ парабенов при использовании спектрофотометрического или (и) диодно-матричного детекторов. Способ включает процедуры подготовки образцов и условия хроматографического разделения и детектирования. Исходный образец пищевого продукта, косметического изделия, фармацевтического препарата или БАДа предварительно подготавливают согласно одной из процедур пробоподготовки. Затем подготовленный образец подвергают разделению на хроматографической колонке. На выходе каждую фракцию детектируют, измеряя величину абсорбции излученного света согласно закону Бугера-Ламберта-Бера. Идентификацию парабенов проводят по временам удерживания. В качестве дополнительного критерия идентификации возможно использование сигнальных отношений высот или площадей пиков, полученных на разных длинах волн или (и) электронных спектров интересуемых соединений. Количественный расчет концентраций парабенов проводится методом внешнего стандарта, учитывая линейный диапазон зависимости выходного сигнала от концентрации или массы парабенов в стандартных растворах. Техническим результатом является отсутствие необходимости в получении производных, сравнительно быстрая пробоподготовка и хроматографический анализ, относительно низкая себестоимость анализа, идентичность условий хроматографического анализа для всех типов исследуемой продукции, что уменьшает время подготовки системы между анализами, возможность применения дополнительных критериев для идентификации парабенов (сигнальные отношения или (и) электронные спектры). 2 ил.

Изобретение относится к газохроматографическим методам анализа и может быть использовано в нефтяной и других отраслях промышленности для скрытой маркировки нефти и нефтепродуктов при проведении различного типа экспертиз в торговых и промышленных предприятиях. Сущность изобретения заключается в том, что летучие соединения (маркеры) экстрагируют из нефти путем барботажного контакта газового потока с раствором летучих маркеров в малолетучем растворителе (нефть или нефтепродукты) с последующим парофазным анализом методом газовой хроматографии. Причем в качестве летучих маркеров используют алифатические одноатомные спирты и их смеси, а газовый поток, насыщенные летучими соединениями (спиртовые маркеры и углеводороды нефти), барботируют через неполярный растворитель для удаления летучих углеводородов нефти. Затем поток газа, насыщенный летучими спиртовыми маркерами, барботируют через небольшой объем дистиллированной воды для получения концентрированного водного раствора спиртового маркера, который дозируют в газовый хроматограф для анализа. Устройство для осуществления способа содержит последовательно соединенные блок подготовки газа и три последовательно соединенные барботера, первый из которых заполнен пробой нефти с летучим спиртовым маркером объемом V1, второй - неполярным растворителем объемом V2=Vi, а третий барботер заполнен дистиллированной водой объемом V3=0,01V1. Техническим результатом изобретения является повышение чувствительности газохроматографического определения летучих спиртовых маркеров транспортируемых нефти и нефтепродуктов. 2 н.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к области испытаний и может использоваться для определения сорбционной емкости до заданной степени насыщенных водой сорбентов нефтью и нефтепродуктами. В различной степени водонасыщенный сорбент вводится в нефть или нефтепродукт непосредственно с водной среды. Расчет сорбционной емкости М рассчитывается по формуле М=p(C1-С2)/m, где р - плотность нефтепродукта, (C1) - объем нефти или нефтепродукта до введения сорбента, (C2) - объем нефти или нефтепродукта после удаления сорбента, m - масса сухого сорбента. Техническим результатом является разработка простого и эффективного способа испытаний для определения сорбционной нефтеемкости сорбентов от степени их водонасыщения. 1 ил.

Использование: области измерительной техники для исследования параметров многокомпонентных газовых сред. Способ определения воздействия факторов газовой среды на работоспособность электромеханических приборов включает формирование газовой среды с заданной совокупностью характеристик, таких как состав, концентрация, температура, давление и влажность, определение указанных характеристик. При этом анализируемые электромеханические приборы помещают в герметизированный контейнер, который оснащают датчиками давления, температуры и влажности формируемой газовой среды и помещают в климатическую камеру. Затем контейнер с электромеханическими приборами подключают к системе хроматографов и формируют в нем газовую среду с заданной совокупностью характеристик, подавая в предварительно осушенный с использованием силикагеля и отвакуумированный контейнер воздействующую на электромеханические приборы газовую смесь заданного состава, концентрации, давления и влажности из предварительно подготовленного источника газовой смеси, пропуская газовую смесь через генератор влажного газа. Далее контейнер с анализируемыми электромеханическими приборами и сформированной газовой средой нагревают в климатической камере до заданной температуры в течение заданного периода времени. Затем определение концентрации заданных газовых компонентов, температуры, давления и влажности воздействующей на электромеханические приборы газовой среды ведут динамически в режиме он-лайн с заданным промежутком времени с использованием одновременно всех подключенных к контейнеру хроматографов, а также датчиков температуры и влажности, давления, находящихся в контейнере с электромеханическими приборами, определение работоспособности электромеханических приборов после воздействия сформированной газовой среды осуществляют с использованием комплекта оборудования для проверки работоспособности прибора. Устройство для реализации способа включает хроматографы для определения концентраций газовой смеси, датчики для измерения давления, температуры и влажности, вакуумный насос. При этом гермегазированный контейнер с приборами и с установленными в нем датчиками температуры, давления и влажности размещен в климатической камере, герметизированный контейнер подключен посредством системы пневмопереходов к системе хроматографов, каждый из которых определяет концентрацию компонента из состава анализируемой газовой смеси. При этом на входной пневмомагистрали для подачи анализируемой пробы газовой смеси в систему хроматографов установлены краны-дозаторы автоматической и ручной подачи пробы анализируемой газовой смеси, система пневмомагистралей сообщена с побудителем расхода, поддерживающего заданный расход в пневмомагистрали. Кроме того, герметизированный контейнер соединен с системой хроматографов посредством выходной пневмомагистрали для возврата газовой среды в герметизированный контейнер. Техническим результатом является обеспечение возможности оперативного и точного определения одновременно всей указанной совокупности характеристик воздействующей газовой среды, по которым судят о сохранении работоспособности после всех произведенных воздействий. 2 н.п. ф-лы, 1 ил., 2 пр.
Изобретение относится к области прогнозирования процессов старения синтетических полимерных материалов (СПМ) в зависимости от продолжительности их эксплуатации или хранения. Анализ летучих органических соединений (ЛОС), мигрирующих из СПМ, проводят путем активного отбора проб на сорбент, с последующей термической десорбцией и газохроматографическим анализом. Прогнозирование процессов старения материалов и оценку токсичности газовыделения проводят по динамике качественного и количественного состава компонентов газовыделения в исходном состоянии СПМ и в процессе искусственного климатического термовлажностного старения. Анализ динамики суммарного газовыделения (ΣT) из каждого материала проводят для всех веществ, мигрирующих из исследованных СПМ. Оценку изменения токсичности и прогнозирование процессов старения материалов проводят по разработанным показателям суммарного газовыделения (ΣT) и по гигиеническому показателю Р=(ΣTисх/ΣTn)/V, где Tисх и Tn - показатели токсичности газовыделения каждого вещества в исходном и состаренном состояниях соответственно, а ΣТисх и ΣTn - суммарный показатель токсичности газовыделения всех входящих в состав образца СПМ в исходном и состаренном состояниях, V - длительность старения (год, месяц). Изобретение позволяет достигать высокой точности метода детектирования количественного и качественного состава ЛОС в газовыделении в процессе старения материалов и воспроизводимости результатов анализа. 3 табл.

Изобретение может быть использовано для анализа многокомпонентных газовых смесей в замкнутых объемах. Способ определения параметров газовой среды в герметизированном контейнере с электромеханическими приборами включает отбор пробы анализируемой газовой среды из герметизированного контейнера и измерение совокупности характеристик компонентов газовой среды, выделяющихся из объектов в герметизированный контейнер, таких как концентрация, температура и давление. При этом электромеханические приборы, совместно с герметизированным контейнером, в котором они находятся, помещают в климатическую камеру. Затем герметизированный контейнер с электромеханическими приборами подключают к системе из заданного числа хроматографов, селективно определяющих концентрацию одновременно всех компонентов анализируемой газовой среды в герметизированном контейнере, который оснащен датчиками температуры и давления. Далее отобранную пробу анализируемой газовой смеси направляют по входной пневмомагистрали, соединяющей герметизированный контейнер с системой хроматографов. Определение параметров газовой среды в герметизированном контейнере с электромеханическими приборами ведут путем моделирования условий хранения объектов, задавая ступенчатый режим положительных температур на трех уровнях, поддерживаемых в климатической камере, соответствующих условиям хранения объектов и в ускоренном режиме относительно реального времени хранения объектов и при заданном давлении. Затем регистрируют показания хроматографов, датчиков температуры и датчиков давления в режиме он-лайн, через заданные промежутки времени, с учетом полученных данных строят графики зависимостей концентрации выделяемых компонентов газовой среды от температуры и времени при заданных значениях давления газовой среды в герметизированном контейнере, а прогнозирование изменения концентрации выделяемых объектами компонентов газовой среды в диапазоне реальных условий хранения их в герметизированном контейнере осуществляют исходя из характера полученных графических зависимостей до получения стабильных (равновесных) значений концентраций на каждом температурном уровне, которые сравниваются с имеющейся базой данных номинальных значений концентраций компонентов, часть отобранной пробы, которая не участвует в процессе анализа, возвращают по выходной пневмомагистрали в герметизированный контейнер. Техническим результатом является возможность оперативного, достоверного, точного определения одновременно всей совокупности таких параметров анализируемой газовой смеси, как концентрация, температура и давление и возможность прогнозирования изменений параметров во времени. 2 н.п. ф-лы, 2 пр., 4 ил.
Наверх