Режущая пластина

Изобретение относится к области машиностроения, в частности к металлообработке. Режущая пластина содержит основу из твердого сплава и нанесенный на нее износостойкий слой из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм, при их следующем соотношении, мас.%: наноструктурный карбид вольфрама 90, наноструктурный карбид ниобия остальное. Обеспечивается повышение износостойкости режущих пластин, особенно при тяжелых режимах резания. 1 ил., 1 табл.

 

Изобретение относится к области машиностроения, в частности к металлообработке.

Известны различные марки твердого сплава для изготовления режущих пластин (см. Третьяков В.И. Основы металловедения и технологии производства спеченных твердых сплавов. - М.: Металлургия, 1976, - 528 с.

Технология изготовления пластин состоит в следующем. Смесь порошков из карбидов вольфрама, либо карбидов вольфрама и карбидов титана размером 0,5…3 мкм и кобальта по массе от 6% до 15% подвергают прессованию в виде режущих пластин различной формы (треугольной, пятигранной, шестигранной, ромбической), а затем спекают в печи в среде водорода, либо вакуумной печи при температуре 1350…1480°С. После спекания пластины подвергают алмазной обработке.

Недостатком такого вида режущих пластин является их низкая износостойкость при высоких скоростях резания. При этом в процессе резания кобальт быстро изнашивается, зерна карбидов обнажаются и вырываются силами резания с обрабатываемым материалом, что приводит к быстрому износу режущих кромок.

Известна слоистая режущая пластина (Лавриненко В.И., Ващенко А.И., Лежук И.В., Златко А.А, Беляев А.В. Исследование структуры и обрабатываемости слоистой режущей керамики//Сверхтвердые материалы, 1987, №4, с. 57-61), где основа из твердого спеченного сплава, а верхний слой 2…3 мкм выполнен из смеси карбидов титана и окиси алюминия, нижняя часть 4…6 мкм из твердого сплава, содержащего карбид титана и связующей фазы никель-молибден от 10 до 20% по массе. Слоистые пластины четырех, либо трехгранной формы прессуют одновременно и подвергают спеканию в вакуумной печи при температуре 1350…1480°С. После спекания пластина подвергается алмазной обработке.

Данная режущая пластина характеризуется высокой износостойкостью при обработке закаленных сталей, либо серых и ковких чугунов при высоких скоростях резания. Однако она показывает низкую работоспособность, т.е. износостойкость при прерывистом резании закаленных сталей и чугунов, а также при точении ряда других материалов из-за хрупкого выкрашивания, что вызывает быстрый износ режущих кромок.

В качестве прототипа взят патент (ДД259003 С23С 16/32 от 10.08.88 реферат), где для повышения износостойкости на твердосплавную пластину наносят слой из карбидов вольфрама. В газовой атмосфере аргона и водорода при температуре 1170-1450 К напылением создают слой гексагонального карбида вольфрама WC. В реферате не указывается крупность частиц карбида вольфрама. Однако известно, что для гексагонального карбида вольфрама характерен размер зерен 1-2 мкм. Такая режущая пластина обеспечивает повышение работоспособности при обработке ряда жаропрочных материалов. Обработка вязких нержавеющих сталей и сплавов не обеспечивает необходимой износостойкости, особенно при точении титановых сплавов. Это связано с тем, что имеет место высокая структурная неоднородность, размер зерен колеблется от 0,5 до 2 мкм (Эксперименты по прототипу проведены авторами настоящей заявки - таблица).

Этот недостаток устраняется предлагаемым решением. Решаемая задача - совершенствование режущих пластин для обработки резанием широкого круга обрабатываемых материалов.

Технический результат - повышение износостойкости спеченных твердосплавных режущих пластин особенно при тяжелых режимах резания. Этот технический результат достигается тем, что в режущей пластине, содержащей основу из твердого спеченного сплава и нанесенный на нее износостойкий слой, последний выполнен из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм при их следующем соотношении в % по массе: наноструктурный карбид вольфрама - 90, наноструктурный карбид ниобия - остальное.

Эти материалы имеют хорошее сочетание микротвердости и пластичности, что позволяет проводить обработку различных материалов при высоких скоростях резания (закаленных сталей, титановых сплавов и т.д.). Предлагаемая пластина приведена на чертеже. Она содержит основу 1 из спеченного твердого сплава (2 мм), включающего карбид вольфрама или карбид титана и кобальт и нанесенный на нее износостойкий слой 2 из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм. Пластины изготавливают следующим образом. Изготавливают прессованием основу из порошков (0,5-3 мкм) карбида вольфрама либо в смеси с карбидами титана и кобальтом (6-12%). Сверху насыпают слой из смеси наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм, преимущественно в количествах % масс.90 и 10 соответственно. Осуществляют подпрессовку в той же форме. Получают режущие пластины различной формы: треугольной, пятигранной, шестигранной, ромбической. Спекают в печи в среде водорода либо в вакуумной печи при температуре 1350 - 1480°С. Подвергают алмазной обработке.

Осуществляли прерывистое точение титанового слава ВТ 14 при скоростях резания t=80…120 м/мин, глубине резания - t=2 мм и подаче - S=0,21 мм/об, с использованием предлагаемой режущей пластины. Одновременно проводили резание и слоистой пластиной, выполненной по прототипу, т.е. слоистой пластины, выполненной в верхнем слое из карбидов вольфрама толщиной h=2 мм с размером зерен от 0,5 до 3 мкм и нижнего слоя из твердого сплава ВК8 (92% WC и 8% Со). Результаты стойкостных испытаний в минутах приведены в таблице. При этом пластины доводили до износа по задней поверхности hз=0,4 мм режущей кромки четырехгранной пластины размером 14,7×14,7 мм и толщиной 4,7 мкм.

Указанный в таблице процентный состав (90% WC и 10% Nb) является оптимальным. Например, при скорости резания V=80 м/мин и соотношении 85% WC и 15% Nb, или 95% WC и 5% Nb, время работы (стойкость инструмента) составило 15 и 13 минут соответственно. По результатам испытаний режущих пластин, приведенных в таблице, видно, что предлагаемая режущая пластина, содержащая в верхнем слое наноразмерные частицы карбидов вольфрама и карбидов ниобия, позволяет повысить износостойкость в 3 раза по сравнению с известной режущей пластиной (прототипом). Аналогичные результаты получены и при точении титанового сплава ВТ20. Преимущество предлагаемой режущей пластины, состоящей из верхнего слоя из карбидов вольфрама и ниобия с размером зерен 20…50 нанометров, обусловлено хорошим сочетанием его микротвердости и пластичности. Поэтому ее режущие кромки лучше сопротивляются как хрупкому выкрашиванию, так и износу. Режущие кромки твердосплавной спеченной пластины с износостойким слоем из карбидов вольфрама с размером зерен 0,5…2 мкм имеют более низкую сопротивляемость хрупкому выкрашиванию, а следовательно, и износу.

Таблица
Вид пластин Стойкость в мин Стойкость в мин Стойкость в мин
V=80 м/мин V=100 м/мин V=120 м/мин
Предлагаемая режущая пластина 21 12 6
Верхний слой - толщиной 2 мкм из карбидов вольфрама 90% и карбидов ниобия 10% с размером зерен 20…50 нанометров, нижний слой - 2,7 мкм из WC - 92% и Со - 8%
Прототип 7 4 2
Верхний слой - 2 мкм из карбидов вольфрама с размером зерен 0,5…2 мкм и нижний слой - 2,7 мкм из WC - 92% и Со - 8%

Режущая пластина, содержащая основу из твердого спеченного сплава и нанесенный на нее износостойкий слой, отличающаяся тем, что износостойкий слой выполнен из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм при их следующем соотношении, мас. %:

наноструктурный карбид вольфрама 90
наноструктурный карбид ниобия остальное



 

Похожие патенты:
Изобретение относится к области металлообработки, в частности к созданию покрытий для режущих инструментов. В двухслойном износостойком покрытии на рабочей части режущего инструмента верхний слой выполнен из твердого аморфного алмазоподобного углерода толщиной 0,3-0,5 мкм и твердостью 70-100 ГПа, а нижний слой, расположенный на поверхности рабочей части инструмента, выполнен из карбида титана с содержанием углерода 30-45 ат.% толщиной 1-1,5 мкм и твердостью 25-40 ГПа.

Изобретение относится к способу обеспечения защитного, пассивирующего или герметизирующего слоя на органическом электронном устройстве или его компоненте путем осаждения слабо ускоренных частиц методом распыления пучка ионов или плазмы либо методом прямого осаждения пучка ионов или плазмы.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д.

Изобретение относится к скользящему элементу двигателя внутреннего сгорания, в частности поршневому кольцу. Указанный скользящий элемент выполнен с покрытием, которое представляет собой алмазоподобное покрытие типа ta-C с изменяющимися по его толщине внутренними напряжениями и тем самым с, по меньшей мере, одним градиентом внутреннего напряжения.

Изобретение относится к керамическому термобарьерному покрытию, которое имеет наноструктурный и микроструктурный слой. Керамическое термобарьерное покрытие на подложке из жаропрочного сплава на основе никеля или кобальта, или железа содержит необязательно металлическое связующее покрытие (7) и два наслоенных керамических слоя (16) с внутренним керамическим (10) и внешним керамическим (13) слоем.

Изобретение относится к элементу скольжения двигателя внутреннего сгорания, в частности поршневому кольцу. Элемент скольжения содержит DLC-покрытие типа ta-C, имеющее, по меньшей мере, один градиент внутреннего напряжения, причем в средней области (II) покрытие в направлении снаружи вовнутрь имеет отрицательный градиент внутреннего напряжения, который, предпочтительно, меньше, чем в области (III), расположенной внутри.

Изобретение относится к покрывающему элементу для защиты от эрозии при контакте с расплавленным алюминием субстрата из материала на основе железа, титанового материала или сверхтвердого материала.

Изобретение относится к наноэлектронике и наноэлектромеханике и может быть использовано в различных областях современной наноиндустрии, микроэлектронике, альтернативной энергетике и т.д.
Изобретение относится к области машиностроения, в частности к способам нанесения защитных покрытий. Может использоваться в энергетическом машиностроении для защиты деталей, подверженных механическим нагрузкам, высоким температурам и воздействию агрессивной рабочей среды.

Изобретение относится к технологии нанесения наноструктурных покрытий и может быть использовано в наноэлектронике и наноэлектромеханике. Покрытие получают из композита металл-керамика состава (Co86Nb12Ta2)x(SiOn)100-x.

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники.

Изобретение относится к газовому анализу и может быть использовано для контроля токсичных и взрывоопасных газов и в тех областях науки и техники, где необходим анализ газовых сред.

Изобретение относится к области химии, биологии и молекулярной медицины, а именно к способу получения наноразмерной системы доставки нуклеозидтрифосфатов. Способ включает модификацию носителя, в качестве которого используют аминосодержащие наночастицы диоксида кремния размером до 24 нм, путем обработки последних N-гидроксисукцинимидным эфиром алифатической азидокислоты, далее получение модифицированного нуклеозидтрифосфата (pppN) путем обработки последнего смесью трифенилфосфин/дитиодипиридин с последующим инкубированием образующегося активного производного pppN с 3-пропинилоксипропиламином и последующую иммобилизацию модифицированного pppN на полученных азидомодифицированных наночастицах в течение 2-4 ч.

Устройство для чистки ствола огнестрельного оружия содержит плоскую ветошь в виде равнобедренного треугольника с центром и тремя вершинами, вырезы, расположенные вдоль каждого края треугольной ветоши.

Изобретение относится к способам упрочнения поверхности металлических материалов с помощью формирования наноразмерных покрытий путем воздействия лазерного излучения и может быть применено в различных отраслях промышленности для получения износостойких и антифрикционных покрытий.

Изобретение может быть использовано в химической промышленности. Наноразмерные оксиды металлов получают химической реакцией окисления металлоорганического соединения при инициировании процессов энергетическим воздействием, в качестве которого используют импульсный электронный пучок энергией электронов 100÷500 кэВ, длительностью 10÷100 нс и с полным током пучка 1-10 кА.

Изобретение относится к области биотехнологии и нанотехнологии. Способ предусматривает трансформацию клеток архей рекомбинантной плазмидой, выращивание клеток, выделение жгутиков и модификацию поверхности жгутиков.
Изобретение относится к области нанотехнологий, в частности к производству высокопрочного и высокотермостойкого керамического композиционного материала на основе алюмокислородной керамики, структурированной в объеме наноструктурами (нанонитями) TiN, и может быть использовано в машиностроении, в изделиях авиационно-космической техники, двигателестроении, металлообрабатывающей промышленности, в наиболее важных и подверженных экстремальным термоциклическим нагрузкам узлах и деталях.

Изобретение может быть использовано в области химии, медицины и нанотехнологии. Способ получения наночастиц серебра включает приготовление водных растворов нитрата серебра концентрации 0,001÷0,02 М/л и L-цистеина концентрации 0,00125÷0,04 М/л.

Сканирующий зондовый микроскоп включает в себя первый и второй зонды для сканирования образца при поддержании расстояния до поверхности образца, кварцевые резонаторы, удерживающие каждый из первого и второго зондов, и модулирующий генератор для обеспечения вибрации определенной частоты первого зонда, которая отличается от резонансной частоты каждого кварцевого резонатора.
Изобретение относится к области металлообработки, в частности к созданию покрытий для режущих инструментов. В двухслойном износостойком покрытии на рабочей части режущего инструмента верхний слой выполнен из твердого аморфного алмазоподобного углерода толщиной 0,3-0,5 мкм и твердостью 70-100 ГПа, а нижний слой, расположенный на поверхности рабочей части инструмента, выполнен из карбида титана с содержанием углерода 30-45 ат.% толщиной 1-1,5 мкм и твердостью 25-40 ГПа.
Наверх