Способ распределенной балансировки трафика в беспроводной сенсорной сети



Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети
Способ распределенной балансировки трафика в беспроводной сенсорной сети

 


Владельцы патента RU 2528415:

Общество с ограниченной ответственностью "Лаборатория Интеллектуальных Технологий ЛИНТЕХ" (RU)

Изобретение относится к беспроводным сенсорным сетям для автоматизированных систем мониторинга. Техническим результатом является обеспечение эффективной маршрутизации, продление времени жизни сети и повышение надежности. Предложен способ и система распределенной балансировки трафика в беспроводной сенсорной сети на основе алгоритма маршрутизации от узла источника к узлу назначения, где беспроводная сенсорная сеть представляется как граф G (N, M), где N узлы сети, а M грани, имеется K маршрутов, а информация генерируется со скоростью Qc и передается по каналу связи C со скоростью qc, причем i-й узел имеет запас энергии Ei, а каждая грань ij имеет вес/цену eij, которая соответствует энергии для передачи одного пакета данных от узла i к j, а время жизни Ti каждого узла определяется как

.

На каждом узле определяется таблица маршрутизации и выстаивается вектор передачи сообщения, проводится анализ вариантов маршрутов по наиболее оптимальным суммарным векторам, которые рассчитываются по таблице маршрутизации. Для этого определяется время жизни всей сети T sys = min i N  T i ( q c ) . Максимизация времени жизни определяется как maximize Tsys, и для достижения максимального времени жизни всей сети распределяют маршруты, где выбор маршрута в сети основан на использовании наименее затратных передач на каждом узле, а наиболее затратные исключаются. 2 н. и 9 з.п. ф-лы, 4 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области беспроводной связи и может быть использовано в автоматизированных системах мониторинга, работающих как независимо, так и в составе многоуровневых информационно-управляющих системах, в частности в системах мониторинга экологических или промышленных параметров в реальном времени с узлами, распределенными на больших территориях и не имеющими проводных линий связи и линий электропитания.

Уровень техники

В настоящее время сенсорные сети все больше занимают свое место в приложениях мониторинга различных мест и событий. В связи с развитием технологии беспроводной связи появилась возможность развития беспроводных распределенных сенсорных сетей (РСС). Распределенные сенсорные сети отличаются от обычных сетей ограниченным энергоресурсом, низкой вычислительной мощностью, необходимостью более плотного расположения и низкой ценой одного узла. Эти особенности от других сетей (например, сотовых) определяют новые цели и задачи их применения. Беспроводные сенсорные сети получили широкое применение во многих сферах деятельности человека, и поэтому им сейчас уделяется огромное внимание.

Распределенная сенсорная сеть состоит из множества дешевых, автономных, многофункциональных узлов, которые находятся в зоне мониторинга. Каждый узел состоит из набора блоков, таких как: сенсор, используемый для получения данных от окружающей среды, блок приема-передачи данных, микроконтроллер для обработки и управления сигналами и источник энергии. Процессор питается от автономной батареи с конечным энергоресурсом, что приводит к значительным ограничениям в энергопотреблении. Обслуживание сенсорных узлов, например замена батарей питания, требует значительных затрат, в особенности, когда узлы расположены в труднодоступных местах, так что большинство сенсорных сетей является необслуживаемыми и работают до разрядки батареи. Это свойство сенсорных сетей является очень важным при разработке алгоритмов маршрутизации в РСС, позволяющих повысить эффективность расходования энергоресурса сети.

Так, существует множество способов экономии энергоресурсов узлов в сенсорной сети, и на фиг.1 приведена их классификация. Способы можно разделить на три большие группы - это сохранение энергии при помощи циклов работы, основанные на количестве передаваемой информации и на мобильности.

К циклам работы относят контроль топологии и управление энергопотреблением. Контроль топологии направлен на использование или уменьшение избыточных связей в сети в целях экономии ресурса. Управлять потреблением можно, применяя различные энергосберегающие протоколы управления доступом к среде передачи (МАС-протоколы) и режимы работы устройств. Второй класс способов сохранения энергоресурса основан на количестве передаваемой информации, а также на получении этой информации экономичными способами. Энергия, потраченная на обработку информации, несравнимо меньше требующейся энергии для ее передачи, поэтому используется внутрисетевая обработка данных, сжатие или предсказание данных. Также используются ретрансляторы для экономии электроэнергии узлов сенсорных сетей.

Методы маршрутизации можно разделить на следующие категории: прямая, иерархическая и маршрутизация в зависимости от географического положения.

Прямая маршрутизация подразумевает передачу сообщений от узла к узлу в сети, где каждый узел выполняет одинаковую функцию передачи и/или ретрансляции, в отличие от иерархической, где выделяется один или несколько узлов сбора и обработки информации. Недостаток прямой маршрутизации заключается в том, что сети, собирающие информацию с какой-то области, будут посылать множество избыточной информации, особенно при значительной плотности сенсорной сети. Для того чтобы избежать избыточности информации, используют специальные алгоритмы, направленные на получение информации не от узлов, а от определенной области сети. Например, известен алгоритм Sensor Protocols for Information via Negotiation (SPIN), где базовая станция посылает запрос к определенному региону сенсорной сети. Получив запрос, узлы области выполняют требование запроса, локально обмениваются данными и посылают обратно обобщенный ответ.

При иерархической маршрутизации для сбора и обработки требуется использовать узлы с большим запасом энергии, что хотя и позволяет экономить на передачи уже обработанных данных значительно меньшего объема, зачастую неприемлемо ввиду однородности используемых приборов или других трудностей. Для того чтобы не использовать специализированные узлы, существуют несколько технологий. Так, известна технология Low-Energy Adaptive Clustering Hierarchy (LEACH), когда функцию сбора принимают поочередно несколько узлов сенсорной сети, выбираемых по определенному алгоритму, тем самым распределяя нагрузку узла сбора.

Маршрутизация в зависимости от географического положения также еще называется геометрической маршрутизацией, потому что для нахождения маршрута используется геометрическое направление на базовую станцию. Также существует маршрутизация по виртуальным координатам, которые выстраиваются не только в зависимости от реального положения узла, но и учитывают естественные неровности поверхности, препятствия, уровень канала передачи и др.

Также известна многопотоковая маршрутизация, где доставка сообщения от одного узла возможна по нескольким путям. В последнее время большое внимание уделяется маршрутизации по запросу у базовой станции, например, на основе нахождения кратчайшего пути и поддержания его с учетом плохого канала и выхода из строя узлов. Однако узлы, расположенные на кратчайшем расстоянии, быстро истощаются, что приводит к обрывам связи и уменьшению времени жизни сети, под которым часто понимается время жизни первого вышедшего из строя узла. Поэтому имеется необходимость в создании технологии максимизации времени жизни сенсорной сети, которая решается тем или иным методом линейного программирования.

Так, в качестве близкого по сущности технического решения известен патент RU 2439812 C1, опубликован 2012-01-10, МПК H04W 36/00, где раскрыта самоконфигурируемая сенсорная сеть из множества датчиков и исполнительных устройств на основе маршрутизации в зависимости от географического положения. Сенсорная сеть состоит из центрального устройства обработки данных (ЦУОД) и N базовых станций (БС), расположенных равномерно или хаотически по границам территории покрытия сети, где БС имеют пространственную привязку к глобальным координатам позиционирования и содержат память для хранения значения коэффициента доверия, который представляет собой число в диапазоне от заданного минимального и максимального значений. Коэффициент доверия для БС устанавливают приблизительно равным максимальному значению. Внутри территории покрытия сенсорной сети равномерно или хаотически располагают М узлов, причем M>>N. Узлы оснащают памятью, предназначенной для хранения значений координат пространственной привязки, которую инициализируют случайными значениями в процессе производства, и для хранения коэффициента доверия, которую инициализируют значением, приблизительно равным минимальному значению коэффициента доверия. Каждый узел и БС устанавливают соединение не более чем с К соседними узлами и БС, причем значение К зависит от характеристик пропускной способности канала связи, характеристик быстродействия и энергопотребления микропроцессоров, входящих в их состав. После установления соединения узлы и БС выполняют операцию взаимного определения значений пространственных координат. Для этого каждый узел или БС циклически передает значения собственной памяти для хранения значений координат пространственной привязки и памяти для хранения значения коэффициента доверия. В каждом цикле обработки узел получает значения координат и коэффициентов доверия от всех соседних устройств, с которыми установлено соединение, и определяет расчетные значения собственных координат и собственного коэффициента доверия по методу взвешенного усреднения значений собственных координат и координат соседних устройств, используя в качестве весовых коэффициентов коэффициенты доверия самого устройства и соседних устройств. Таким образом, узлы сенсорной сети получают пространственную привязку. Для маршрутизации сообщения от ЦУОД к узлу с координатами (x, y, z) оно передает сообщение к одной или нескольким БС, ближайшим к требуемым координатам. Указанные БС передают сообщение ближайшим узлам, а узлы последовательно - своим ближайшим узлам в направлении вектора, направленного к требуемой точке (x, y, z). Узлы, пространственно привязанные к точкам, расположенным на расстоянии, не превышающем радиус чувствительности сенсорной сети r, воспринимают сообщение как адресованное им. Дальнейший арбитраж узлов для выбора окончательного адресата сообщения, а также отправку подтверждения о приеме сообщения производят по необходимости, исходя из технических требований к функционированию сети. Для маршрутизации сообщения от узла к ЦУОД узлы дополнительно оснащают памятью для хранения списка координат ближайших БС. Для передачи сообщения ЦУОД узел передает сообщение одному или нескольким соседним узлам в направлении вектора, направленного к точке с координатами БС, когда сообщение достигает БС, она передает сообщение непосредственно на ЦУОД и, при необходимости, отправляет в сторону передавшего узла сообщение о подтверждении передачи.

Недостатком такой самоконфигурируемой сенсорной сети и способа ее функционирования является сложность применяемого оборудования, связанная с необходимостью задавать и использовать координаты пространственной привязки узлов и базовых станций, а также такое решение не обеспечивает продолжительное время жизни всей сети в целом.

В качестве наиболее близкого аналога - прототипа можно предложить способ маршрутизации с максимальным временем жизни в беспроводной сети Ad-hoc, раскрытый в публикации Arvind Sankar and Zhen Liu, Maximum Lifetime Routing in Wireless Ad-hoc Networks, INFOCOM 2004, Twenty-third Annual Joint Conference of the IEEE, Computer and Communications Societies, vol.2, p.p.1089-1097, где формулируется задача максимизации времени жизни сенсорной сети, которая решается методом линейного программирования, а именно предложен алгоритм, чтобы минимизировать сумму потенциальных функций всех очередей.

Недостатком такого способа является низкая эффективность, поскольку узлы, расположенные на кратчайшем расстоянии, часто быстро истощаются, что приводит к обрывам связи и уменьшению времени жизни сети.

Таким образом, имеется необходимость в решении вышеуказанных проблем предшествующего уровня техники.

Сущность изобретения

Техническим результатом, на достижение которого направлено предложенное изобретение, является, в частности: обеспечение эффективной маршрутизации и продление времени жизни беспроводной сенсорной сети для мониторинга различных объектов и параметров в режиме реального времени, где важна информация каждого узла, повышение функциональности, надежности и снижение стоимости использования систем для мониторинга. Использование предложенного решения позволит повысить эффективность эксплуатации контролируемого объекта за счет более продолжительного срока службы автономной батареи электропитания, что позволит регистрировать и передавать данные о параметрах объекта и/или окружающей среды в течение более продолжительного времени.

Сущность предложенного способа распределенной балансировки трафика в беспроводной сенсорной сети заключается в применении нового алгоритма маршрутизации от узла источника к узлу назначения. Связь между упомянутыми узлами в сенсорной сети выполняется, например, по протоколу Zigbee, или в нелицензируемом диапазоне радиочастот, или по мобильной цифровой радиосети, или по любому другому подходящему протоколу беспроводной связи. Распределенную сенсорную сеть можно представить как граф G (N, M), который определяет набор упомянутых узлов и связи между ними, где N узлы сети, а М грани, также имеется К маршрутов. Информация генерируется со скоростью Qc и передается по каналу связи С со скоростью qc, причем i-й узел имеет запас энергии Ei, а каждая грань ij имеет вес/цену eij, которая соответствует энергии для передачи одного пакета данных от узла i к j, при этом время жизни Ti каждого узла определяется как

Далее определяется таблица маршрутизации на каждом узле и выстаивается вектор передачи сообщения, проводится анализ возможных вариантов маршрутов согласно наиболее оптимальным суммарным векторам, которые рассчитываются по таблице маршрутизации, для этого определяется время жизни всей сети Tsys

Таким образом, максимизация времени жизни определяется как maximize Tsys, и для достижения максимального времени жизни всей сети распределяют маршруты для передаваемой информации, при этом выбор маршрута трафика в сети основан на использовании наименее затратных передач на каждом узле, а при построении маршрута исключаются наиболее затратные узлы на основе его рассчитанного Ti.

По меньшей мере, один узел источника содержит датчик измерения и мониторинга физических параметров (величин) с автономным питанием, который осуществляет мониторинг в заданной области сети и передачу сообщений (пакетов данных) с измеренными параметрами к, по меньшей мере, одному узлу назначения.

Как вариант, в каждом узле для приведения данных мониторинга к единообразному виду могут выполнять первичную обработку полученных с датчиков физических параметров, например, путем их накопления в памяти, усреднения, аналого-цифрового преобразования в соответствующий код. В качестве измеряемых параметров для мониторинга, например, окружающей среды, используются различные параметры, такие как температура, давление, влажность, освещенность, задымление, уровень вибрации и др.

Как вариант, выбор маршрута при формировании и/или обновлении таблицы маршрутизации производится в соответствии с комбинациями таких критериев, как длина маршрута, измеренная количеством маршрутизаторов, через которые необходимо пройти до узла назначения; пропускная способность канала связи; прогнозируемое суммарное время передачи; стоимость канала связи; количество остаточной энергии на узле.

Как вариант, в способе дополнительно осуществляют обновление значений времени жизни Ti каждого узла или времени жизни всей системы Tsys в соответствии с упомянутой комбинацией критериев, проводимое при посылке сообщения из узла источника к узлу назначения или при обнаружении разрыва соединения между узлами.

Как вариант, после построения таблицы маршрутизации функцию передачи пакетов по оптимальным путям (маршруту) реализуют при отправке пакета, каждый узел сети помещает адрес следующего узла в заголовок пакета на уровне управления доступом к среде передачи (MAC- уровень).

Также предложена система распределенной балансировки трафика в распределенной сенсорной сети на основе алгоритма маршрутизации от узла источника к узлу назначения в распределенной сенсорной сети согласно предложенному способу, содержащая: узел назначения, соединенный беспроводным каналом связи с узлом источника, который представляет собой сенсорный модуль, где размещены приемопередатчик, датчик физических параметров, микроконтроллер для обработки и управления и автономный источник их питания, а узел назначения содержит приемопередатчик, средства накопления получаемой информации и средства обработки и отображения получаемой информации с сенсорных модулей для построения модели исследуемого объекта или пространства.

Как вариант, сенсорные модули могут быть разделены на группы, и каждая группа связана с узлом назначения беспроводной связью через свой приемопередатчик. Мониторинг экологических или промышленных параметров в реальном времени проводится точечно в заданной области, где первое подмножество из упомянутого множества узлов источников выполняет функции мониторинга, а второе подмножество узлов источников выполняет только функции приемопередачи пакетов данных с измеренными физическими параметрами, полученных с первого подмножества узлов источников.

Эти и другие конструктивные и функциональные особенности и преимущества предложенного изобретения станут очевидными из детального описания его вариантов, которые должны читаться совместно с чертежом.

Краткое описание чертежей

На фиг.1 показана известная классификация способов сохранения энергии узлов в сенсорной сети.

На фиг.2 показан алгоритм построения сенсорной сети на основе опроса.

На фиг.3 показана сенсорная сеть в виде графа G (N, M).

На фиг.4 показаны варианты определения маршрутов.

Подробное описание изобретения

Предложен алгоритм, на котором базируется технология автоматизированного сбора и передачи данных посредством предложенной РСС (сети автономных беспроводных самоорганизующихся мобильных устройств) на единую точку для построения модели исследуемого объекта или пространства. Данная модель преимущественно может быть использована для построения сетей мониторинга экологических или промышленных параметров в реальном времени, мониторинга состояния в жизненном цикле зданий и сооружений, при проектировании и построении рекреационных зон и объектов санитарно-курортного строительства, а также в других различных областях автомобильной индустрии, на железнодорожном транспорте, в дорожном строительстве, в медицине.

Предложенное изобретение позволяет существенно повысить функциональность, надежность и снизить стоимость использования таких систем для мониторинга. Снижение стоимости неразрывно связано с конструктивной, функциональной и программной унификацией частей, из которых строится система, что предполагает тщательный анализ требований и проведение исследований способов построения универсальной программно-аппаратной платформы для создания систем мониторинга экологического состояния среды на основе технологии беспроводных сенсорных сетей. Для этого исследуются различные параметры: температура, давление, влажность, освещенность, задымление, вибрация, которые собираются посредством самоорганизующихся сенсорных сетей. РСС состоит из конечных устройств, промежуточных роутеров, координатора сети и выделенной точки сбора данных, иногда такую точку называют шлюзом сети, она служит для конвертации данных из радиоканала в сеть, организованную на оптических или медных проводах - Ethernet. Датчики сбора физических параметров крепятся к узлам сети - конечным устройствам, которые через координатор сети выстраиваются в единую структуру, например, посредством протокола ZigBee. Это позволяет развернуть сеть для мониторинга за короткий промежуток времени с минимальными затратами и достаточно высокой надежностью.

Каждый узел РСС снабжен автономным источником питания, что позволяет устанавливать их в труднодоступных местах для снятия требуемых показаний с минимальными трудозатратами. Особенностью предложенного изобретения является создание уникального масштабируемого программно-аппаратного обеспечения, состоящего из необходимого для внедрения набора модулей, позволяющего управлять устройствами для максимально возможного времени работы, и при этом формировать в автоматическом режиме достоверную модель пространственной гетерогенной среды. Связь между устройствами происходит по радиоканалу в различных стандартах связи, в том числе по протоколу Zigbee, в нелицензируемом диапазоне частот или по мобильной цифровой радиосети. Собранные для обработки данные позволяют использовать такую систему для построения экологической 3D модели исследуемой среды/пространства или исследуемого объекта, существенно сократив объем требуемого времени на обработку и получение информации и денежных ресурсов. Суть предложенного алгоритма, названного two ladder-logic, заключается в управлении элементами РСС, позволяющего балансировать нагрузкой на узлах сети таким образом, чтобы передаваемые данные отправлялись на ближайший узел сети не случайным образом, а на тот, который обладает наибольшим запасом энергии в текущий момент времени. Используемый алгоритм функционирования РСС позволяет изменять нагрузку на узлы сети таким образом, что вся сеть остается работоспособной максимально продолжительное время.

Применение РСС может обеспечить получение значительных преимуществ как в технологическом, так и в экономическом аспекте, перед традиционными системами сбора и обработки данных. Принципиальное возрастание производительности сбора и обработки цифровой телеметрии, достигаемое за счет использования РСС, позволяет агрессивно внедряться в рынок и перейти на технологические решения нового поколения, тем самым становится возможным и легко реализуемым появление новых автоматизированных систем, действующих в реальном времени на основе облачных технологий. По мере развития технологии должен произойти переход от соединенных локальных сетей мониторинга к крупномасштабным системам мониторинга, наблюдения и предсказания, основанным на беспроводной РСС.

На фиг.2 показан пример маршрутизации и построения сенсорной сети на основе опроса. РСС состоит из множества дешевых, автономных, многофункциональных узлов, которые находятся в зоне мониторинга. Каждый узел состоит из набора блоков, таких как сенсор, используемый для получения данных от окружающей среды, блок приема-передачи данных, микроконтроллер для обработки и управления сигналами и малогабаритный источник энергии. Процессор питается от автономной батареи с конечным энергоресурсом, что приводит к значительным ограничениям в энергопотреблении. Обслуживание сенсорных узлов, например замена автономной батареи, требуют значительных затрат, в особенности, когда узлы расположены в труднодоступных местах, так что большинство сенсорных сетей является необслуживаемыми и работают до истощения батареи питания.

Алгоритм маршрутизации позволяет строить маршрут на основании запросов и ответов. Координатор сети 1 отправляет широковещательный запрос HELLO и принимает ответы от маршрутизатора (роутера) 2. Каждый маршрутизатор также отправляет широковещательный запрос и получает ответы от соседних устройств, это могут быть другие маршрутизаторы или конечные устройства 3. На основе принятых ответов (силе сигнала, времени ответа и других параметров) координатором выстраивается таблица маршрутизации на каждом маршрутизаторе. Далее, выбор маршрута осуществляется в стандартном алгоритме путем определения весового графа с минимальным суммарным значением.

Как правило, сенсорные узлы оборудуются однотипными устройствами с определенным набором функций. После установки, в процессе эксплуатации сенсорные узлы должны сами организоваться в коммуникационную сеть, где каждый узел использует только те функции, которые необходимы для решения поставленной задачи. Маршрутизация также происходит в автоматическом режиме. Помимо первичной маршрутизации, требуется еще регулярное перестроение сети, потому что устройства могут терять канал связи или выходить из строя по причинам, связанным с внешними или внутренними факторами.

Работа каждого сенсорного узла направлена на измерение различных параметров среды, например температуры, давления, освещенности, влажности, задымления, уровня вибрации и др. Такое разнообразие параметров влечет за собой различные сферы применения, например сбор данных и мониторинг окружающей среды, мониторинг различных производственных объектов, размещенных как в отдельном здании, так и на большой территории, объектов нефтегазовой промышленности, транспортных объектов, военные применения и др. Сенсорные сети выполняют различные задачи, которые можно грубо разделить на две категории. Первая категория задач связана с детекцией событий, которые происходят очень редко, но требуют немедленного оповещения и/или обнаружения местонахождения. Во вторую категорию (мониторинг) входят задачи непрерывного измерения какой-либо величины в течение длительного промежутка времени. Здесь время задержки может быть равно характерному времени изменения измеряемого параметра. Мониторинг может проводиться точечно по какой-либо площади, при точечном измерении основная часть узлов играет роль передатчиков, и лишь незначительная часть узлов непосредственно осуществляет мониторинг.

Предложен алгоритм маршрутизации с балансировкой трафика в распределенной сенсорной сети. Для этого, распределенную сенсорную сеть можно представить как граф G (N, M) с N узлами и М гранями, который представляет набор существующих узлов и возможные связи между ним, как показано на фиг.3. Каждый i-й узел изначально имеет запас энергии Ei. Каждая грань ij имеет вес/цену eij, которая соответствует энергии для передачи одного пакета данных от узла i к j. Считается, что есть К маршрутов, а информация генерируется со скоростью Qc и передается по каналу связи C со скоростью qc.

Время жизни Ti каждого узла будет равняться в такой системе

Согласно используемому алгоритму определяется таблица маршрутизации координатором на каждом узле. Выстраивается вектор передачи сообщения. Далее проводится анализ возможных вариантов маршрутов согласно наиболее оптимальным суммарным векторам, которые рассчитываются по таблице маршрутизации. Таким образом, целью является экономия суммарно затраченной энергии во всей сети на передачу одного пакета. Это эффективно для сетей передачи данных, когда время жизни сети определяется временем, в течение которого сеть способна передавать сообщения.

В сетях, где каждый узел осуществляет одновременно две функции: измерение какой-то величины и передачу сообщений, то есть сенсорная сеть выполняет функцию мониторинга физических величин в заданной области, для полноты картины важно значение каждого узла.

Тогда время жизни всей системы Tsys определим как:

Задача максимизации времени жизни будет выглядеть: maximize Tsys, и для достижения максимального времени жизни всей системы необходимо распределять маршруты для передаваемой информации. Суть предложенного способа маршрутизации с балансировкой трафика в РСС состоит в том, что выбор маршрута трафика в сети основан на использовании наименее затратных передач на каждом узле, которые могут быть задействованы при передаче данных. Иначе говоря, из возможных вариантов маршрута движения пакета данных исключаются наиболее затратные прыжки-хопы (транзитный участок или переход в сети между двумя узлами сети, по которому передается трафик), тем самым экономится энергия на каждом узле и снижается вероятность выхода узла из строя, что исключает крах всей сети измерений из-за того, что один узел уже перестал выполнять актуальные замеры.

Выбор варианта маршрута (показан на фиг.4) при формировании и обновлении таблицы маршрутизации производится в соответствии с комбинациями таких критериев, как: длина маршрута, измеренная количеством маршрутизаторов, через которое необходимо пройти до пункта назначения; пропускная способность канала связи; прогнозируемое суммарное время пересылки; стоимость канала связи; количество остаточной энергии на узле.

После построения таблицы маршрутизации функцию передачи пакетов по оптимальным путям алгоритм реализует тем, что при отправке пакета через маршрутизатор каждый узел локальной сети помещает в заголовок пакета на МАС-уровне адрес следующего получателя. Таким образом, в приведенном примере на фиг.3, исходя из минимума суммарных затрат (веса/цены) на узлах (фиг.4) будет выбран маршрут 1, с суммой затрат веса/цены - 9, как самой минимальной величины. Тем самым прохождение трафика по узлам маршрута 1 приведет в скорейшем времени к полному энергетическому истощению узла 4, что выведет из строя эти узлы и исключит возможность сбора параметров в нужных точках исследования.

Однако при использовании предложенного распределенного алгоритма балансировки трафика на основе весовых коэффициентов будет выбран маршрут 2, что позволит сенсорной сети существовать на порядок дольше. Такое возможно за счет того, что нагрузка на все узлы, в случае предложенного алгоритма, распределяется более планомерно по все узлам сети.

Предложенное изобретение может быть реализовано с использованием различных функциональных и/или аппаратных средств, программного обеспечения, процессоров специального назначения и/или их комбинации. Предпочтительно изобретение реализуется как комбинация аппаратных средств и программного обеспечения. Программное обеспечение предпочтительно реализуется как прикладная программа, материально осуществленная на устройстве хранения/считывания программ. Прикладная программа может быть выгружена или приведена в исполнение посредством ЭВМ, содержащей любую архитектуру, и реализуется на вычислительной платформе, имеющей аппаратные средства: один или более центральных процессоров, оперативное запоминающее устройство и интерфейсы ввода-вывода. Вышеописанные различные варианты осуществления изобретения представлены только для понимания и в качестве примера и не должны ограничиваться этими примерами.

1. Способ распределенной балансировки трафика на основе алгоритма маршрутизации от узла источника к узлу назначения в распределенной сенсорной сети,
при этом распределенная сенсорная сеть представляется как граф G (N, M), который характеризует набор упомянутых узлов и связи между ним, где N узлы сети, а M грани, имеется К маршрутов, а информация генерируется со скоростью Qc и передается по каналу связи С со скоростью qc, причем i-й узел имеет запас энергии Ei, а каждая грань ij имеет вес/цену eij, которая соответствует энергии для передачи одного пакета данных от узла i к j,
при этом время жизни Ti каждого узла определяется как

определяется таблица маршрутизации на каждом узле и выстаивается вектор передачи сообщения,
проводится анализ возможных вариантов маршрутов согласно наиболее оптимальным суммарным векторам, которые рассчитываются по таблице маршрутизации, для этого определяется время жизни всей сети Tsys

при этом максимизация времени жизни определяется как maximize Tsys, и для достижения максимального времени жизни всей сети распределяют маршруты для передаваемой информации, при этом выбор маршрута трафика в сети основан на использовании наименее затратных передач на каждом узле, а при построении маршрута исключаются наиболее затратные.

2. Способ по п.1, отличающийся тем, что в, по меньшей мере, одном узле источника размещен датчик с автономным питанием, который осуществляет измерение и мониторинг физических параметров в заданной области и передачу пакетов данных с измеренными физическими параметрами к, по меньшей мере, одному узлу назначения.

3. Способ по п.2, отличающийся тем, что в качестве датчиков используются датчики измерения физических параметров для мониторинга окружающей среды на основе контроля следующих параметров: температуры, давления, влажности, освещенности, задымления, уровня вибрации.

4. Способ по п.3, отличающийся тем, что в, по меньшей мере, одном узле источника выполняют первичную обработку физических параметров, полученных с упомянутых датчиков, например, накопление, усреднение, аналого-цифровое преобразование.

5. Способ по п.1, отличающийся тем, связь между узлами в сенсорной сети выполняется по протоколу Zigbee, или в нелицензируемом диапазоне радиочастот, или по мобильной цифровой радиосети, или по любому другому протоколу беспроводной связи.

6. Способ по п.1, отличающийся тем, что в канале связи между узлом источника и узлом назначения содержится маршрутизатор, который взаимодействует с этими узлами.

7. Способ по п.1, отличающийся тем, что выбор маршрута при формировании и/или обновлении таблицы маршрутизации производится в соответствии с комбинациями таких критериев, как длина маршрута, измеренная количеством маршрутизаторов, через которое необходимо пройти до узла назначения, пропускная способность канала связи, прогнозируемое суммарное время передачи, количество остаточной энергии на узле, стоимость канала связи.

8. Способ по п.1, отличающийся тем, что после построения таблицы маршрутизации функцию передачи пакетов по оптимальным маршрутам реализуют при отправке пакета, где каждый узел сети помещает в заголовок пакета на уровне управления доступом к среде передачи (MAC- уровне) адрес следующего узла.

9. Способ по любому из пп.1, 6, 7, отличающийся тем, что способ дополнительно включает в себя этап обновления значений времени жизни Ti каждого узла или времени жизни всей системы Tsys в соответствии с упомянутой комбинацией критериев, проводимый при посылке сообщения из узла источника к узлу назначения или при обнаружении разрыва соединения между узлами.

10. Система распределенной балансировки трафика в беспроводной сенсорной сети для мониторинга физических параметров согласно способу по любому из пп.1-9, содержащая множество узлов источника, соединенных между собой, и узел назначения, соединенный с, по меньшей мере, одним узлом источника, который представляет собой сенсорный модуль, где размещены приемопередатчик, датчик физических параметров, микроконтроллер для обработки и управления и автономный источник питания, сенсорные модули разделены на группы и каждая группа связана с узлом назначения через свой приемопередатчик, при этом узел назначения содержит приемопередатчик, средства накопления получаемой информации и средства обработки и отображения получаемой информации с сенсорных модулей для построения модели исследуемого объекта или пространства.

11. Система по п.10, отличающаяся тем, что мониторинг проводится точечно в заданной области, где, по меньшей мере, одно подмножество из упомянутого множества узлов источников выполняет функции мониторинга посредством своих датчиков физических параметров, а другое подмножество узлов источников выполняет посредством своих приемопередатчиков только функции приемо-передачи пакетов данных с измеренными физическими параметрами, полученных с упомянутого подмножества узлов источников.



 

Похожие патенты:

Изобретение относится к технике беспроводной связи и может быть использовано для расширенной координации помех между ячейками. Технический результат - обеспечение возможности пользовательскому оборудованию идентифицировать защищенные ресурсы с уменьшенной помехой от соседних ячеек.

Изобретение относится к беспроводной связи и предназначено для того, что бы сигнал относительного предоставления и сигнал абсолютного предоставления могли быть обработаны на основании соотношения между относительным предоставлением и абсолютным предоставлением.

Изобретение относится к радиосвязи. Технический результат заключается в предоставлении в отчете информации, относящейся к состоянию канала в произвольной частотной полосе пропускания из множества частотных полос пропускания, и увеличении пропускной способности.

Изобретение относится к системам связи. Технический результат заключается в увеличении эффективности энергопотребления.

Изобретение относится к беспроводной связи и может быть использовано для определения аппаратурного шума. Технический результат - повышение точности определения значения аппаратурного шума, что обеспечивает решение проблемы, заключающейся в том, что результаты фиксированного измерения являются неточными из-за изменения аппаратурного шума вследствие изменения температуры.

Изобретение относится к области связи. Технический результат состоит в эффективности отправки информации управления в беспроводной системе связи.

Изобретение относится к беспроводной связи. Технический результат состоит в обеспечении нескольких уровней точности обратной передачи, гибком конфигурировании обратной передачи с различной точностью в соответствии с конкретными потребностями и эффективном использовании служебных данных обратной передачи.

Изобретение относится к системе беспроводной связи и предназначено для уменьшения вероятности интерференции между слоями, соответствующими различным потокам кодовых слов, и улучшения точности оценки каналов.

Изобретение относится к способам определения возможностей мобильной станции. Технический результат заключается в обеспечении определения возможностей доступа мобильной станции.

Изобретение относится к беспроводным системам. Технический результат - улучшение надежности приема HARQ-ACK, когда оно кодировано с использованием блочного кода относительно того, когда оно кодировано с использованием кода с повторением.

Изобретение относится к области звуковой рекламы, а именно к доставке сообщений, основанных на критериях, в транспортное средство. Технический результат заключается в возможности управлять доставкой звуковых сообщений, не влияя на задачу управления транспортным средством. Для этого передают от телематического управляющего блока, встроенного в транспортное средство, в информационный центр, удаленный от транспортного средства, инициируемый пользователем телематический запрос, который включает идентификатор транспортного средства и критерий, на котором основывается сообщение. Затем в удаленном информационном центре определяют ответ на телематический запрос и по меньшей мере одно из следующего: одно звуковое сообщение для связи с телематическим управляющим блоком и одно звуковое сообщение для связи с телематическим управляющим блоком в зависимости от указанного критерия. Ответ на телематический запрос и звуковое сообщение передают от удаленного информационного центра телематическому управляющему блоку и выводят звуковое сообщение пользователю в транспортном средстве через динамик в транспортном средстве перед подачей пользователю ответа на телематический запрос. При этом звуковое сообщение может являться рекламным сообщением, а критерий, на котором оно основано, может содержать статистику автомобиля и/или статистику пользователя мобильного устройства. 3 н. и 16 з.п. ф-лы, 3 ил.

Изобретение относится к мобильной связи. Технический результат заключается в обеспечении идентификации точек доступа (фемто-ячеек), присутствующих в заданной области (области покрытия заданной макро-ячейки). Конфликт, возникающий в результате назначения одинаковых идентификаторов множеству узлов, разрешается путем использования способов детектирования конфликта и применения уникальных идентификаторов для этих узлов. В некоторых аспектах точка доступа и/или терминал доступа может выполнять операции, связанные с детектированием конфликта и/или предоставлением уникального идентификатора для разрешения конфликта. 4 н. и 29 з. п. ф-лы, 23 ил.

Изобретение относится к мобильной связи. Технический результат заключается в обеспечении хендовера между доменами с коммутацией каналов и с коммутацией пакетов. Изобретение предназначено для обнаружения события активизации функции поддержки непрерывности речевого вызова с одним радиоинтерфейсом, указывающего на выполнение хэндовера пользовательского оборудования между доменом с коммутацией пакетов и доменом с коммутацией каналов (4A); для приостановки работы радиоканалов сигнализации плоскости управления согласно процедуре перемещения обслуживающей подсистемы радиосети (4B); для сброса приостановленных радиоканалов сигнализации (4C) и для возобновления работы приостановленных радиоканалов сигнализации в домене, в который передано обслуживание, при этом процедура возобновления работы включает защиту радиоканалов сигнализации плоскости управления домена, в который передано обслуживание, с использованием того же преобразованного ключа защиты, который применяется для шифрования каналов радиодоступа плоскости пользователя в домене, в который передано обслуживание (4D). 4 н. и 12 з. п. ф-лы, 4 ил.

Изобретение относится к технике связи и может использоваться в беспроводных системах связи. Технический результат состоит в повышении скорости определения зоны поиска для мониторинга. Для этого способ включает в себя: определение абонентским оборудованием (АО) в процессе диспетчеризации несущих частот зоны поиска для мониторинга физического нисходящего управляющего канала (PDCCH) в соответствии с числом нисходящих компонентных несущих в наборе мониторинга канала PDCCH и числом нисходящих компонентных несущих в наборе нисходящих компонентных несущих АО. 2 н. и 9 з.п. ф-лы, 3 ил., 9 табл.

Изобретение относится к способу и устройству в системе связи, в частности, чтобы обеспечивать обратно совместимую собственную транзитную передачу в усовершенствованной сети универсального наземного радиодоступа (E-UTRAN). Техническим результатом является исключение или уменьшение помех, возникающих, когда линия связи самостоятельной транзитной передачи между донорным усовершенствованным узлом B (eNB) и ретрансляционным узлом (RN) и линиями радиодоступа в соте работают в одном частотном спектре. Указанный технический результат достигается тем, что создают, по меньшей мере, одно прерывание в упомянутых передачах по нисходящей линии связи из RN, по меньшей мере, в один мобильный терминал (UE); принимают передачи из донорного eNB в течение упомянутого, по меньшей мере, одного прерывания, при этом упомянутые передачи осуществляются в перекрывающихся полосах частот, и при этом упомянутое, по меньшей мере, одно прерывание создается посредством использования формата субкадра многоадресной/ широковещательной одночастотной сети (MBSFN-субкадра). 4 н. и 23 з.п. ф-лы, 11 ил.

Изобретение относится к мобильной связи. Технический результат заключается в обеспечении выравнивания нагрузки в точках доступа. Сотовая точка доступа из числа множества соединенных друг с другом сотовых точек доступа принимает из первого устройства пользователя запрос попытки соединения, который приведет к превышению данной точкой доступа первой заданной пороговой величины пропускной способности. Сотовая точка доступа выбирает одно из ранее соединенных устройств пользователя и соответствующую одну из множества соединенных друг с другом сотовых точек доступа. Сотовая точка доступа инициирует хендовер выбранного одного из ранее соединенных устройств пользователя в соответствующую одну из множества соединенных друг с другом сотовых точек доступа и устанавливает соединение с первым устройством пользователя. 14 з.п. ф-лы, 7 ил.

Изобретение относится к системам связи, в частности, для передачи данных с использованием размера данных с фиксированной длиной или переменной длиной. Технический результат заключается в усовершенствовании управления потоком данных. Указанный технический результат достигается тем, что мобильная система передачи данных включает в себя устройство управления и устройство базовой станции. Передачу данных между устройством управления и устройством базовой станции выполняют, используя размер данных фиксированной длины и размер данных переменной длины, при этом передают в устройство базовой станции сообщение запроса установки радиоканала (RADIO LINK SETUP REQUEST), которое инициирует процедуру установки радиоканала, при этом указанное сообщение включает в себя информацию о формате размера модуля данных протокола на уровне управления радиоканалом (RLC PDU); и отменяют процедуру, если сообщение RADIO LINK SETUP REQUEST не включает в себя информацию Maximum выделенный подуровень управления доступом к среде (MAC-d) PDU Size Extended, и информация о формате размера указывает, что размер данных RLC PDU имеет переменную длину. 7 н. и 17 з.п. ф-лы, 13 ил.

Изобретение относится к технике беспроводной связи и может быть использовано для синхронизации времени. Способ, осуществляемый в системном узле, обменивающемся информацией с группой базовых станций, каждая из которых содержит соответствующие внутренние часы, заключается в обеспечении каждой из базовых станций информацией о времени и получении от них такой информации, в формировании эталонного системного времени на основе, по меньшей мере, информации о времени, и в обеспечении одной из базовых станций, соответствующие внутренние часы которой не синхронизированы с внешней эталонной шкалой времени, информацией по синхронизации времени для синхронизации внутренних часов этой базовой станции с эталонным системным временем. Технический результат - синхронизации времени базовых станций, которые не получают сигнал от глобальной навигационной спутниковой системы. 5 н. и 40 з.п. ф-лы, 4 ил.

Изобретение относится к беспроводной связи. Техническим результатом является обеспечение устойчивости соединений и экономии заряда батареи при использовании объединения несущих. Мобильная станция UE настоящего изобретения представляет собой мобильную станцию, осуществляющую связь с базовой радиостанцией, используя две или более несущих, включающих первую несущую и вторую несущую, причем указанная мобильная станция включает первый модуль связи, выполненный с возможностью осуществления связи на первой несущей, и модуль измерения второй несущей, выполненный с возможностью осуществления измерения второй несущей; при этом первый модуль связи выполнен с возможностью, если задан измерительный промежуток для измерения второй несущей, осуществления связи на первой несущей, не принимая во внимание указанный измерительный промежуток, когда вторая несущая активирована, и отказа от осуществления связи на первой несущей в указанном измерительном промежутке, когда вторая несущая не активирована. 5 н. и 7 з.п. ф-лы, 16 ил.

Изобретение относится к области радиосвязи. Техническим результатом является простое и эффективное получение управляющим узлом в сети радиосвязи информации о качестве в сети радиосвязи. Раскрыто пользовательское устройство, имеющее режимы работы, представляющие собой, по меньшей мере, подключенный режим (CONN) и режим ожидания (IDLE), содержащее измерительный модуль, выполненный с возможностью измерения качества радиосвязи в режиме ожидания в соответствии с информацией о задании измерения, указывающей, что пользовательское устройство заранее настроено на сообщение измеренного значения качества радиосвязи в базовую станцию, модуль хранения, выполненный с возможностью хранения информации о задании измерения и измеренного значения качества радиосвязи, измеренного измерительным модулем, и передающий модуль, выполненный с возможностью, если удовлетворено заранее заданное условие о сообщении (условие наличия записи), передачи индикатора, указывающего на наличие измеренного значения качества радиосвязи, в базовую станцию в подключенном режиме и, в ответ на запрос из базовой станции, передачи сигнала сообщения, содержащего измеренное значение качества радиосвязи. 2 н. и 6 з.п. ф-лы, 12 ил.
Наверх