Устройство для дистанционного измерения давления

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение точности измерения давления. Устройство для дистанционного измерения давления содержит сканирующее устройство и приемоответчик. Сканирующее устройство содержит последовательно включенные задающий генератор, усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, фазовый детектор, второй вход которого соединен с первым выходом узкополосного фильтра, и блок регистрации, второй вход которого через фазометр соединен с вторыми выходами задающего генератора и узкополосного фильтра. Приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемопередающей антенной. На звукопроводе размещены тонкая мембрана и отражающая решетка. Сканирующее устройство снабжено перемножителем. К выходу дуплексера подключен перемножитель. 2 ил.

 

Предлагаемое устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности.

Известны датчики давления, основанные на различных физических принципах (авт.свид. СССР №№355.519, 427.257, 508.700, 723.413, 781.638, 885.843, 1.000.806, 1.290.113, 1.368.677, 1.493.895, 1.508.114, 1.645.862, 1.686.322, 1.814.040, 1.815.598, 1.817.929, 1.818.560, 1.831.669; патенты РФ №№2.058.020, 2.244.908, 2.311.623; патенты США №№4.387.601, 4.395.915, 4.562.742; патент Японии №50-9.190; Бусурин В.И. Оптические и волоконно-оптические датчики. Квантовая электроника, 1985, №5, с.901-944, и другие).

Из известных датчиков давления наиболее близким к предлагаемому является «Устройство для дистанционного измерения давления» (патент РФ №2.244.908, G01L 9/00, 2002), которое и выбрано в качестве базового объекта.

Известное устройство состоит из сканирующего устройства и приемоответчика. Сканирующее устройство содержит последовательно включенные задающий генератор, усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, удвоитель фазы, делитель фазы на два, узкополосный фильтр, фазовый детектор, второй вход которого соединен с выходом дуплексера, и блок регистрации, второй вход которого через фазометр соединен с вторыми выходами задающего генератора и узкополосного фильтра. Приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов.

В состав сканирующего устройства входят фазовый детектор, необходимым условием работы которого является наличие опорного напряжения, имеющего постоянную начальную фазу и частоту, равную частоте принимаемого фазоманипулированного (ФМн) сигнала. Указанное опорное напряжение выделяется непосредственно из принимаемого ФМн-сигнала путем умножения и деления фазы принимаемого ФМн-сигнала на два.

Однако при этом возникает явление «обратной работы», которое обусловлено скачкообразными переходами начальной фазы опорного напряжения из одного состояния φс в другое φс+π под воздействием помех, кратковременного прекращения приема и других дестабилизирующих факторов.

Это легко показать аналитически. На выходе удвоителя 5 фазы образуется гармоническое колебание

u2(t)=U2·Cos(2ωct+2φc+2Δφ).

Так как 2φк(t)={0; 2π}, то в данном колебании манипуляция фазы уже отсутствует. Это колебание делится по фазе на два в делителе 6 фазы на два и выделяется узкополосным фильтром 7

u3(t)=U3·Cos(ωct+φc+Δφ), 0≤t≤Tc.

Действительно, если произвести деление, аналогичное предыдущему, но предварительно добавив к аргументу угол 2π, что не изменяет исходного напряжения, то после деления фазы на два получится напряжение, сдвинутое по фазе на π

u 3 , ( t ) = U 3 C o s [ ω c t + ϕ c + Δ ϕ 2 ] = U 3 C o s ( ω c t + ϕ c + Δ ϕ + π ) .

Следовательно, двузначность фазы полученного опорного напряжения вытекает из самого процесса деления. Физически указанная двузначность начальной фазы объясняется неустойчивой работой делителя 6 фазы на два под воздействием различных дестабилизирующих факторов. При этом на выходе фазового детектора 8 выделяется искаженный аналог модулирующего кода M(t), который не позволяет достоверно определять номер дистанционного датчика давления. Искаженное опорное напряжение не позволяет также достоверно измерить фазовый сдвиг Δφ, пропорциональный измеряемому давлению Р.

Технической задачей изобретения является повышение достоверности дистанционного определения номера датчика давления и измеряемого им давления путем устранения явления «обратной работы».

Поставленная задача решается тем, что устройство для дистанционного измерения давления, содержащее, в соответствии с ближайшим аналогом, сканирующее устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные задающий генератор, усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, фазовый детектор, второй вход которого соединен с первым выходом узкополосного фильтра, и блок регистрации, второй вход которого через фазометр соединен с вторыми выходами задающего генератора и узкополосного фильтра, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены тонкая мембрана и отражающая решетка, отличается от ближайшего аналога тем, что сканирующее устройство снабжено перемножителем, причем к выходу дуплексера подключен перемножитель, второй вход которого соединен с выходом фазового детектора, а выход подключен к входу узкополосного фильтра.

Структурная схема сканирующего устройства представлена на фиг.1. Структурная схема приемоответчика изображена на фиг.2. Временные диаграммы, поясняющие принцип работы дистанционного датчика давления, показаны на фиг.3.

Сканирующее устройство содержит последовательно включенные задающий генератор 1, усилитель 2 мощности, дуплексер 3, вход-выход которого связан с приемопередающей антенной 4, фазовый детектор 8 и блок 10 регистрации, второй вход которого через фазометр 9 соединен со вторыми выходами задающего генератора 1 и узкополосного фильтра 7. К выходу дуплексера 3 последовательно подключены перемножитель 5, второй вход которого соединен с выходом фазового детектора 8, и узкополосный фильтр 7, первый выход которого подключен к второму входу фазового детектора 8.

Приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах (ПАВ), которая представляет собой дискретно-аналоговую реализацию цифрового трансверсального фильтра. Роль отводов в таком фильтре играет встречно-штыревой преобразователь (ВШП), который состоит из гребенчатых систем электродов 13, нанесенных на поверхность звукопровода 11. Электроды каждой из гребенок соединены друг с другом шинами 14 и 15. Шины, в свою очередь, связаны с микрополосковой приемопередающей антенной 12. На звукопроводе 11, кроме того, размещены тонкая мембрана 16 и отражающая решетка 17.

Отводы многоотводной линии задержки равномерно распределены по поверхности звукопровода с шагом

Δh=V·τэ,

где V - скорость поверхностных акустических волн, она примерно на пять порядков меньше скорости распространения электромагнитных колебаний;

τэ - длительность элементарных посылок.

Приемоответчик представляет собой пьезокристалл с нанесенным на его поверхность алюминиевым тонкопленочным пьезоэлектрическим преобразователем и набором отражателей. Преобразователь подключен к микрополосковой приемопередающей антенне 12, которая также изготовлена на поверхности пъезокристалла.

Дистанционный датчик давления работает следующим образом. Задающий генератор 1 формирует высокочастотное колебание (фиг.3, а)

Uc(t)=Uc·Cos(ωct+φc), 0≤t≤T c,

где Uc, ωc, φc, T c - амплитуда, несущая частота, начальная фаза и длительность высокочастотного колебания, которое после усиления в усилителе 2 мощности через дуплексер 3 поступает в приемопередающую антенну 4 и излучается ею в эфир.

Это высокочастотное колебание улавливается приемопередающей антенной 12 и возбуждает приемоответчик, а именно встречно-штыревой преобразователь (ВШП) на ПАВ.

В основе работы устройств на ПАВ лежат три физических процесса:

- преобразование входного электрического сигнала в акустическую волну;

- распространение акустической волны вдоль поверхности звукопровода;

- отражение акустической волны и обратное преобразование ПАВ в электрический кодированный сигнал.

Для прямого и обратного преобразования ПАВ используется встречно-штыревой преобразователь (ВШП), работа которого основана на том, что переменные в пространстве и времени электрические поля, создаваемые в пьезоэлектрическом кристалле системой электродов 13, вызывают из-за пьезоэффекта упругие деформации, которые распространяются в кристалле в виде ПАВ. Центральная частота и полоса пропускания ВШП определяются шагом размещения электродов 13 и их количеством.

Изготовление ВШП осуществляется стандартными методами фотолитографии и травлением тонкой металлической пленки, осажденной на пьезоэлектрическом кристалле. Возможности современной фотолитографии позволяют создавать ВШП, работающие на частотах до 3 ГГц.

К тонкой мембране 16 прикладывается давление Р, вызывающее ее деформацию. Скорость ПАВ в области мембраны изменяется, и фаза отраженной от решетки 17 акустической волны также изменяется в соответствии с деформацией мембраны 16.

Акустическая волна модифицируется уникальным, зависящим от топологии приемоответчика, образом. Затем отраженная акустическая волна претерпевает обратное преобразование в электромагнитный сигнал с фазовой манипуляцией (ФМн), который поступает в микрополосковую антенну 12 и излучается ею в пространство (фиг.3, в)

u1(t)=U1·Cos[ωct+φк(t)+φc+Δφ], 0≤t≤Tc,

где φk(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), (фиг.3, б), который определяется структурой ВШП (фиг.2);

Δφ - изменение фазы, вызванное деформацией мембраны 16.

Указанный ФМн-сигнал улавливается приемопередающей антенной 4 и через дуплексер 3 поступает на первые входы фазового детектора 8 и перемножителя 5.

На второй вход фазового детектора 8 поступает опорное напряжение (фиг.3, г) с первого выхода узкополосного фильтра 7

u0(t)=U0·Cos(ωct+ωc), 0≤t≤T c.

На выходе фазового детектора 8 образуется низкочастотное напряжение (фиг.3, е)

uн(t)=Uн-Cosφк(t),0≤t≤Tc,

где U н 1 = 1 2 U 1 U 0 ;

пропорциональное модулирующему коду M(t) (фиг.3, б).

Это напряжение содержит информацию о номере дистанционного датчика давления и фиксируется на первом входе блока 10 регистрации.

Низкочастотное напряжение uн(t) с выхода фазового детектора 8 одновременно поступает на второй вход перемножителя 5. На выходе перемножителя 5 образуется гармоническое напряжение

u2(t)=U2·Cos(ωct+φ1+2Δω)+U2·Cos[ωct+2φк(t)+φ1+Δφ]=U2·Cos(ωct+φ1+Δφ)+U2·Cos(ωct+φ1+Δφ)=2U2·Cos(ωct+φ1+Δφ)=U0·Cos(ωct+φ1+Δφ),

где U 2 = 1 2 U 1 U н ; U0=2U2,

которое выделяется узкополосным фильтром 7, используется в качестве опорного напряжения и поступает на второй (опорный) вход фазового детектора 8.

Следует отметить, что сканирующее устройство работает в двух режимах: переходном и стационарном. Переходной режим соответствует моменту включения питания, когда на нелинейных элементах образуются различные комбинационные составляющие, среди которых будет присутствовать и гармоническая составляющая на частоте ωc. Указанная составляющая выделяется узкополосным фильтром 7 и поступает на второй (опорный) вход фазового детектора 8. На выходе фазового детектора 8 образуется низкочастотное напряжение uн(t), которое поступает на второй вход перемножителя 5, и сканирующее устройство переходит в стационарный (рабочий) режим работы, который описан выше.

Одновременно напряжения uc(t) и u2(t) со вторых выходов задающего генератора 1 и узкополосного фильтра 7 поступают на два входа фазометра 9, где измеряется фазовый сдвиг Δφ, пропорциональный измеряемому давлению Р, который фиксируется на втором входе блока 10 регистрации.

Следовательно, блоком 10 регистрации фиксируется номер дистанционного датчика давления и измеряемое им давление Р.

Сканирующее устройство обеспечивает последовательный опрос всех дистанционных датчиков давления, регистрацию их номеров и измеряемых давлений.

Основное преимущество систем автоматической телеиндикации с применением приемоответчиков на ПАВ состоит в возможности изготавливать пассивный, т.е. не требующий источников питания, приемоответчик с малыми габаритами. Используемый приемоответчик предоставляет возможность дистанционного считывания несущей им информации о давлении неограниченное число раз, в автоматическом режиме.

Другое преимущество заключается в возможности совмещения функций переизлучения энергии, кодирования постоянной информации о номере и функции датчика давления в одном устройстве с простой конструкцией.

Положительным свойством приемоответчика на ПАВ можно считать также малые затраты на длительную эксплуатацию (отсутствие батарей и большое время наработки на отказ).

Таким образом, предлагаемое устройство по сравнению с базовым объектом и другими техническими решениями аналогичного назначения обеспечивает повышение достоверности дистанционного определения номера датчика давления и измеряемого им давления. Это достигается устранением явления «обратной работы».

Опорное напряжение, необходимое для синхронного детектирования ФМн-сигнала и измерения фазового сдвига Δφ, пропорционального измеряемому давлению Р, также выделяется непосредственно из самого принимаемого ФМн-сигнала с помощью только перемножителя и узкополосного фильтра. При этом отсутствуют удвоитель фазы и делитель фазы на два, которые являются основной причиной возникновения явления «обратной работы».

Устройство для дистанционного измерения давления, содержащее сканирующее устройство и приемоответчик, при этом сканирующее устройство содержит последовательно включенные задающий генератор, усилитель мощности, дуплексер, вход-выход которого связан с приемопередающей антенной, фазовый детектор, второй вход которого соединен с первым выходом узкополосного фильтра, и блок регистрации, второй вход которого через фазометр соединен с вторыми выходами задающего генератора и узкополосного фильтра, а приемоответчик выполнен в виде многоотводной линии задержки на поверхностных акустических волнах, включающей встречно-штыревой преобразователь, который выполнен в виде двух систем гребенчатых электродов, нанесенных на поверхность звукопровода, электроды гребенок соединены шинами, которые связаны с микрополосковой приемопередающей антенной, при этом на звукопроводе размещены тонкая мембрана и отражающая решетка, отличающееся тем, что сканирующее устройство снабжено перемножителем, причем к выходу дуплексера подключен перемножитель, второй вход которого соединен с выходом фазового детектора, а выход подключен к входу узкополосного фильтра.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью.

Изобретение относится к измерительной технике и активному неразрушающему контролю и может быть использовано для измерения давления контролируемой среды. Способ измерения давления контролируемой среды включает измерение сигналов колебаний давления в объекте исследования посредством датчика, преобразование сигналов через аналого-цифровой преобразователь и регистрацию получаемых цифровых сигналов.

Изобретение относится к измерительной технике, в частности к тензорезисторным датчикам давления на основе тонкопленочных нано- и микроэлектромеханических систем (НиМЭМС) с мостовой измерительной цепью, предназначенных для использования в системах управления, контроля и диагностики объектов длительного функционирования.

Изобретение относится к датчика давления и может быть использовано в устройствах для регистрации давления текучих сред. Техническим результатом является улучшение конструкции и функциональных возможностей устройства.

Изобретение относится к нефтегазодобывающей промышленности и может найти применение для месторождений, на которых достижение рентабельного дебита возможно только при снижении забойных давлений ниже давления насыщения.

Изобретение относится к измерительной технике и может быть использовано для измерения давлений жидких и газообразных агрессивных сред в условиях воздействия широкого диапазона стационарных и нестационарных температур.

Изобретение относится к измерительной технике и может использоваться в датчиках давления. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения давления газообразных и жидких сред в трубопроводах, выполненных из ферромагнитного материала, в частности из стали.

Изобретение относится к измерительной технике, в частности к датчикам, предназначенным для использования в различных областях науки и техники, связанных с измерением давления в условиях воздействия нестационарных температур и повышенных виброускорений.

Изобретение относится к системам жизнеобеспечения пилота летательного аппарата, в частности к конструкции регулятора давления. .

Изобретение относится к преобразователям давления. Техническим результатом изобретения является повышение точности измерения давления за счет уменьшения содержания посторонних молекул, растворенных в газе или жидкости. Измерительный преобразователь давления содержит закрытую разделительной мембраной камеру приема давления и камеру измерения давления, в которой расположен датчик давления, внутреннее пространство которого заполнено передающей давление жидкостью. Жидкость служит для передачи в режиме измерения давления на датчик (11) давления. При этом жидкость содержит адсорбенты, размер частиц которых небольшой по сравнению с габаритами заполненного жидкостью внутреннего пространства и которые служат для связывания растворенных в жидкости посторонних молекул за счет адсорбции. Растворенное в передающей давление жидкости в газообразном или жидком состоянии содержание посторонних молекул уменьшается. Жидкость приводят в контакт, по меньшей мере, с одним адсорбентом. Растворенные в жидкости посторонние молекулы связывают с адсорбентами за счет адсорбции. 4 з.п. ф-лы, 7 ил.

Изобретение относится к измерительной технике, в частности к преобразователям давления, предназначенным для использования в различных областях науки и техники, связанных с измерением давления среды в условиях воздействия нестационарной температуры измеряемой среды. Техническим результатом изобретения является значительное расширение рабочего температурного диапазона. Полупроводниковый преобразователь давления со схемой термокомпенсации содержит полупроводниковый кристалл, вырезанный в виде пластины. При этом в пластине выполнена тонкостенная диафрагма, в которой сформированы четыре тензорезистора измерительной мостовой схемы, а также два тонкопленочных резистора, подключенных первыми выводами к базе транзистора, а вторыми выводами соответственно к его эмиттеру и коллектору. Тонкопленочные резисторы выполнены из материала с малым температурным коэффициентом сопротивления. На полупроводниковом кристалле вне тонкостенной диафрагмы расположены дополнительный тензорезистивный мост и резистор с высоким температурным коэффициентом сопротивления, имеющий отдельные от общей схемы выводы. Полупроводниковый кристалл расположен на подставке, состоящей из стеклянной подложки и полой цилиндрической металлической подставки с наружной резьбой, изготовленных из материалов с одинаковыми коэффициентами теплового расширения. 3 ил.

Изобретение относится к датчикам давления, используемым для измерения технологической текучей среды и дифференциального давления. Техническим результатом изобретения является повышение точности измерений давления. Сборный узел датчика давления для измерения давления технологической текучей среды включает в себя корпус датчика с наличием полости, сформированной в нем, и первое и второе отверстия к полости, сконфигурированные для приложения первого и второго давлений. Диафрагма в полости отделяет первое отверстие от второго отверстия и сконфигурирована с возможностью изгибаться в ответ на перепад давления между первым давлением и вторым давлением. Обеспечивается емкостный датчик деформации, сконфигурированный с возможностью определять величину деформации корпуса датчика в ответ на давление в линии, приложенное к корпусу датчика. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидких и газообразных средств. Датчик содержит корпус, установленную в нем нано- и микроэлектромеханическую систему (НиМЭМС), состоящую из упругого элемента - мембраны с жестким центром, с периферийным основанием в виде оболочки вращения, образованной на ней гетерогенной структуры из тонких пленок материалов, в которой сформированы контактные площадки, первые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по одной окружности мембраны, и вторые радиальные тензорезисторы из одинаковых тензоэлементов, расположенных по другой окружности на мембране, соединенные перемычками, включенные в измерительный мост. Радиус жесткого центра определен из соотношения: rж.ц.=0,42rм, где rм - радиус мембраны. При этом тензоэлементы первых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r1=0,444rм, а тензоэлементы вторых радиальных тензорезисторов расположены по окружности, радиус которой определен из соотношения r2=0,733 rм. Техническим результатом изобретения является повышение точности за счет повышения чувствительности при одновременном уменьшении нелинейности. 5 ил.

Изобретение относится к измерительной технике и предназначено для использования в приборах измерения давления жидкостей и газов. Техническим результатом изобретения является упрощение конструкции и технологии изготовления датчика давления. Датчик давления содержит измерительный блок, упругую мембрану и, по меньшей мере, один колебательный упругий элемент (резонатор), связанный с мембраной с возможностью изменения его натяжения в соответствии с деформацией мембраны. Мембрана выполнена круглой в плане и, по крайней мере, с одним концентрическим гофром (или несколькими концентрическими гофрами), перекрытым закрепленным на его краях кольцевым резонатором из магнитного материала или с дополнительным магнитным элементом (элементами). Измерительный блок содержит по меньшей мере один электромагнит и выполнен с возможностью возбуждения колебания резонаторов и регистрации их колебаний. 11 з.п. ф-лы, 4 ил.

Изобретение относится к бесшкальным манометрам. Техническим результатом изобретения является повышение точности измерений. Датчик давления для считывания давления технологической текучей среды содержит корпус датчика, подвергаемый воздействию давления технологической текучей среды. Корпус датчика деформируется в ответ на давление. Диафрагма, подвешенная в корпусе датчика, имеет натяжение, которое изменяется в ответ на деформацию корпуса датчика. Резонансную частоту диафрагмы измеряют. Измеренная резонансная частота является показателем давления в магистрали технологической текучей среды и целостности системы разделительной заполняющей текучей среды. Кроме измерения резонансной частоты, в качестве средства диагностики для оценки состояния исправности датчика можно использовать саму моду колебаний. 3 н. и 17 з.п. ф-лы, 5 ил.

Заявленная группа изобретений относится к датчикам, которые используются в устройствах для детектирования давления текучих сред (жидкостей и газообразных сред) в различных областях, например в автомобильной промышленности, в бытовых электрических приборах, в области сохранения окружающей среды и общего контроля в гидротермальной санитарии или в области медицины. Заявленная группа изобретений включает способ для изготовления множества датчиков, в частности датчиков давления, а также датчики, полученные посредством вышеуказанного способа. Причем датчик, в частности датчик давления, имеет конструкцию, которая содержит опорный корпус (10); схемную компоновку (4), содержащую компоненты (3а, 3b, 3c, 3d) схемы, среди которых есть средство (3с) детектирования для генерации электрических сигналов, представляющих детектируемую величину; и по меньшей мере один опорный элемент (4а) схемы, который подсоединен к опорному корпусу (10) и имеет поверхность, на которой сформировано множество упомянутых компонентов (3а, 3b, 3c, 3d) схемы, среди которых есть электропроводящие дорожки (3а, 3b), причем опорный элемент (4а) схемы прикреплен посредством ламинирования на первую поверхность опорного корпуса (10). Заявленный способ для изготовления множества датчиков содержит операции: обеспечения множества опорных корпусов (10); обеспечения множества схемных компоновок (4), при этом каждая схемная компоновка содержит компоненты (3а, 3b, 3с, 3d) схемы, среди которых есть средство (3с, 12) детектирования для генерации электрических сигналов, представляющих детектируемую величину; обеспечения множества опорных элементов (4а) схемы, каждый из которых имеет поверхность, на которой сформировано множество (3а, 3b, 3с, 3d) упомянутых компонентов (3а, 3b, 3с, 3d) схемы, среди которых есть электропроводящие дорожки (3а, 3b); и подсоединения каждого опорного элемента (4а) схемы к соответственному опорному корпусу (10, 10', 10"). Технический результат заключается в изготовлении датчика, устойчивого к разнообразным условиям применения и/или к относительно высоким температурам, а также более простого, более удобного и более быстрого. 4 н. и 13 з.п. ф-лы, 26 ил.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является уменьшение погрешности датчика разности давления. Датчик давления содержит корпус, в котором герметично размещены полупроводниковые чувствительные элементы, на которых сформированы тензодатчики, две полости, заполненные электроизоляционной жидкостью и расположенные с торцов по ходу движения жидкости. Первый полупроводниковый чувствительный элемент с первым тензодатчиком расположены между полостями, второй полупроводниковый чувствительный элемент параллелен первому полупроводниковому чувствительному элементу. Корпус загерметизирован профилированными мембранами, расположенными с зазором относительно сторон корпуса. Полупроводниковые чувствительные элементы выполнены в виде микроэлектромеханических структур разной толщины. Второй чувствительный элемент со стороны тензодатчика соединен с атмосферой и имеет толщину большую, чем первый чувствительный элемент. 2 ил.

Изобретение относится к измерительной технике, в частности к преобразователям давления, и может быть использовано в различных областях науки и техники, связанных с измерением перепада давления среды. Техническим результатом изобретения является повышение надежности и работоспособности высокоточного дифференциального датчика давления во время и после кратковременных многократных перегрузок. Полупроводниковый датчик перепада давления содержит полупроводниковую мембрану из кремния, тензодатчик в виде мостовой схемы из тензорезисторов, первый стопорный элемент и второй стопорный элемент. Первый стопорный элемент выполнен из кремния и содержит стопорный выступ в области напротив канавки полупроводниковой мембраны, стопорное углубление напротив центрального выступа полупроводниковой мембраны, расположенное с зазором от центрального выступа мембраны, а также центральное сквозное отверстие. Стопорный элемент закреплен плоской стороной на стеклянной подложке из материала с одинаковым с кремнием коэффициентом теплового расширения и имеющей центральное сквозное отверстие, совпадающее с отверстием первого стопорного элемента. Второй стопорный элемент выполнен из кремния и содержит второй центральный стопорный выступ, окруженный первой канавкой, а также стопорный выступ, окруженный второй канавкой, расположенный с зазором относительно обратной стороны полупроводниковой мембраны в области напротив канавки полупроводниковой мембраны. 2 ил.

Изобретение относится к области «физика материального взаимодействия». Способ определения механических параметров нарушенной материальной среды в условиях фиксированного внешнего воздействия заключается в том, что фиксируют определяющий для исследуемой среды физический параметр внешнего воздействия - температуру Т(°С), плотность ρ (кг/см3), ускорение гравитационного притяжения (g, м/с2) и движения материального тела (α, м/с2), световое излучение, радиоактивность, электрическое и магнитное воздействие, устанавливают требуемый механический параметр материальной среды с учетом влияния физических определяющих параметров внешнего воздействия, определяют угол внутреннего трения и удельное сцепление cстр (кГ/см2) структурированной (природной) среды. Параметры угла внутреннего трения и удельного сцепления cн нарушенной среды определяют в фиксированных условиях внешнего воздействия, используя выражения а механические параметры материальной среды, используя фиксированные параметры и cн, и cстр в заданных условиях внешнего воздействия. Технический результат - возможность определения известных механических параметров нарушенной материальной среды через универсальные физические величины прочности: угол внутреннего трения и удельное сцепление, присущие всем материальным средам в структурированном и нарушенном состоянии.
Наверх