Способ горячей прокатки сляба и стан горячей прокатки



Способ горячей прокатки сляба и стан горячей прокатки
Способ горячей прокатки сляба и стан горячей прокатки
Способ горячей прокатки сляба и стан горячей прокатки

 


Владельцы патента RU 2528560:

СМС ЗИМАГ АГ (DE)

Изобретение относится к способу и стану горячей прокатки сляба (1), в частности стального сляба, и может найти применение в металлургической промышленности. Сляб (1) подвергают по меньшей мере двум стадиям обработки давлением при разных температурах в стане (2) горячей прокатки. Сляб (1) между упомянутыми стадиями обработки давлением охлаждают. Для предотвращения преждевременного образования феррита при горячей прокатке боковые концевые области (3, 4) сляба (1) охлаждают с меньшей интенсивностью, чем среднюю область (5) сляба (1). Стан содержит черновую клеть, по меньшей мере две клети горячей прокатки и расположенную между этими клетями или перед черновой клетью по меньшей мере одну станцию (7) охлаждения сляба (1). Средства для охлаждения станции (7) выполнены с возможностью обеспечения изменения интенсивности охлаждения сляба (1) по его ширине. Средства охлаждения представляют собой охлаждающую балку (12) с форсунками для выпускания охлаждающей среды (6) на сляб (1). Две заслонки форсунок охлаждающей балки (12) установлены с возможностью смещения в горизонтальном направлении поперек к направлению (W) прокатки с обеспечением частичного закрытия форсунок и с обеспечением определенной ширины выхода охлаждающей струи из охлаждающей балки (12). 2 н. и 7 з.п. ф-лы, 3 ил.

 

Изобретение касается способа горячей прокатки сляба, в частности стального сляба, при котором сляб подвергается по меньшей мере двум стадиям обработкам давлением при разных температурах в стане горячей прокатки, при этом сляб между двумя такими стадиями обработки давлением охлаждается, при этом охлаждение сляба происходит так, что боковые концевые области сляба охлаждаются с меньшей интенсивностью, чем средняя область сляба. Кроме того, изобретение касается стана горячей прокатки для горячей прокатки сляба.

Горячая прокатка сляба достаточно известна в уровне техники. При этом в качестве предпочтительного способа применяется многофазная горячая прокатка, при которой, в свою очередь, особым видом этого способа является термомеханическая прокатка (способ ТМ).

Характерным применением этого способа является производство горячекатаной стальной полосы и листа из микролегированных сталей.

Целью при этом является высокая гомогенность материала, который изготавливается из горячекатаного сляба, то есть свойства материала в материале должны быть постоянны по всему объему. Чтобы достичь этого, необходима как можно более высокая гомогенность температуры в слябе во время горячей прокатки, то есть в промежуточном слябе, благодаря чему получаются также равномерные свойства у конечного продукта.

Если отдельные операции прокатки при горячей прокатке осуществляются в нескольких температурных фазах, как это характерно для термомеханической прокатки, между отдельными фазами прокатки устанавливаются паузы, во время которых сляб равномерно охлаждается до новой, более низкой температуры. Как только заданная температура достигнута, начинается следующая фаза прокатки. При этом технологически предпочтительно, чтобы промежуточные слябы имели равномерную температуру.

В течение времени ожидания боковые области сляба охлаждаются быстрее, чем его сердцевина. Следствием этого являются холодные кромки. Эти холодные кромки могут быть проблемными при последующих проходах прокатки. Кроме того, из-за них могут ухудшаться свойства конечного продукта. Так как интервалы времени ожидания между фазами прокатки возрастают с толщиной сляба, эта проблема у толстых промежуточных слябов может встречаться особенно часто.

Способ вышеназванного вида известен из EP 2305392 A1. В JP 7150229 описано покрытие краевых областей сляба посредством задвигающихся покрывающих плит. В EP 0823294 A1 и EP 0885974 A1 описываются другие решения.

Поэтому в основу настоящего изобретения положена задача усовершенствовать способ и соответствующий прокатный стан вышеназванного рода в том отношении, чтобы предотвращались вышеназванные недостатки. Соответственно этому должно быть возможно поддерживать высокое качество промежуточного сляба и конечного продукта. Кроме того, должна обеспечиваться возможность оптимального выполнения процесса горячей прокатки после первого охлаждения сляба.

Решение этой задачи с помощью изобретения в соответствии со способом отличается тем, что управление процессом охлаждения происходит с помощью соответствующего расчета температуры так, что предотвращается опускание температуры ниже температуры выделения феррита, так что вероятное нежелательное образование феррита исключается, при этом две заслонки, покрывающие форсунки охлаждающей балки, смещаются в горизонтальном направлении поперек к направлению прокатки так, что получается определенная ширина выхода охлаждающей струи охлаждающей балки.

Охлаждение сляба происходит предпочтительно путем подачи охлаждающей среды, при этом боковые концевые области сляба по меньшей мере частично ограждаются от охлаждающей среды.

Охлаждение сляба может происходить в промежуточной клети для охлаждения или на участке охлаждения.

Путем управления активным охлаждением при известных условиях обеспечивается, чтобы во время активной фазы охлаждения не происходило нежелательного превращения аустенита в феррит.

Горячая прокатка сляба при этом предпочтительно представляет собой многофазную прокатку, в частности термомеханическую прокатку.

Предлагаемый стан горячей прокатки для горячей прокатки сляба включает в себя по меньшей мере две клети горячей прокатки, при этом либо между этими клетями, либо перед черновой клетью расположена по меньшей мере одна станция охлаждения, в которой сляб может охлаждаться, при этом станция охлаждения включает в себя средства, с помощью которых задаваемая интенсивность охлаждения сляба по ширине сляба может изменяться таким образом, чтобы охлаждение сляба происходило так, чтобы боковые концевые области сляба охлаждались с меньшей интенсивностью, чем средняя область сляба, причем эти средства представляют собой охлаждающую балку для выпускания охлаждающей среды на сляб. Стан горячей прокатки отличается тем, что ширина струи охлаждающей среды может регулироваться по ширине сляба, при этом две заслонки, покрывающие форсунки охлаждающей балки, установлены с возможностью смещения в горизонтальном направлении поперек к направлению прокатки, так что получается определенная ширина выхода охлаждающей струи охлаждающей балки.

Станция охлаждения предпочтительно представляет собой промежуточную клеть для охлаждения или участок охлаждения.

Итак, в соответствии с изобретением при горячей прокатке выполняется активное промежуточное охлаждение, которое рассчитано так, что боковые области (кромки) сляба одновременно не охлаждаются. После активного охлаждения и по прошествии времени выравнивания получают, таким образом, сляб, который имеет более равномерную температуру, чем традиционно охлаждаемый сляб, независимо о того, происходит ли охлаждение активно или пассивно (на воздухе).

Наконец, стан горячей прокатки отличается тем, что ширина охлаждения устанавливается посредством электрических или механических устройств на соответствующую ширину охлаждения.

На чертеже изображены примеры осуществления изобретения. Показано:

фиг.1 - схематично вид сбоку стана горячей прокатки, причем представлены только две клети горячей прокатки с расположенной между ними станцией охлаждения,

фиг.2 - схематично сечение A-B, указанное на фиг.1, изображенное для верхней половины станции охлаждения, и

фиг.3 - схематично сечение A-B, указанное на фиг.1, изображенное для верхней половины станции охлаждения, причем изображено альтернативное решение.

На фиг.1 показан схематично стан 2 горячей прокатки, на котором может прокатываться сляб 1. Для этого имеется некоторое количество клетей 8, 9 горячей прокатки, причем изображены только две из этих клетей. Сляб при прокатке транспортируется в направлении W прокатки и при этом известным образом прокатывается. Сляб при прокатке подвергается термомеханической обработке.

Соответственно этому сляб 1 в первой клети 8 горячей прокатки подвергается обжатию по толщине. За клетью 8 сляб охлаждается, для чего он направляется через станцию 7 охлаждения, которая в настоящем случае выполнена в виде промежуточной клети для охлаждения.

За станцией 7 охлаждения происходит повторная прокатка сляба 1, теперь в клети 9 горячей прокатки, причем при более низкой температуре, чем в прокатной клети 8.

Охлаждение сляба 1 в станции 7 охлаждения происходит путем распыления охлаждающей среды 6, здесь в виде воды. Для этого имеются собственно известные охлаждающие балки 12.

Как происходит охлаждение сляба 1 по первому варианту осуществления, видно из фиг.2. После этого сляб 1 под распыленной струей охлаждающей среды 6 в направлении W прокатки проходит под охлаждающей балкой (снизу сляб также - что не изображено - опрыскивается охлаждающей балкой), благодаря чему сляб 1 охлаждается. Чтобы уменьшить охлаждение в боковых концевых областях 3 и 4 сляба 1, имеются покрывающие щитки 10 и 11, которые в направлении двойных стрелок смещаются в направлении середины сляба настолько, что достаточно большая боковая область сляба защищается от непосредственного контакта с охлаждающей средой 6. При этом средняя область 5 сляба получает от охлаждающей среды полную интенсивность охлаждения.

Путем выбора положения покрывающих щитков 10 и 11 можно воздействовать на то, насколько должны защищаться боковые области 3, 4 сляба 1, так что в целом путем выбора указанных параметров может обеспечиваться гомогенное распределение температуры по ширине сляба 1. Ширина и положение сляба известны из последнего процесса центрирования сляба перед станцией 7 охлаждения и могут передаваться с уровня 2 (Level-2). Регулирование или соответственно позиционирование покрывающих щитков 10 и 11 происходит соответственно.

Все же относительно быстрое и поэтому экономичное прокатное производство становится возможным, так как путем активного охлаждения в станции 7 охлаждения может происходить быстрое охлаждение сляба 1, так что вскоре может осуществляться последующий другой процесс горячей прокатки в клети 9.

Другой вариант осуществления настоящей концепции изображен на фиг.3. В соответствии с ним применяется охлаждающая балка 12, которая покрывает достаточную ширину сляба 1. Впрочем, на охлаждающей балке 12 предусмотрены заслонки 10' и 11', которые закрывают краевые области охлаждающей балки 12, а именно находящиеся там форсунки, так что ширина охлаждающей среды может регулироваться на большую или меньшую величину. Для этого заслонки 10' и 11' соответственно смещаются в направлении двойной стрелки. Эффект тот же самый, что и при решении в соответствии с фиг.2. На боковые концевые области 3, 4 сляба 1 подается меньшее количество охлаждающей среды, поэтому средняя область 5 охлаждается с максимальной интенсивностью.

То есть кромки сляба могут во время активного охлаждения либо защищаться выдвигающимися «выдвижными ящиками» (как на участке охлаждения), решение в соответствии с фиг.2, или за счет того, что соответственно настраиваются только охлаждающие балки, схема разбрызгивания которых рассчитана на данную ширину сляба - решение в соответствии с фиг.3.

Конечно, возможны также другие технические воплощения предлагаемой изобретением концепции.

Соответственно этому предотвращается проблема холодных кромок промежуточного сляба 1; сляб приобретает гомогенную температуру по поперечному сечению.

Перечень позиций

1 Сляб

2 Стан горячей прокатки

3 Боковая концевая область сляба

4 Боковая концевая область сляба

5 Средняя область сляба

6 Охлаждающая среда

7 Станция охлаждения (промежуточная клеть для охлаждения)

8 Клеть горячей прокатки

9 Клеть горячей прокатки

10 Средства для покрытия

10' Средства для покрытия

11 Средства для покрытия

11' Средства для покрытия

12 Охлаждающая балка

W Направление прокатки

1. Способ горячей прокатки сляба (1), в частности стального сляба, при котором сляб (1) подвергают по меньшей мере двум стадиям обработки давлением при разных температурах в стане (2) горячей прокатки, при этом сляб (1) между двумя стадиями обработки давлением активно охлаждают, причем в процессе охлаждения сляба (1) боковые концевые области (3, 4) сляба (1) охлаждают с меньшей интенсивностью, чем среднюю область (5) сляба (1), отличающийся тем, что охлаждение осуществляют струей охлаждающей среды определенной ширины, подаваемой из форсунок охлаждающей балки (12), имеющих заслонки (10', 11'), причем в структуре сляба исключают образование феррита путем предотвращения понижения температуры охлаждения ниже температуры выделения феррита, при этом две заслонки (10', 11') форсунок охлаждающей балки (12) смещают в горизонтальном направлении поперек к направлению (W) прокатки и, по меньшей мере, частично закрывают заслонками (10', 11') для обеспечения заданной ширины выхода охлаждающей струи из охлаждающей балки (12).

2. Способ по п.1, отличающийся тем, что боковые концевые области (3, 4) сляба (1), по меньшей мере, частично ограждают от охлаждающей среды (6).

3. Способ по п.1 или 2, отличающийся тем, что охлаждение сляба (1) проводят в промежуточной клети (7) для охлаждения.

4. Способ по п.1 или 2, отличающийся тем, что охлаждение сляба (1) проводят на участке охлаждения.

5.Способ по п.1 или 2, отличающийся тем, что осуществляют многофазную горячую прокатку сляба (1), в частности термомеханическую прокатку.

6. Стан (2) горячей прокатки сляба (1), в частности стального сляба, включающий в себя черновую клеть, по меньшей мере две клети (8, 9) горячей прокатки и расположенную между этими клетями или перед черновой клетью по меньшей мере одну станцию (7) охлаждения сляба (1), причем станция (7) охлаждения сляба включает в себя средства для охлаждения, выполненные с возможностью обеспечения изменения интенсивности охлаждения сляба (1) по его ширине путем охлаждения боковых концов области (3, 4) сляба (1) с меньшей интенсивностью, чем средней области (5) сляба (1), при этом средства охлаждения представляют собой охлаждающую балку (12) с форсунками для выпускания охлаждающей среды (6) на сляб (1), отличающийся тем, что средства охлаждения выполнены с возможностью регулирования ширины струи охлаждающей среды (6) по ширине сляба (1) и снабжены двумя заслонками (10', 11') форсунок охлаждающей балки (12), установленными с возможностью смещения в горизонтальном направлении поперек к направлению (W) прокатки с обеспечением частичного закрытия форсунок и с обеспечением определенной ширины выхода охлаждающей струи из охлаждающей балки (12).

7. Стан горячей прокатки по п.6, отличающийся тем, что станция (7) охлаждения выполнена в виде промежуточной клети для охлаждения.

8. Стан горячей прокатки по п.6, отличающийся тем, что станция (7) охлаждения представляет собой участок охлаждения стана горячей прокатки, в частности промежуточную клеть для охлаждения.

9. Стан горячей прокатки по любому из пп.6-8, отличающийся тем, что он снабжен электрическими или механическими устройствами для установки соответствующей ширины охлаждения.



 

Похожие патенты:

Изобретение относится к области металлургии. Для повышения в горячекатаном стальном листе сопротивления усталости проводят черновую прокатку со степенью обжатия 80% или более и чистовую прокатку при температуре подачи чистовой прокатки в диапазоне 800-950°С стали, содержащей в мас.%: С 0,05-0,15, Si 0,2-1,2, Mn 1,0-2,0, Al 0,005-0,10, N 0,006 или менее, и по меньшей мере один элемент, выбранный из: Ti 0,03-0,13, Nb 0,02-0,10 и V 0,02-0,15, железо и неизбежные примеси - остальное.
Изобретение относится к области металлургии, а именно к созданию стального листа толщиной не более 3 мм, используемого при изготовлении конструкционных деталей автомобилей, элементов конструкций зданий, мебели, приборных щитов.

Изобретение относится к области металлургии. Для обеспечения хорошей формуемости листа при прессовании в производственных условиях получают холоднокатаный стальной лист, содержащий, мас.%: С 0,005 или менее, Si 0,1 или менее, Мn 0,5 или менее, Р 0,03 или менее, S 0,02 или менее, N 0,005 или менее, Аl 0,1 или менее, Ti от 0,020 до 0,1 (включая 0,020 и 0,l), Fe и случайные примеси - остальное, в котором размер частиц TiN не превышает 0,5 микрон, размер частиц сульфида Ti и/или карбосульфида Ti не превышает 0,5 микрон, диаметр частиц феррита не превышает 30 микрон, отношение интенсивностей рентгеновских дифракционных линий (111)//ND в произвольно ориентированном образце составляет по меньшей мере 3 и отношение интенсивностей рентгеновских дифракционных линий (100)//ND в произвольно ориентированном образце не превышает 1.

Изобретение относится к области металлургии, а именно к листу конструкционной нержавеющей стали. Лист выполнен из стали, содержащей, в мас.%: от 0,01 до 0,03 С, от 0,01 до 0,03 N, от 0,10 до 0,40 Si, от 1,5 до 2,5 Мn, 0,04 или менее Р, 0,02 или менее S, от 0,05 до 0,15 Аl, от 10 до 13 Сr, от 0,5 до 1,0 Ni, 4×(C+N) или более и 0,3 или менее Ti, Fe и неизбежные примеси в качестве остального, при этом V, Сa и О регулируются в неизбежных примесях: 0,05 или менее V, 0,0030 или менее Сa и 0,0080 или менее О.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении электросварных труб для строительства газопроводов и нефтепроводов в северных районах и сейсмических зонах.

Изобретение относится к обработке металлов давлением и может быть использовано для упрочнения металла в процессе обработки. Для повышения прочностных характеристик производимой стали осуществляют нагрев заготовки выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку в температурном диапазоне 950-770°C в течение не менее 60 с с обеспчением формирования наноразмерных выделений Nb-Nb, и/или Nb-Ti, и/или Nb-Mo, и/или Мо-Мо в матрице парамагнитного кубического гранецентрированного и/или объемноцентрированного железа и последующую термическую обработку в интервале 680-450°C в течение не менее 80 с, обеспечивающую формирование наноразмерных выделений Cu-Cu и/или Cu-Ni в матрице ферромагнитного кубического объемноцентрированного железа.

Изобретение относится к способу термомеханической обработки для получения толстого листа (1) из исходного материала с повышенной вязкостью, в частности низкотемпературной вязкостью.

Изобретение относится к области металлургии, а именно к производству высокопрочного холоднокатаного стального листа. Лист выполнен из стали, содержащий в мас.%: 0,06-0,12 С, 0,4-0,8 Si, 1,6-2,0 Mn, 0,01-1,0 Cr, 0,001-0,1 V, 0,05 или менее Р, 0,01 или менее S, 0,01-0,5 растворимого алюминия (sol.

Группа изобретений относится к области металлургии, в частности изготовлению горячекатаного листа, из которого производят спиральношовную трубу. Для обеспечения высокой ударной вязкости и прочности соответственно стандарту API5L-Х80 или более получают горячекатаный стальной лист, содержащий предварительно заданные компоненты, и удовлетворяющий условиям 0<S/Са<0,8, N-14/48×Ti≥«0» (нуль), мас.%, в котором доля проэвтектоидного феррита составляет 3% или более и 20% или менее и остальное представляет собой фазу низкотемпературного превращения в микроструктуре на глубине половины толщины листа по его толщине от поверхности стального листа, среднечисленный размер кристаллического зерна во всей микроструктуре в целом составляет 2,5 мкм или менее, усредненный по площади размер зерна составляет 9 мкм или менее, среднеквадратичное отклонение от усредненного по площади размера зерна составляет 2,3 мкм или менее и отношение интенсивностей рентгеновских рефлексов {211}/{111} в направлении {211} и в направлении {111} относительно плоскости, параллельной поверхности стального листа, на глубине половины толщины листа по его толщине от поверхности стального листа составляет 1,1 или более.

Изобретение относится к области термомеханической обработки для изготовления стального проката с требуемыми свойствами. Для обеспечения требуемого уровня потребительских свойств металлопроката получают заготовку из стали, содержащей, мас.%: C 0,05-0,18, Si 0,05-0,6, Mn 1,30-2,05, S не более 0,015, P не более 0,020, Cr 0,02-0,35, Ni 0,02-0,45, Cu 0,05-0,30, Ti не более 0,050, Nb 0,010-0,100, V не более 0,120, N не более 0,012, Al не более 0,050, Mo не более 0,45, железо и неизбежные примеси остальное.

Изобретение относится к устройству и способу горячей прокатки стальных полос (3) в нескольких следующих друг за другом прокатных клетях (F1-F5), причем стальные полосы прокатывают начисто до конечной толщины сначала в аустенитном состоянии и затем, после интенсивного охлаждения жидкостью, в ферритном состоянии в одной или более прокатных клетях.
Изобретение относится к прокатке высококремнистой полосовой стали с содержанием Si 2,3 мас.%. Предотвращение растрескивания головного и хвостового участков полосовой стали обеспечивается за счет того, что на начальном этапе температуру входного участка полосы устанавливают более 45°C, а затем поддерживают, при проведении холодной прокатки на полосу распыляют эмульсионную жидкость, причем на входном участке расход эмульсионной жидкости составляет 3500 л/мин, на выходном участке - от 1500 до 4000 л/мин, при этом при первом проходе прокатки степень обжатия составляет от 20 до 40%, заднее натяжение - от 8 до 30 Н/мм2, а переднее натяжение - от 50 до 2000 Н/мм2, при промежуточных проходах прокатки степень обжатия составляет от 18 до 38%, заднее натяжение - от 40 до 150 Н/мм2, а переднее натяжение - от 60 до 350 Н/мм2, а при чистовом проходе прокатки степень обжатия составляет от 15 до 35%, заднее натяжение - от 60 до 300 Н/мм2, а переднее натяжение - от 90 до 450 Н/мм2.

Изобретение относится к области металлургии. Для обеспечения контролируемого равномерного охлаждения рулона горячей полосы и получения однородных свойств рулон (1) горячей полосы (2) размещают в устройстве промежуточного хранения, при этом рулон опирают и вращают (100) посредством контакта его боковой поверхности (5) с, по меньшей мере, одним элементом для охлаждения в виде ролика (3, 7).

Изобретение относится к металлургии. Металлический рулон (В) горячей полосы, имеющий температуру более 200°С, перемещают внутри корпуса (4) устройства (2) утилизации энергии в первом направлении поступательного движения и обтекают газообразной средой (G).
Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах. Для повышения производительности процесса способ включает нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, при этом охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала.

Изобретение относится к области металлургии. .

Изобретение относится к области металлургии, в частности к охлаждающим устройствам при горячей прокатке стальной полосы. .

Изобретение относится к способу ускоренного охлаждения и прямого закаливания горячекатаного металла, в частности стальных полос или листов, и устройству для регулируемого охлаждения горячекатаного металла в форме листов или полосы с использованием устройств для зонально-разделительного впрыскивания для удержания охлаждающей текучей среды на верхней поверхности листа или полосы в одной области, которые являются регулируемыми в зависимости от величины расхода потока наносимого охладителя, что обеспечивает хорошую плоскостность охлажденных листов или полос.

Изобретение относится к способу подачи смазки в очаг деформации и может быть использовано при прокатке, волочении, штамповке металлов. .

Изобретение относится к способу охлаждения прокатываемого материала секцией охлаждения, которая имеет множество выпусков охладителя, посредством которых в нормальном режиме работы секции охлаждения на проходящий через секцию охлаждения прокатываемый материал может наноситься охладитель,- причем выпуски охладителя снабжают охладителем через питающие магистрали, включая магистральный трубопровод и ответвления, в которых расположено по одному клапану,- причем клапаны могут открываться и закрываться по отдельности, так что посредством клапанов подача охладителя на выпуски охладителя по ответвлениям может устанавливаться и прерываться,- причем ответвления снабжают охладителем через общий для ответвлений магистральный трубопровод, - причем устройство автоматизации секции охлаждения в нормальном режиме работы секции охлаждения открывает клапаны в специфические для клапана моменты времени открывания и закрывает в специфические для клапана моменты времени закрывания, чтобы наносить охладитель на прокатываемый материал согласно требуемому изменению количества охладителя,- причем в проверочном режиме работы секции охлаждения, по меньшей мере, для некоторых из клапанов определяют соответствующую специфическую для клапана характеристику посредством открывания и закрывания соответствующего клапана и выявления вызванного этим изменения во времени количественного потока охладителя посредством размещенного в магистральном трубопроводе измерительного устройства.

Изобретение относится к способу и устройству для подготовки подвергаемого горячей прокатке материала перед деформацией в прокатной клети или группе (16) прокатных клетей.
Наверх