Способ определения коррозионного состояния подземной части железобетонных опор



Способ определения коррозионного состояния подземной части железобетонных опор
Способ определения коррозионного состояния подземной части железобетонных опор
Способ определения коррозионного состояния подземной части железобетонных опор

 


Владельцы патента RU 2528585:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет путей сообщения" (ОмГУПС (ОмИИТ)) (RU)

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения коррозионного состояния подземной части железобетонных опор электрохимическим методом без их откопки. Способ определения коррозионного состояния подземной части железобетонных опор содержит измерение стационарного потенциала арматуры относительно электрода сравнения, подключение между арматурой опоры и токовым электродом через электронный ключ источника постоянного напряжения, выполнение в переходном режиме измерений тока, проходящего через арматуру опоры и потенциала арматуры опоры относительно электрода сравнения. Затем осуществляют определение по полученным данным сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон», оценку коррозионного состояния подземной части железобетонной опоры по полученным значениям сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон». Причем в качестве токового электрода используют соседнюю опору, измерения выполняют синхронно на обеих опорах. Техническим результатом является обеспечение возможности проведения измерений на двух опорах одновременно за счет того, что вторая опора служит токовым электродом для первой и измерения выполняются синхронно на обеих опорах, а также сокращение временных затрат на определение коррозионного состояния подземной части железобетонных опор. 3 ил.

 

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения коррозионного состояния подземной части железобетонных опор электрохимическим методом без их откопки.

Известен электрохимический метод, заключающийся в поляризации арматуры железобетонного сооружения калиброванным импульсом постоянного тока по цепи «арматура-земля-рельс» и регистрации спада потенциала «арматура-грунт» после отключения источника. Для исключения влияния наведенных потенциалов осуществляется положительная и отрицательная поляризация, а оценка коррозионного состояния арматуры железобетонного сооружения производится по значению суммарного потенциала, равного сумме потенциала «арматура-грунт», измеренного в заданный момент времени l после отключения источника отрицательной поляризации, и потенциала «арматура-грунт», измеренного в заданный момент времени t после отключения источника положительной поляризации (Вайиштейн А.Л., Павлов А.В. Коррозионные повреждения опор контактной сети. М., 1988. 111 с.).

Недостатком данного метода является низкая достоверность, т.к. при измерении потенциала «арматура-грунт» в заданный момент времени t после отключения источника поляризации невозможно выделить омическую и поляризационную составляющие этого потенциала.

Наиболее близким к предлагаемому является способ определения коррозионного состояния подземной части железобетонных опор, согласно которому измеряют стационарный потенциал арматуры относительно электрода сравнения, между арматурой опоры и токовым электродом подключают через электронный ключ источник постоянного напряжения (например, аккумуляторную батарею), в переходном режиме выполняют измерение тока, проходящего через арматуру опоры и потенциала арматуры опоры относительно электрода сравнения, по полученным данным определяют сопротивление бетона, сопротивление и емкость границы раздела «арматура-бетон», оценку коррозионного состояния подземной части железобетонной опоры производят по полученным значениям сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон» (Патент 2439536, Россия, МПК G01N 17/00. Способ определения коррозионного состояния подземной части железобетонных опор / Кандаев В.А., Авдеева К.В., Кандаев А.В.).

Недостатками данного способа являются значительные временные затраты на выполнение диагностических процедур, необходимость в установке токового электрода и невозможность проведения измерений на двух опорах одновременно.

Цель изобретения - сокращение временных затрат на определение коррозионного состояния подземной части железобетонных опор и обеспечение возможности проведения измерений на двух опорах одновременно.

Для достижения поставленной цели в предлагаемом способе определения коррозионного состояния подземной части железобетонных опор, содержащем измерение стационарного потенциала арматуры относительно электрода сравнения, подключение между арматурой опоры и токовым электродом через электронный ключ источника постоянного напряжения (например, аккумуляторной батареи), выполнение в переходном режиме измерений тока, проходящего через арматуру опоры и потенциала арматуры опоры относительно электрода сравнения, определение по полученным данным сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон», оценку коррозионного состояния подземной части железобетонной опоры по полученным значениям сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон», в качестве токового электрода используют соседнюю опору, измерения выполняют синхронно на обеих опорах.

На фиг.1 представлена функциональная схема установки, реализующей измерения по данному способу, на фиг.2 - общий вид осциллограммы тока и напряжения.

Установка содержит аккумуляторную батарею 1, электронный ключ 2, безреактивные шунты 3 и 3', запоминающие осциллографы 4 и 4', электроды сравнения 5 и 5'.

Аккумуляторную батарею 1 и электронный ключ 2 подключают между арматурами двух соседних опор (опорой №1 и опорой №2). Измерения с помощью запоминающих осциллографов 4 и 4' выполняют синхронно на обеих опорах (опоре №1 и опоре №2), причем потенциал арматуры опоры №2 будет противоположен по знаку потенциалу арматуры опоры №1 (т.е. осциллограмма для опоры №2 от момента времени t0 до момента времени t5 будет зеркальна к осциллограмме для опоры №1 относительно оси времени).

В течение интервала времени от 0 до t0 производят N равномерно распределенных во времени измерений стационарного потенциала арматуры U0(t) опоры №1 и опоры №2 относительно медно-сульфатных электродов сравнения 5 и 5' соответственно, находят математическое ожидание M(U0) (среднее значение) в этом интервале по формуле:

M ( U 0 ) = i = 1 N U N .

Принимают U0 равным M(U0).

Затем в момент времени t0 между арматурой железобетонной опоры №1 и арматурой железобетонной опоры №2 подключают через электронный ключ 2 аккумуляторную батарею 1. Арматура поляризуется в течение интервала времени от t0 до t1 током по цепи «аккумуляторная батарея 1 - электронный ключ 2 - безреактивный шунт 3' - арматура опоры №2 - земля - арматура опоры №1 - безреактивный шунт 3 - электронный ключ 2 - аккумуляторная батарея 1». В момент времени t=t4 с помощью электронного ключа 2 происходит смена полярности приложенного напряжения, при t=t5 происходит отключение источника постоянного напряжения (аккумуляторной батареи) 1.

По полученной осциллограмме (фиг.2) определяют:

t1 - момент времени, в который поляризующий ток достигает максимума, с;

I1 - максимальное значение поляризующего тока (момент времени t1), А;

U1 - значение напряжения «арматура-электрод сравнения» в момент t1 В.

Сопротивление бетона, сопротивление и емкость границы раздела «арматура-бетон» для опоры №1 и опоры №2 определяются по формулам, приведенным ниже.

Сопротивление бетона определяется по следующей формуле:

R б = | U 1 U 0 I 1 | ,

Сопротивление границы раздела определяется по формуле:

R г р = | U 2 U 0 I 2 | R б ,

где U2 - значение напряжения в момент времени t2, В;

I2 - значение поляризующего тока в момент времени t2, А;

t2 - момент времени, предшествующий переключению поляризующего тока, с;

Далее определяется постоянная времени τ из следующего соотношения:

τ=t3-t1

где t3 - момент времени, определяемый для значения тока t3, которое равно:

I 3 = i ( t 3 ) = I 2 + I 1 I 2 e ,

где е - основание натурального логарифма, е≈2,718.

Емкость границы раздела Сгр определяется по формуле:

С г р = τ R э ,

где R э = R г р ( R б + R ш + R о п ) R г р + R б + R ш + R о п ,

Rоп - сопротивление растеканию опоры (если Сгр определяется для опоры №1, то берется сопротивление растеканию опоры №2, а если Сгр определяется для опоры №2, то берется сопротивление растеканию опоры №1, поскольку в данном случае соседняя опора используется в качестве токового электрода), Ом;

Rш - сопротивление безреактивного шунта, Ом.

Смена полярности поляризующего тока производится в момент времени t4 и выполняются измерения, вычисляются параметры:

t1o - момент времени, в который поляризующий ток обратной полярности достигает максимума, с;

I1o - максимальное значение поляризующего тока обратной полярности (момент времени tK)), А;

U1o - значение напряжения «арматура-электрод сравнения» при поляризующем токе обратной полярности в момент tlo, В;

t2o - момент времени, предшествующий выключению поляризующего тока обратной полярности, с;

U2o - значение напряжения при поляризующем токе обратной полярности в момент времени t2o, В;

I - значение поляризующего тока обратной полярности в момент времени t2o, А.

В момент времени t5 производят выключение поляризующего тока обратной полярности.

Оценка коррозионного состояния подземной части железобетонных опор №1 и №2 производится по полученным значениям сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон».

Эквивалентная электрическая схема замещения железобетонной опоры приведена на фиг.3 (Г.П.Маслов, Н.Ю.Свешникова, А.В.Кандаев. Методика определения параметров границы раздела «арматура-бетон» // Научные проблемы транспорта Сибири и Дальнего Востока, 2008. №1. С.282-286.). Граница раздела «арматура-бетон» представлена элементами Rгр, Сгр и U0. Сопротивление границы раздела Rгр характеризует интенсивность окислительного процесса. Емкость границы раздела Сгр создается на границе раздела «металл-электролит», при этом одной обкладкой является металл арматуры, другой - жидкий приэлектродный слой из диссоциированных полярных молекул. Стационарный потенциал U0 представляет собой собственный потенциал арматуры относительно медно-сульфатного электрода сравнения. Сопротивление бетона Rб - сопротивление от границы раздела «арматура-бетон» до внешней границы опоры - определяется параметрами состояния бетона и параметрами внешней среды.

В данном способе обеспечивается возможность проведения измерений на двух опорах одновременно за счет того, что вторая опора служит токовым электродом для первой и измерения выполняются синхронно на обеих опорах. Кроме того, использование данного способа позволит сократить временные затраты на определение коррозионного состояния подземной части железобетонных опор.

Способ определения коррозионного состояния подземной части железобетонных опор, содержащий измерение стационарного потенциала арматуры относительно электрода сравнения, подключение между арматурой опоры и токовым электродом через электронный ключ источника постоянного напряжения, измерение тока, проходящего через арматуру опоры, и потенциала арматуры опоры относительно электрода сравнения в переходном режиме, определение по полученным данным сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон», оценку коррозионного состояния подземной части железобетонной опоры по полученным значениям сопротивления бетона, сопротивления и емкости границы раздела «арматура-бетон», отличающийся тем, что в качестве токового электрода используют соседнюю опору, измерения выполняют синхронно на обеих опорах.



 

Похожие патенты:

Предлагаемое техническое решение относится к области прогнозирования долговечности (срока службы) лакокрасочных покрытий, предназначенных для защиты металлических поверхностей промышленных объектов от коррозии, в том числе конструкций для хранения различных жидкостей, в особенности нефтепродуктов.

Изобретение относится к сельскому хозяйству, в частности к агропочвоведению, и может быть использовано для воспроизводства дождя в лабораторных и полевых условиях.
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы.

Изобретение относится к области силовой лазерной оптики и касается способа определения плотности дефектов поверхности оптической детали. Способ включает в себя облучение участков поверхности оптической детали пучком импульсного лазерного излучения с гауссовым распределением интенсивности, регистрацию разрушения поверхности, наиболее удаленного от точки максимальной интенсивности пучка лазерного излучения, определение соответствующего этому разрушению значения интенсивности пучка εi, определение зависимости плотности вероятности f(ε) разрушения поверхности оптической детали от интенсивности излучения и выбор наименьшего значения интенсивности пучка εimin.

Изобретение относится к области исследования устойчивости металлов и сплавов к воздействию агрессивных сред и может быть использовано, в частности, для оценки надежности и долговечности сварных труб, предназначенных для строительства нефтегазопроводов.

Изобретение относится к области металлургии, конкретнее к контролю коррозионной стойкости против локальной коррозии стальных изделий, предназначенных для эксплуатации в агрессивных средах.

Способ управления является способом управления кондиционером воздуха, чтобы переводить состояние в замкнутом пространстве в предварительно определенное целевое состояние.

Изобретение относится к испытательной технике, а именно к устройствам для контроля процесса деградации защитных гальванических и лакокрасочных покрытий, находящихся в эксплуатационных условиях под действием внешней агрессивной среды.

Изобретение относится к машиностроению, а именно к способам оценки работоспособности сварных соединений в условиях одновременного воздействия циклических нагрузок и коррозионных сред, и может быть использовано для решения научно-исследовательских задач.

Изобретение относится к системе мониторинга коррозионных процессов на стальных подземных и подводных сооружениях, находящихся под слоем бетона, для определения опасности коррозии стали и контроля эффективности электрохимической защиты.

Изобретение относится к области контроля качества стальных изделий, предназначенных для эксплуатации в агрессивных средах, оказывающих коррозионное воздействие на металлы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды. Причем образцы подвергают предварительной деформации растяжением со степенями 1-10%. Затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов. Далее образцы разрушают на воздухе методом растяжения на разрывной машине, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний. При этом о стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле: ξ = δ 5 0 − δ 5 H δ 5 0 ⋅ 100 % , где - δ 5 0 - относительное удлинение в исходном состоянии; δ 5 H - относительное удлинение после испытаний, при этом стали, для которых значение ξ составляет от 0 до +10%, относят к 1-му классу стойкости, стали, для которых значение ξ составляет более +10% или от минус 10% до 0%, относят ко 2-му классу стойкости, стали, для которых значение ξ составляет менее минус 10%, относят к 3-му классу стойкости. Техническим результатом является повышение информативности и достоверности при снижении длительности проведения контроля на стойкость против коррозионного растрескивания с учетом склонности стали к неоднородности пластической деформации, а также возможность ранжирования сталей по классам стойкости против коррозионного растрескивания под напряжением. 1 з.п. ф-лы, 2 табл.

Изобретение относится к способам испытаний, в частности для оценки и повышения показателей надежности изделия. Для обеспечения уровня надежности изделия определяют исходное его состояние по характеристикам остаточной дефектности. Дальнейший количественный мониторинг надежности осуществляют на основе непрерывного мониторинга эксплуатационных нагрузок. В случае, если определенные таким образом новые вероятности разрушения, течи или другого опасного события станут недопустимо высокими, эксплуатацию изделия приостанавливают и проводят контроль его состояния неразрушающими методами с последующим ремонтом выявленных недопустимых в эксплуатации дефектов. После этого определяют новое положение кривой остаточной дефектности и осуществляют последующую эксплуатацию до тех пор, пока уровень надежности не опустится до недопустимых значений. Достигается повышение ресурса изделия. 7 ил.
Изобретение относится к лабораторным методам оценки коррозионной активности реактивных топлив. Способ оценки коррозионной активности реактивных топлив заключается в определении убыли веса медьсодержащего материала, помещенного в топливо, до и после испытания, при повышенной температуре. При этом в качестве медьсодержащего материала используют медную фольгу, которую помещают в топливо и выдерживают в герметично закрывающихся бомбах, выполненных в виде металлических сосудов, при температуре 150±2°C в течение 4-х часов при проведении выдержки в 2 этапа по 2 часа со сменой топлива после первого этапа, причем чем больше убыль веса медной фольги до и после испытания, тем большей коррозионной активностью обладает реактивное топливо. Достигается повышение надежности и ускорение оценки. 1 табл.

Изобретение относится к области приборостроения, а именно к индустрии контроля воздушной среды с целью учета ее агрессивного действия как на человека, так и на создаваемые им материальные объекты. В частности, оно предназначено для выяснения, в каких климатических условиях находились или будут находиться разнообразные конструкции и устройства. Способ определения коррозионной активности воздушной среды основан на определении коррозионной активности двумя аналогичными металлическими образцами, различающимися только своими теплоемкостями. Различие в теплоемкости обеспечивают тремя вариантами: различием масс образцов, подсоединением к одному из образцов массивного металлического элемента, подсоединением к одному из образцов теплового аккумулятора, заполненного известными теплоемкими веществами. Способ может быть использован для выяснения, в каких условиях эксплуатировались разнообразные устройства. Техническим результатом является обеспечение возможности определения климатического фактора - климатической составляющей коррозионной активности воздушной среды. 3 з.п. ф-лы, 4 ил.

Изобретение относится к способам обеспечения надежности изделий при эксплуатации. Для повышения эффективности эксплуатации изделий определяют среднюю продолжительность tк контроля изделия, среднюю длительностью tр ремонта изделия, стоимость Ур ремонта изделия в единицу времени, стоимость Ук контроля изделия в единицу времени, прибыль ∋о в единицу времени от эксплуатации изделия без отказов, среднее число отказов В(k) изделия в единицу времени при числе контролей k, составляют зависимость эффективности ∋ эксплуатации изделия от упомянутых параметров надежности, контроля и ремонта. Оптимальное число контролей k определяют из условия d∋/dk=0. Обеспечивается надежность изделий при минимальных затратах. 3 ил.

Изобретение относится к способам испытаний герметичности изделий. Для повышения достоверности контроля герметичности изделий определяют действующее во время эксплуатации напряжение σэ в изделии, определяют максимально допустимое напряжение в изделии σдоп, нагружают изделие и создают в нем напряжение величиной от 1,25σэ до 0,97σдоп, сбрасывают нагрузку полностью и проводят контроль герметичности изделия. Достигается повышение качества контроля и надежности контролируемых изделий. 5 ил.

Изобретение относится к способам испытаний и вихретокового контроля (ВТК) изделий. Способ повышения достоверности вихретокового неразрушающего дефектоскопического контроля состоит в том, что перед проведением ВТК изделие нагружают нагрузкой, достаточной для раскрытия гипотетического дефекта типа трещины в месте контроля до величины, которая обеспечила бы повышенную выявляемость дефекта и сделала его выявляемым. Достигается повышение эксплуатационных качеств изделий на основе повышения достоверности выявления трещин эксплуатационной природы или технологических дефектов с малым раскрытием типа закалочных трещин. 5 ил.

Устройство относится к сельскому хозяйству и может быть использовано для измерения динамического действия дождя на почву. В корпусе установлена пористая измерительная пластина, поры которой заполнены водой, эластичный экран с датчиками, электрически связанными с прибором индикации. При этом поверхность эластичного экрана, примыкающая к пористой измерительной пластине, снабжена микроячейками, гидравлически связанными между собой и заполненными поливинилацетатом. Техническим результатом является расширение функциональных возможностей устройства. 1 ил.
Изобретение относится к сельскому хозяйству, в частности к противоэрозионным исследованиям почвы. В поровую жидкость вводят водный раствор полиакриламида. Создают капельный поток воды, затем тормозят капли дождя в среде поровой жидкости. Измеряют давление в поровой жидкости. По величине давления контролируют эрозионную опасность дождя. Расширяются функциональные возможности противоэрозионного контроля почв.

Изобретение относится к технологии нагрева отдельных участков в аппаратах, предназначенных для исследования образования отложений в жидкостях на стенках труб при повышенных температурах (высокотемпературные отложения). Система для исследования высокотемпературных отложений включает устройство для нагрева локальных участков, работающее на основе каталитического беспламенного окисления газообразного углеводородного топлива, которое содержит по крайней мере один каталитический нагреватель, состоящий из двух одинаковых полуцилиндрических каталитических элементов радиального типа, в которых тепловой поток направлен в сторону воображаемой оси цилиндра и которые крепятся к соответствующим одинаковым полуцилиндрическим металлическим кожухам; одного или нескольких патрубков для подвода топлива, количество которых зависит от длины нагревателя. Техническим результатом является создание экспериментальных установок для исследования высокотемпературных отложений с системами нагрева, которые обеспечивают равномерный нагрев, высокий контроль теплового потока, безопасную эксплуатацию и, в то же время, упрощают доступ к испытательному участку для проведения необходимых измерений, монтажных работ, а также отказ от электрической изоляции. 2 н. и 6 з.п. ф-лы, 6 ил.
Наверх