Способ затворения формовочных смесей

Изобретение относится к безреагентным способам увеличения удобоукладываемости формовочных смесей посредством обработки воды и может быть использовано при производстве силикатных, керамических, бетонных, железобетонных и других изделий, а также в технологиях, основанных на использовании различных минеральных вяжущих, для которых актуальна проблема удобоукладываемости и увеличения положительной динамики нарастания прочности готовых изделий. Технический результат - увеличение подвижности формовочных смесей без увеличения общего количества воды затворения и как результат этого значительное улучшение эксплуатационных характеристик готовых изделий и экономия вяжущих. В способе затворения формовочных смесей, включающем смешивание сухих компонентов и подготовку воды затворения путем пропускания её между электродами при подаче на них переменной или постоянной разности потенциалов со скоростью движения или силой электротока, обеспечивающих плотность насыщенности зарядом прошедшей между электродами воды не менее 825 кКл/м3, воду затворения при электролизе насыщают ионами металла электрода Fe3+ до насыщения воды ионами железа 30-35%, предварительно в указанную воду вводят раствор аскорбиновой кислоты в количестве 0,1 г/л. 2 табл.

 

Изобретение относится к безреагентным способам увеличения удобоукладываемости формовочных смесей посредством обработки воды и может быть использовано при производстве силикатных, керамических, бетонных, железобетонных и других изделий, а также в технологиях, основанных на использовании различных минеральных вяжущих, для которых актуальна проблема удобоукладываемости и увеличения положительной динамики нарастания прочности готовых изделий.

Известен способ затворения формовочных смесей (см. Батраков В.Г., Модифицированные бетоны. - М., Стройиздат, 1990, с.142-145), при котором в воду затворения добавляют специальные химические пластификаторы - разжижители на основе сульфированных нафталин формальдегидных соединений, представляющих собой олигомеро-полимерную смесь, которая содержит не прореагировавшую соль - нафталинсульфокислоты и сульфата натрия. Наибольшее распространение при производстве бетонных и железобетонных изделий получил суперпластификатор, известный под названием С-3. Его применение позволяет уменьшить необходимое количество применяемой воды, что, естественно, уменьшает пористость, увеличивает прочность и морозостойкость, улучшает другие служебные характеристики готовых изделий.

Однако в силу того, что эта добавка получена на основе натриевых солей продуктов конденсации нафталинсульфокислоты и формальдегида, она относится к веществам ядовитым. Пары и взвешенные в воздухе частицы высохшего вещества (пыль). Т.е. даже готовые изделия, при производстве которых был использован этот разжижитель, вредно воздействуют на слизистую оболочку носоглотки и глаз и на незащищенную кожу. Рабочие, участвующие в технологическом процессе с применением С-3, должны пользоваться индивидуальными средствами защиты (резиновые перчатки, респираторы и др.) (См. ″Пособие по применению химических добавок при производстве сборных железобетонных конструкций изделий″, к СНиП 3.09.01-85, НИИ КБ - М., Стройиздат, 1989, 39 с.). Кроме этого, С-3 - достаточно дорогостоящий препарат.

Наиболее близким по технической сущности является способ подготовки воды затворения (АС СССР №1122617, бюл. №41 от 07.11.84), согласно которому исходную воду подают в диафрагменный электролизер, где она обрабатывается постоянным электротоком до значений 200-700 кКл/м3. Из зоны основного отрицательного электрода электролизера вода поступает на отстой в течение 2 часов в осветлитель, а затем через заполненный антрацитом фильтр в смеситель для подкисления серной кислотой. После подкисления вода проходит буферный катионовый фильтр, поступает в декарбанизатор, а затем в катодную камеру второго электролизера и далее в деаэратор.

В катодной камере второго электролизера обрабатывают воду до достижения значений редокс-потенциала 100-150 мВ и значений рН 8-8,6.

Недостатком этого способа являются низкие показатели удобоукладываемости и достаточно большие энергетические затраты, так как в силу принципиальных особенностей устройства диафрагменных электролизеров менее 40 всей обрабатываемой воды (католит) идет в технологический процесс, а остальная масса обработанной воды (атюлит) не используется и должна быть утилизирована. Согласно технологическому циклу, в воду катодной камеры необходимо добавлять химические реагенты. Использование в технологическом цикле двух электролизеров вдвое увеличивает энергетические затраты и расход химикатов. Для барботации воды в осветлителе необходимы компрессоры или баллоны со сжатым газом. Для подачи воды в фильтр, в смеситель, а затем в декарбонизатор и катодную камеру второго электролизера необходимо использовать дополнительные насосы. Способ требует более чем удвоенного расхода воды.

Данный способ является наиболее близким по технической сущности и достигаемому результату.

Технический результат - увеличение подвижности формовочных смесей без увеличения общего количества воды затворения и как результат этого значительное улучшение служебных характеристик готовых изделий и экономия вяжущих.

Задача решается тем, что в способе затворения формовочных смесей, включающем смешивание сухих компонентов и подготовку воды затворения, т.е. обрабатываемую воду пропускают между электродами при подаче на них переменной или постоянной разности потенциалов со скоростью движения или силой электротока, обеспечивающих плотность насыщенности зарядом прошедшей между электродами воды не менее 825 кКл/м3, воду затворения при электролизе насыщают ионами металла электрода Fe3+ до насыщения воды ионами железа 30-35%, предварительно в указанную воду вводят раствор аскорбиновой кислоты в количестве 0,1 г/л.

В основе способа лежит известный факт, заключающийся в том, что процесс созревания цементного камня в значительной степени интенсифицируется концентрацией в твердеющей смеси зародышей твердой фазы, выполняющих роль центров микрокристаллизации, выступающих в роли катализаторов процесса. Роль таких центров кристаллизации могут выполнять ионы металлов, выделяющиеся из электродов при электролизе. Для того чтобы насытить воду затворения центрами микрокристаллизации, ее обрабатывали согласно патента RU №2096336 (″Способ подготовки воды для теплоэнергетики″, Помазкин В.А., Бюл. №32, 20.11.97). Из общефизических соображений следует, что насыщение воды ионами металла электродов будет пропорционально перенесенному заряду.

Концентрацию ионов можно определить по формуле:

n0=It/e,

где n0 - число ионов в единице объема, I - ток, текущий между электродами, t - время прохождения тока, е - заряд электрона.

Согласно патенту RU №2096336 установлено, что концентрация ионов зависит не только от плотности насыщения воды зарядом, но и от полярности электродов, и от материала, из которого электроды изготовлены. Для электроактивации воду пропускали между электродами, изготовленными из металлов, ионы которых принимают активное участие в структуро- и фазообразовании формовочных смесей. Авторами установлено, что для формовочных смесей наиболее эффективной парой электродов являются железные катод и анод. При электролизе неочищенной, в том числе водопроводной, воды с растворенным анодом в последней наблюдается большое содержание хлора и его анионных форм. Для предотвращения возможного окисления ионов металлов, находящихся в низших или промежуточных степенях окисления, необходимо введение в электролит веществ, препятствующих этому процессу. Поэтому нами при электроактивации воды железным анодом для предотвращения окисления был введен раствор аскорбиновой кислоты в количестве 0,1 г/л, который практически нацело ингибирует процесс окисления железа Fe2+-е→Fe3+. Такая концентрация аскорбиновой кислоты минимальна, что никак не сказывается на процесс отверждения системы и ее дальнейшее использование.

В качестве контроля эффективности электроактивации использовали разработанный нами способ, защищенный патентом RU №2096759 (″Экспресс-анализ физической активации жидкостей″, Помазкин В.А., Бюл. №32, 20.11.97).

Способ апробирован в лаборатории строительных материалов кафедры ТеСМИ ОГУ совместно с сотрудниками Межотраслевого научно-технического предприятия физических методов воздействия на газообразные, жидкие и вязкие среды (МНТП ″Градиент″), ОАО ″Максмир″ и кафедры физики ОГУ. Всего обследовано более 200 экспериментальных образцов (кубов 15×15×15 СМ.). Прочность определяли методом разрушения на прессе П-125, плотность - методом взвешивания на аналитических весах, жесткость - по методу Краснова, подвижность - с помощью конуса Абрамса. Исследования проводили на бетонных смесях различной жесткости.

Способ осуществляли следующим образом. Подготовку воды осуществляли согласно патенту RU №2096336. Готовили сухую смесь, придерживаясь следующего соотношения компонентов (учитывая наши потребности для изготовления экспериментальных кубов):

Цемент:Песок:Щебень:=1:1,8:4,1

Затворяли смесь не активированной водой, замеряли ее жесткость и подвижность. Затем эту же смесь сухих компонентов затворяли электроактивированной водой, добавляя ее до тех пор, пока удобоукладываемость бетонной смеси, приготовленной на активированной и простой воде - не становились одинаковыми. Было установлено, что подвижность затворенных смесей увеличивалась до 20, иногда экспериментальных кубов бетонной электроактивированной водой, и выше. Заполняли формы смесью и, после обработки на виброплощадке, оставляли для созревания в естественных условиях. На каждый режим готовили 4-6 экспериментальных кубов. Через 7 дней часть кубиков освобождали от опалубки и проводили измерения. Достоверно установлен значительный рост динамики нарастания прочности. Так некоторые кубы имели такую же прочность, как затворенные обычной водой после 28 суток хранения. На 28 сутки исследовали остальные образцы. Результаты исследования сведены в таблицу 1, из которой видно, что увеличивать степень электроактивации свыше 35 нецелесообразно, т.к. нет роста прочности, а уменьшение степени электроактивации ниже 30 приводит к резкому падению прочности системы.

Таблица 1
Степень насыщения воды ионами металлов, % в/ц Жесткость, с Плотность, кг/м3 Прочность, МПа Прирост прочности
0 0.42 7 2400 31.0 -
30 0.40 7 2420 39.7 28
32 0.39 7 2450 40.3 30
35 0.41 7 2420 37.2 20
36 0.41 7 2430 37.2 20

Видно, что при одной и той же жесткости бетонной смеси и одинаковом расходе цемента повышение прочности бетона, затворенного активированной водой, возрастает в среднем на 24.5. Это позволяет при производстве изделий из бетона и железобетона экономить до 8-12% цемента. Нами проведен эксперимент, в котором в изделие, изготовленное из бетонной смеси, затворенной активированной водой, цемента было взято на 12% меньше. Результаты приведены в таблице 2.

Видно, что уменьшение количества цемента на 12% к уменьшению прочности изделия не приводит.

Таким образом, по сравнению с прототипом, заявленный способ позволяет увеличить подвижность формовочных смесей без увеличения общего количества воды затворения, что дает значительное улучшение служебных характеристик готовых изделий и экономию вяжущего.

Принципиальное отличие предлагаемого способа заключается в том, что в способе-прототипе положительного эффекта добиваются за счет изменении в воде затворения редокс-потенциала и ее рН, тогда как в нашем способе мы насыщаем воду центрами микрокристаллизации, которые катализируют ускорение процессов гидратации и процессы твердения бетона.

Из вышеизложенного видно, что заявляемый способ затворения формовочных смесей по сравнению с прототипом обладает следующими существенными преимуществами:

- Значительно снижается энергопотребность. Так, если в прототипе для достижения нужной эффективности электроактивации воды затворения необходимо насыщать воду зарядом до уровня 200-700 Кл/л, то для нашего способа достаточно всего 15-30 Кл/л, что в 13-33 раза меньше. Для обработки 2 м3 в час по способу-прототипу необходима мощность 35-40 кВт (см. ″Установка электроактивации воды УЭВ-7″, НПФ ″Эсперо″, Ташкент, 1990). По нашему способу - 0.8-1 кВт, что в 35-40 раз меньше;

- Отпадает необходимость в использовании химреактивов;

- Только менее половины воды (католит) используется в технологическом процессе, а остальная часть (анолит) должна быть утилизирована. По заявляемому способу обрабатывается только та вода, которая идет в производственный цикл;

- Масса установки для реализации способа-прототипа (УЭВ-7, включая оборудование) - 700 кг. Масса установки такой же производительности по нашему способу, включая блок питания - 40-50 кг, то есть металлоемкость для аппаратов, готовящих воду затворения по нашему способу в 12-17 раз меньше;

- Для установки оборудования по способу-прототипу (например УЭB-7) требуется дополнительная площадь не менее 20 м2. Для установки электроактивации воды затворения по нашему способу потребность в дополнительных площадях практически отпадает.

Способ затворения формовочных смесей, включающий смешивание сухих компонентов и подготовку воды затворения, т.е. обрабатываемую воду пропускают между электродами при подаче на них переменной или постоянной разности потенциалов со скоростью движения или силой электротока, обеспечивающих плотность насыщенности зарядом прошедшей между электродами воды не менее 825 кКл/м3, отличающийся тем, что воду затворения при электролизе насыщают ионами металла электрода Fe3+ до насыщения воды ионами железа 30-35%, предварительно в указанную воду вводят раствор аскорбиновой кислоты в количестве 0,1 г/л.



 

Похожие патенты:
Способ приготовления золобетонной смеси относится к промышленности строительных материалов и может быть использован для изготовления золобетонов. Техническая задача - удешевление смеси, ускорение процесса схватывания и твердения золобетонной смеси, повышение прочности и стабильности свойств золобетона, а также расширение области утилизации отходов техногенного происхождения.
Изобретение относится к области производства строительных материалов и может быть использовано для производства облицовочных плит (для внутренней и наружной отделки зданий) черепицы, полов, монолитных строительных элементов.
Изобретение относится к способу производства строительных материалов, в частности к технологии приготовления бетонных смесей, и может найти применение при выполнении монолитных бетонных работ для изготовления стеновых блоков, которые могут быть использованы при возведении складских помещений, гаражей и ограждений.
Изобретение относится к способу приготовления асфальтобетона для дорожного строительства с использованием продукта утилизации нефтяных шламов в качестве добавки.

Изобретение относится к геополимерным композициям. Сухая смесь для геополимерного связующего содержит, по меньшей мере, одну летучую золу, содержащую оксид кальция в количестве меньшем или равном 15 вес.%; по меньшей мере, один ускоритель гелеобразования и, по меньшей мере, один ускоритель твердения, имеющий состав, отличный от состава указанной золы.
Изобретение относится к промышленности строительных материалов и касайся изготовления изделий (блоков) из арболита с одновременным получением на их поверхности основы для штукатурки.
Изобретение относится к строительству, а именно к технологии изготовления пенобетонных строительных изделий, например стеновых блоков или панелей. Способ изготовления строительных изделий из пенобетона включает раздельное приготовление пены и растворной смеси, их смешивание или одностадийное приготовление пеномассы с последующей укладкой в формы, выдержкой, распалубкой, пропариванием и распалубкой изделия.

Изобретение может быть использовано в производстве строительных материалов. Фотокаталитический композиционный материал практически без диоксида титана содержит известняк по меньшей мере 0,05% по весу натрия и титанат кальция в кристаллических фазах СТ2 и/или СТ5, характеризуемых следующими дифракционными максимумами: СТ2: (002) d=4,959; (210-202) d=2,890; (013) d=2,762 и (310-122) d-2,138; СТ5: (002) d=8,845; (023) d-4,217; (110) d=3,611 и (006) d=2,948.
Изобретение относится к способу приготовления асфальтобетона для дорожного строительства с использованием продукта утилизации нефтяного шлама в качестве добавки.

Изобретение относится к производству строительных материалов, а именно к получению высокопрочных пластифицированных цементов и бетонов, для восстановления свойств цементов, потерявших свою активность.
Изобретение относится к способам приготовления бетонных смесей с добавкой микрокремнезема с химическими добавками. Техническим результатом предложенного способа является повышение прочности бетонной смеси. В способе приготовления бетонной смеси, заключающемся в перемешивании цемента, заполнителей, воды и водной суспензии комплексного модификатора следующего состава, мас.%: микрокремнезем 40-70; химические добавки 2-10; вода - остальное, которую перед перемешиванием подвергают сушке в воздушном потоке до получения порошка, состоящего из гранул, согласно изобретению, водную суспензию комплексного модификатора перед перемешиванием подвергают подсушке путем воздействия непрерывным электромагнитным полем сверхвысокой частоты 400-1000 МГц от СВЧ-генераторов и нагретым воздушным потоком охлаждения СВЧ-генераторов до получения порошка с гранулами размером до 500 мкм и влажностью 9-12%, затем подсушенный комплексный порошкообразный модификатор и цемент подвергают диспергированию и дезагрегации путём воздействия импульсным электромагнитным полем сверхвысокой частоты 1000-3000 МГц продолжительностью 1-1,5 секунды, до получения ультрадисперсного порошка комплексного модификатора размером 60-100 нм влажностью 1-8% и цемента размером 0,1-5 мкм, после чего их перемешивают, совместно перемалывают и активизируют, образуют дезагрегированную и активированную смесь цемента и комплексного модификатора, которую перемешивают с заполнителем и водой, получают бетонную смесь, на которую воздействуют мощным импульсным электромагнитным полем сверхвысокой частоты 400-1000 МГц продолжительностью 1÷100 наносекунды. 1 табл.
Изобретение относится к порошкообразной композиции строительного материала, предпочтительно к сухому строительному раствору промышленного производства и, в особенности, к клеям для плитки, наполнителям для швов, шпаклевкам, гидроизоляционным шламам, ремонтным растворам, выравнивающим растворам, армирующим клеям, клеям для термоизоляционных композитных систем (ТИКС), минеральным штукатуркам, тонким шпаклевкам и системам бесшовного пола, содержащей сложный эфир A) 2-этилгексановой кислоты и B) спирт с точкой кипения, по меньшей мере, в 160°C. Далее раскрывается получение этих продуктов, а также применение сложных эфиров согласно изобретению в порошкообразных композициях строительных материалов для уменьшения пылеобразования. Технический результат - уменьшение пылеобразования, снижение степени выброса органических соединений при хранении и применении строительных материалов. Изобретение развито в зависимых пунктах формулы изобретения. 4 н. и 10 з.п. ф-лы, 1 табл.

Изобретение относится к композиционным конструкционным материалам, используемым в подвижных и стационарных частях станков, систем высокоточного монтажа радиоэлектронных компонентов, контрольно-измерительных машин, координатных систем высокой точности и другой прецизионной техники. Способ изготовления композиционного материала, заключающийся в том, что полость оболочечной конструкции заполняют сверхжестким бетоном, который изготавливают посредством механической активации цементного состава. Цементный состав включает в себя 30% цемента марки ПЦ-500ДО-Н, 7,5% микрокремнезема, 1,8% напрягающей добавки РД-Н, 20% песка речного мытого с модулем крупности МКР 5, 40% гравия базальтового крупностью до 30 мм, 0,7% гиперпластификатора на основе этиленгликоля. Механическую активацию производят в лопастных мешалках принудительного типа с частотой вращения лопастей не менее 60 об/мин в течение не менее 20 мин. Причем заливают высокопрочный бетон в полость оболочечной конструкции, одновременно уплотняют его вибрационной обработкой. Затем, чтобы исключить выход пара из нее, замыкают полость заливки. Осуществляют автоклавное отверждение бетона, состоящее в том, что всю конструкцию равномерно разогревают до температуры порядка 200°С с целью его отверждения. Причем конструкцию выдерживают при данной температуре в течение 12 часов. Затем дожидаются ее постепенного охлаждения до комнатной температуры и выдерживают при этой температуре до полной гидратации цемента. И, наконец, осуществляют механическую обработку базовых поверхностей. Технический результатом является упрощение технологии изготовления материала. 4 ил.
Изобретение относится к технологии получения неорганических термостойких, антикоррозионных композиционных материалов при производстве пластиков, антифрикционных и смазочных материалов при изготовлении композиционных материалов для строительной, электротехнической, атомной, машиностроительной и химической промышленностей. В способе получения теплоизоляционного материала, включающем смешивание неорганического природного материала, жидкого стекла, доломита в виде порошка и добавки, формование смеси и термообработку, используют жидкое натриевое стекло плотностью 1,28 - 1,42 кг/м3, в качестве неорганического природного материала - модифицированный органическим веществом монтмориллонит, а в качестве добавки - гидратированное целлюлозное волокно в форме штапелек длиной 5,0-20,0 мм, пропитанное 30% водным раствором сульфатов железа, цинка, меди, алюминия, взятыми в соотношении 1,0:0,5:0,5:1,0 в промывочной ванне в течение 70-80 мин с последующим отжимом до влажности 60-65% и высушенное при температуре 120-140°С до удаления 95-98% оставшейся влаги, смешивание компонентов осуществляют путем механоактивации в течение 8-10 мин с последующим формованием смеси и обжигом при повышении температуры обжига от 140 до 1300°С в течение 30-40 мин, причем модифицирование монтмориллонита проводят продуктом взаимодействия капролактама или его олигомеров с бутилстеаратом, при этом компоненты смеси берут в следующем соотношении, мас.%: модифицированный монтмориллонит 20-60, указанное жидкое стекло 20-30, указанный доломит 10-35, указанное целлюлозное волокно 10-15. Изобретение развито в зависимых пунктах. Технический результат - повышение огнестойкости материала, снижение коэффициента теплопроводности, придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот. 2 з.п. ф-лы, 3 пр., 1 табл.
Изобретение относится к способам активации воды затворения композитов на основе цемента. Техническим результатом является повышение эффективности и степени активации воды для обеспечения ускорения процессов гидратации и набора прочности в ранний период твердения бетона. Способ активации воды затворения композитов на основе цемента заключается в обработке водопроводной воды в плазмотроне низкотемпературной неравновесной плазмой в период времени от 1·10-2с до 5·10-2с. 1 табл.

Изобретение относится к области строительного производства, а именно к способам активации компонентов бетонной смеси, и может быть использовано во всех отраслях народного хозяйства для приготовления бетонных смесей. В способе активации воды затворения бетонных смесей путем ее модифицирования углеродными фуллероидными наночастицами c последующей ее обработкой ультразвуком, в сосуд с водой помещают шунгит, масса которого составляет не менее 1% массы воды, и возбуждают в воде ультразвуковые колебания, частота которых лежит в диапазоне 20 кГц до 100 кГц, от 1,5 Вт/см2 до 2,5 Вт/см2, и воздействуют на воду и шунгит упомянутыми ультразвуковыми колебаниями в течение 5-10 минут до достижения концентрации фуллерена, выделяемого из шунгита в активируемую воду 10-3-10-5% , после чего активированную воду пропускают через фильтр и используют в качестве жидкости затворения, а осадок шунгита оставляют в сосуде, заливают в сосуд следующую порцию воды и процедуру активации жидкости затворения повторяют вновь. Технический результат - улучшение физико-механических характеристик бетона, снижение расхода воды или снижение расхода цемента без изменения прочности бетона. 1 пр., 1 табл.
Изобретение относится к промышленности строительных материалов, а именно к способам обработки жидкости затворения для приготовления бетонной смеси, и направлено на повышение степени гидратации цемента и прочности цементного камня. Техническим результатом является повышение морозоустойчивости бетонной смеси, увеличение степени гидратации цемента и прочности цементного камня в ранние сроки твердения. Предложенный способ включает электрохимическую обработку водопроводной воды в трехкамерном электролизере с ионоселективными мембранами переменным асимметричным током. При этом анод электролизера выполняют из шунгита. Причем в процессе электрохимической обработки воды в аноде и в анодной камере возбуждают ультразвуковые колебания, частота которых лежит выше частоты порога кавитации в диапазоне от 20 кГц до 100 кГц, а интенсивность упомянутого ультразвука лежит в области стабильной кавитации от 1,5 Вт/см2 до 2,5 Вт/см2. Обработку воды прекращают при достижении концентрацией частиц гидратированного фуллерена 10-3-10-4%.

Изобретение относится к технологии приготовления строительных смесей, преимущественно мелкозернистых бетонных смесей и строительных растворов, твердеющих в естественных условиях или при тепловлажностной обработке. Техническим результатом является снижение расхода дорогостоящих материалов без снижения прочности получаемого материала. Предложен способ приготовления строительной смеси, включающий две стадии, с использованием минерального наполнителя, пластифицирующей добавки, песка и вяжущего. При этом на первой стадии перемешивают вяжущее - портландцемент М500 Д20, минеральный наполнитель - карбонатно-кремнеземистую опоку, 55-65% песка и 60-70% воды затворения до получения однородной смеси, а на второй стадии к полученной смеси добавляют оставшуюся часть песка, пластифицирующую добавку - суперпластификатор СП-1 и остальную воду, и окончательно перемешивают их до получения однородной смеси заданной удобоукладываемости. 1 табл.

Изобретение относится к области производства пеноматериалов на основе асбестового, базальтового, углеродного, полиэфирного или полиамидного и других видов неорганических и органических волокон, используемых в области авиа- и судостроения, машиностроении и радиотехнической промышленности. Техническим результатом является сокращение длительности процесса сушки пеномассы, повышение качества изготавливаемого пеноматериала при непрерывном режиме работы с высокой производительностью. Предложен способ производства пеноматериалов, включающий получение пеномассы из исходной смеси на основе волокон, подачу пеномассы на транспортер конвейерной линии, сушку пеномассы путем прохождения ее через сушильные камеры с позонным ступенчатым подъемом температуры, обжиг пеномассы в печи до получения пеноматериала и раскрой его на плиты заданного размера. При этом сушку и обжиг пеномассы осуществляют путем одновременного воздействия на нее инфракрасным и конвективным источником тепла. Причем позонный ступенчатый подъем температуры сушки проводят с 60°C до 170°C, а обжиг пеномассы проводят при температуре от 190 до 280°C, при этом прохождение пеномассы через сушильные камеры и обжиговую печь осуществляют со скоростью 6-12 м/час. Предложена также конвейерная линия для осуществления указанного способа. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к области строительства, в частности к способу получения теплоизоляционного материала на основе отходов деревообработки. Технический результат заключается в снижении плотности и теплопроводности материала. Способ получения теплоизоляционного материала включает смешение наполнителя и связующего, с последующим формованием и твердением. В качестве наполнителя используют древесную технологическую щепу толщиной 5±2 мм, в качестве связующего используют пенополиуретан жесткий, состоящий из полиола и изоцианата. Предварительно смешивают компоненты связующего, затем смешивают связующее с наполнителем путем послойной укладки слоя связующего, слоя наполнителя и слоя связующего в форму, при следующем соотношении компонентов, мас.%: полиол 24-22, изоцианат 36-33, технологическая щепа 40-45. После полной подачи компонентов, форму фиксируют запорами и выдерживают 15-20 мин. 1 табл., 1 ил.
Наверх