Способ селективного гидрирования фенола до циклогексанона


 


Владельцы патента RU 2528980:

Общество с ограниченной ответственностью "ДЕСКРИПТОР" (RU)

Изобретение относится к способу гидрирования фенола на палладиевом катализаторе (0,5% мас. Pd на сверхсшитом полистироле (СПС)) в избытке водорода при соотношении водород:фенол=4-5:1 (мольное) при атмосферном давлении. При этом применяется разбавление катализатора инертным разбавителем (керамические шарики диаметром 1-2 мм), а процесс проводится в интервале температур 120-220°C при объемных скоростях подачи исходного сырья 0,4-2,0 час-1. Способ позволяет получить циклогексанон с селективностью 87,1-100% при конверсии фенола 84,0-99,8%. 1 пр.

 

Изобретение относится к получению органических соединений, а именно к синтезу циклогексанона, используемого в производстве капролактама, одностадийным селективным гидрированием фенола.

Россия производит 8% мирового объема капролактама. Для того чтобы закрепить позиции на мировом рынке и обеспечить увеличивающийся рост внутреннего потребления канролактама (до 6-8% ежегодно), уже сейчас необходима модернизация и расширение производственных мощностей на основе последних достижений в этой области.

Основным источником сырья для производства капролактама является бензол. Существует два близких но эффективности пути превращения бензола в капролактам: через циклогексан (60% мирового производства) и через фенол (40% от мирового производства).

Главным недостатком циклогексанового метода является низкая селективность: степень использования бензола в целевой продукт составляет менее 70%, количество органических побочных продуктов достигает 0,3 тонны на тонну капролактама. Альтернативный путь - создание мощностей по производству капролактама на базе принципиально новой эффективной отечественной технологии селективного гидрирования фенола в циклогексанон с использованием нанокатализаторов, что позволит:

- сократить количество технологических стадий;

- получить капролактам более высокого качества.

Продуктами реакции гидрирования фенола являются либо циклогексанол, либо циклогексанон и первый может быть использован для дегидрирования во второй, необходимый для производства капролактама.

Получение циклогексанона прямым гидрированием фенола (направление А) предпочтительнее, так как позволяет исключить энергоемкую стадию дегидрирования циклогексанола в циклогексанон (С), что существенно упрощает технологию процесса и дает значительный экономический эффект. Применяемые сегодня на практике никелевые катализаторы обеспечивают протекание реакции по направлениям (Б и С) [1, 2].

Современные разработки в области катализа стали широко применять диспергирование катализаторов до наноразмеров, при этом эффективность катализаторов с точки зрения технологии, производства и экономики увеличивается за счет:

1) Увеличения удельной активной поверхности катализатора;

2) Нахождения атомов металла катализатора в низкокоординированном состоянии, в котором они проявляют наибольшую активность по сравнению с обычными катализаторами [3].

Наиболее близким аналогом изобретения является работа [4]. Для проведения исследований авторы использовали образцы нанокатализаторов, полученные НИЛ «Катализатор» (г.Тверь) нанесением палладия на сверхсшитый полистирол (СПС), с содержанием палладия от 0,1 до 0,5% мас.

Исследования проводили в избытке водорода (мольное соотношение водород:фенол=4-5:1) при атмосферном давлении в температурном ингервале 150-180°C и при объемных скоростях подачи исходного вещества 0,8 и 1,2 ч-1. В данных условиях были получены очень нестабильные результаты. Конверсия фенола изменялась от 67 до 99,7%. И только на одном из образцов катализатора, содержащего 0,5% мас. палладия на СПС в узком интервале объемной подачи сырья и температур получены стабильные результаты по конверсии и селективности.

К недостаткам данного способа можно отнести то, что реакция гидрирования сильно экзотермична, поэтому даже при проведении реакции в пятикратном избытке водорода температура адиабатического разогрева может достигать 300°C при степени конверсии фенола более 80%. При повышении температуры в зоне реакции до 180°C избирательность процесса падает до 60-87%.

Суть изобретения - расширение температурного интервала реакции за счет регулирования экзотермичности процесса при высокой селективности по циклогексанону в широком интервале объемных скоростей подачи сырья. В качестве объекта был выбран палладиевый катализатор, содержащий 0,5% мас. металла на сверхсшитом полистироле.

Предлагаемый способ одностадийного получения циклогексанона с использованием нанокатализаторов отличается от аналога тем, что для снятия экзотермичности процесса применено разбавление катализатора инертным материалом. В качестве инертного разбавителя использовали керамические шарики диаметром 1-2 мм.

Процесс гидрирования проводили в избытке водорода (мольное соотношение водород:фенол=4-5:1) при атмосферном давлении в температурном интервале 120-220°C и при объемных скоростях подачи исходного вещества 0,4-2,0 ч-1. В данных условиях были достигнуты стабильные показатели: конверсия фенола 84-99,8% при селективности по циклогексанону 87,1-100%.

Примеры

Для выбора температуры процесса проводили гидрирование при фиксированной скорости подачи фенола (0,8 ч-1) при атмосферном давлении в избытке водорода (мольное соотношение водород:фенол=4-5:1). Температура варьировалась от 120 до 220°C. Получены следующие результаты:

Температура 120°C; конверсия фенола - 84%; селективность по циклогсксанону - 92%.

Температура 150°C; конверсия фенола - 99,1%; селективность по циклогексанону - 99,5%.

Температура 180°C; конверсия фенола - 99,5%; селективность по циклогексанону - 99,0%.

Температура 200°C; конверсия фенола - 99,6%; селективность по циклогексанону - 99,2%.

Температура 220°C; конверсия фенола - 99,8%; селективность по циклогексанону - 98,8%.

Для выбора оптимальной объемной скорости подачи сырья проводили гидрирование при температуре 180°C, при атмосферном давлении, в избытке водорода (мольное соотношение водород:фенол=4-5:1). Объемную скорость подачи фенола варьировали от 0,4 до 2,0 ч-1. Получены следующие результаты:

Объемная подача фенола - 0,4 ч-1; конверсия фенола - 99,8%; селективность по циклогексанону - 87,1%.

Объемная подача фенола - 0,6 ч-1; конверсия фенола - 99,8%; селективность по циклогексанону - 89,4%.

Объемная подача фенола - 0,8 ч-1; конверсия фенола - 99,5%; селективность по циклогексанону - 99,2%.

Объемная подача фенола - 1,2 ч-1; конверсия фенола - 99,5%; селективность по циклогексанону - 99,0%.

Объемная подача фенола - 1,4 ч-1; конверсия фенола - 99,0%; селективность по циклогексанону - 99,3%.

Объемная подача фенола - 1,6 ч-1; конверсия фенола - 98,3%; селективность по циклогексанону - 99,9%.

Объемная подача фенола - 1,8 ч-1; конверсия фенола - 98,0%; селективность по циклогексанону - 100%.

Объемная подача фенола - 2,0 ч-1; конверсия фенола - 97,5%; селективность по циклогексанону - 100%.

Приведенные данные показывают, что в отличие от аналога высокая конверсия по фенолу (более 97%) и селективность по циклогексанону (более 97-99%) достигаются в температурном интервале 120-220°C при скорости подачи сырья 0,6-1,4 ч-1.

СПИСОК ЛИТЕРАТУРЫ

[1] Yamamoto Haruhiko, Kwan Tokao // Chem. And Pharmac. Bull. 1969. V.17. №6. P.1069.

[2] Д.В. Сокольский, С.М. Козина. Л.А. Розманова. Л.В. Павлюкевич // Прикладная и теоретическая химия. Вып.4. Алма-Ата. 1973, с.302-317.

[3] Esther M. Sulman, Valentina G. Matveeva. Valentin Yu. Doluda et al. Efficient polymer-based nanocatalysts with enhanced catalytic performance in wet air oxidation of phenol. // Appl. Catal. B: Environmental 94, 2010. P.200-210.

[4] С.В. Леванова и др. Селективное гидрирование с использованием нанокатализаторов // Журнал прикладной химии. 2009 г. Т.82. Вып.5. С.830-833.

Способ селективного гидрирования фенола на палладиевом катализаторе (0,5% мас. Pd на сверхсшитом полистироле (СПС)) в избытке водорода при соотношении водород:фенол=4-5:1 (мольное) при атмосферном давлении, отличающийся тем, что применяется разбавление катализатора инертным разбавителем (керамические шарики диаметром 1-2 мм), процесс проводится в интервале температур 120-220°C при объемных скоростях подачи исходного сырья 0,4-2,0 час-1 с конверсией фенола 84,0-99,8% при селективности по циклогексанону 87,1-100%.



 

Похожие патенты:
Изобретение относится к способу дегидрирования циклогексанола в циклогексанон. Предложенный способ дегидрирования циклогексанола в циклогексанон осуществляют в газовой фазе при повышенной температуре в присутствии катализатора, содержащего активные компоненты, на 56÷88 мас.% состоящие из оксида цинка и на 8,0÷39,0 мас.% из карбоната кальция.

Изобретение относится к способам очистки циклогексанона. Описан способ очистки циклогексанона, полученного окислением циклогексана кислородом воздуха или дегидрированием циклогексанола, в котором процесс ректификации ведут в разрезной вакуумной ректификационной колоне (2 колонны), где дистиллят первой колонны является питанием для второй колонны; из куба первой колонны выводят смесь циклогексанола и высококипящих примесей на дальнейшее разделение, а куб второй колонны является флегмой для первой - в нее при этом вводится раствор щелочи (КОН) в циклогексаноле, эквивалентный содержанию эфиров.

Изобретение относится к способу получения метилового эфира (3aR, 4S, 7aR)-4-гидрокси-4-м-толилэтинилоктагидроиндол-1-карбоновой кислоты формулы (I), с использованием новых промежуточных соединений формул (II) и (III) 7 н.

Изобретение относится к барботажному реактору окисления циклогексана, включающему устройства подачи и распределения воздуха или инертной среды - азота с каналами подачи и поперечные перегородки с отверстиями.

Изобретение относится к установке каскадного окисления циклогексана, включающей, по меньшей мере, два реактора, снабженных, по меньшей мере, одной перепускной трубой, соединенной со штуцером вывода из первого или предыдущего реактора ко второму или последующему, от внутренних пристеночной полости или бачка, скрепленных с опускной трубой.
Изобретение относится к катализатору для дегидрирования циклогексанола в циклогексанон, а также к способу приготовления катализатора. .

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .

Изобретение относится к способу получения смеси циклогексанола и циклогексанона, которые являются полупродуктами в производстве полиамидов найлона-6 и найлона-6,6. .
Изобретение относится к способу дегидрирования циклогексанола в циклогексанон. Предложенный способ дегидрирования циклогексанола в циклогексанон осуществляют в газовой фазе при повышенной температуре в присутствии катализатора, содержащего активные компоненты, на 56÷88 мас.% состоящие из оксида цинка и на 8,0÷39,0 мас.% из карбоната кальция.

Настоящее изобретение относится к способу получения перфторэтилизопропилкетона - вещества, пришедшего на смену хладонам и призванного снизить риски, связанные с безопасностью людей, эффективностью тушения и загрязнением окружающей среды.

Изобретение относится к усовершенствованному способу получения, по меньшей мере, одного из продуктов акролеина и акриловой кислоты путем частичного окисления пропилена, при котором а) предварительно очищенный пропан превращают на первой стадии реакции в присутствии и/или при исключении молекулярного кислорода, по меньшей мере, одного дегидрирования из группы, включающей гомогенное дегидрирование, гетерогенное каталитическое дегидрирование, гомогенное оксидегидрирование и гетерогенное каталитическое оксидегидрирование, причем получают газовую смесь 1, содержащую не превращенный пропан и образованный пропилен, и b) при необходимости, из общего количества или из частичного количества газовой смеси 1 отделяют частичное количество содержащихся в ней отличных от пропана и пропилена составляющих, например, таких как водород, моноокись углерода, водяной, пар, и/или, при необходимости, превращают его в другие соединения, например, такие как вода и двуокись углерода, и причем получают газовую смесь 1', содержащую пропан и пропилен, и на, по меньшей мере, одной следующей стадии реакции, с) газовую смесь 1, или газовую смесь 1', или смесь из образованной газовой смеси 1' и оставшейся газовой смеси 1 в качестве составляющей газовой смеси 2 подвергают гетерогенному каталитическому газофазному частичному окислению пропилена, содержащегося в газовой смеси 1 и/или газовой смеси 1', причем получают газовую смесь 3, содержащую, по меньшей мере, один продукт, d) на, по меньшей мере, одной стадии отделения из газовой смеси 3 отделяют продукт и от при этом оставшегося остаточного газа, по меньшей мере, пропан возвращают на первую стадию реакции, где предварительно очищенный пропан из сырого пропана, который содержит 90% масс.
Изобретение относится к катализатору для дегидрирования циклогексанола в циклогексанон, а также к способу приготовления катализатора. .

Изобретение относится к способам получения нефтехимических продуктов каталитическим дегидрированием углеводородов и их производных, в частности к получению формальдегида дегидрированием метанола.
Изобретение относится к области получения полиимидов, а именно к способу получения полиимидов в виде пресс-порошков. .

Изобретение относится к способу получения изомерных 5-, 6- и 7-гидрокси-1-тетралонов, а также 6- и 7-гидрокси-2-тетралонов путем селективного ионного гидрирования алканами соответствующих дигидроксинафталинов, что может найти применение в химической, фармацевтической промышленности и др.
Изобретение относится к способам приготовления катализатора для дегидрирования циклогексанола в циклогексанон, содержащего в качестве активного компонента медь, внедренную в твердый носитель.

Изобретение относится к способу получения 4,4-диметокси-2,3,5-трихлорциклопент-2-ен-1-она из гексахлорциклопентадиена. .

Предлагаемое изобретение относится к способу получения арил(C60-Ih)[5,6]фуллерен-1(9H)-ил кетонов общей формулы (1): ; ; . Функционально замещенные фуллерены могут найти применение в качестве комплексообразователей, сорбентов, биологически активных соединений, а также при создании новых материалов с заданными электронными, магнитными и оптическими свойствами. Способ заключается во взаимодействии C60-фуллерена с эфирами ароматических карбоновых кислот формулы ArC(O)OMe (Ar = фенил, бифенил, ) в толуоле под действием катализатора Ti(OiPr)4 в присутствии EtMgBr, при мольном соотношении C60: эфир: Ti(OiPr)4: EtMgBr=1:(5-15):(5-15):(30-50), при температуре 0°С в течение 5-30 мин. Способ позволяет получить целевые продукты с выходом 44-68%. 1 табл., 9 пр.
Наверх