Способ получения алюминия

Изобретение относится к способу получения алюминия из металлургического глинозема. Способ включает плавление непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе под вакуумом, с последующим осаждением первичного алюминия и его рафинированием. Глинозем загружается в реактор дозатором в зону плазменной дуги и расплавляется при температуре 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па. Расплав электрокорунда переливается в электроосадительную камеру через разделительную диафрагму-перегородку, где под воздействием постоянного тока 150-200 А на поверхности расплава образуется алюминий, являющийся жидким катодом. Металл при достижении расчетного уровня 10-15 см направляют через сливное отверстие вакуумной печи в камеру для рафинирования, при этом в камере постоянно сохраняется необходимый объем металла. Обеспечивается упрощение способа получения алюминия и снижение материальных и энергетических затрат на его производство при высоких технико-экономических показателях процесса и экологичности. 1 з.п. ф-лы, 1 ил., 1 пр.

 

Изобретение относится к цветной металлургии, в частности к получению алюминия из металлургического глинозема.

Известен промышленный способ Эру-Холла - электролиз криолит-глиноземных расплавов, по которому выпускается весь первичный алюминий [Минцис М.Я. Электрометаллургия алюминия / М.Я. Минцис, П.В. Поляков, Г.А. Сиразутдинов. Новосибирск: Наука. 2001. 368 с.]. Несмотря на долгий срок применения данной технологии, она имеет ряд недостатков: низкий энергетический КПД 40-50%; высокий расход электроэнергии (13-17 кВт·ч/кг Al); загрязнение окружающей среды; высокие материальные и трудозатраты.

Известен усовершенствованный способ получения алюминия по технологии Эру-Холла (патент US 6126799, опубл. 10.03.2000), в котором используют электролизеры с металлическим электродами, покрытыми керамическим оксидом, обладающим проводимостью по иону кислорода. При электролизе с таким анодом ионы кислорода проходят через оксидный слой и разряжаются на металлической основе. За исключением благородных металлов не было найдено ни одного индивидуального металла, пригодного для использования в качестве инертного анода, а основами для создания материала металлического инертного анода выбирались железоникелевый сплав (Fe-Ni) по патенту US 5006209 и алюминиевая бронза.

Основным недостатком металлических анодов является их быстрая растворимость в криолит-глиноземном расплаве и загрязнение первичного алюминия. Образующиеся на поверхности металлического электрода оксидные пленки, образующиеся в результате коррозии, повышают электрическое сопротивление на поверхности электрода. Сохранность слоя может быть обеспечена только при высокой активности ионов кислорода (O2-) в прианодном слое электролита, что особенно сложно осуществить при низких (700-900°C) температурах, когда растворимость глинозема низка и активность ионов кислорода резко изменяется. Снижение температуры электролита за счет дорогостоящих модифицирующих добавок, в свою очередь, необходимо для снижения растворимости оксидного слоя анода.

Известен усовершенствованный способ получения алюминия (патент US 3960678, опубл. 01.08.1976) с анодами с полупроводниковыми оксидами с электронной проводимостью и кислородом, выделяющимся прямо на поверхности оксида. Наибольшее распространение в этой группе получили аноды на основе ферритов никеля (NiFe2O4), разработанные компанией Alcoa, и оксида олова (SnO2), предложенные к испытаниям. Основным достоинством керамики является ее низкая растворимость в криолит-глиноземном расплаве.

Основным недостатком является низкий срок службы анодов, а промышленному внедрению керамики мешают низкая механическая прочность массивных образцов, особенно при высоких температурах, и сложность изготовления надежных токоподводящих контактов. Представляет большую опасность и возможность восстановления оксидов до металла растворенным алюминием в случае остановки.

Из альтернативных способов известны способы карботермического восстановления алюминия из его оксида, исследования, проведенные компаниями Alcan, Pechiney, Hydroaluminum. Наибольший прогресс в разработке карботермического способа (патент RU 2301842 C2, опубл. 27.06.2007) достигнут в результате совместных работ компаний Alcoa и Elcem. В печи карботермического восстановления, применяемой для получения алюминия, используют полую разделительную перегородку для подачи углеродного материала в протекающий под ней поток. Эта перегородка разделяет низкотемпературную реакционную зону, где проводят реагирование оксида алюминия с углеродом с образованием карбида алюминия, и высокотемпературную реакционную зону, где проводят реагирование карбида алюминия и оставшегося оксида алюминия с образованием алюминия и оксида углерода. Изобретение обеспечивает возможность подачи дополнительного углеродсодержащего материала в реактор и его равномерного распределения, возможность исключения локализованного перегрева ванны шлака и снижение уноса алюминия.

Основными недостатками, связанными с процессом карботермического способа, являются незначительный выбор материалов, стойких к воздействию жидкого оксикарбидного расплава и газов при температуре до 2100°C, трудности эффективного регулирования и поддержания высокой рабочей температуры, невозможность обеспечения чистоты металла из-за примесей в нефтяном коксе и неполная декарбонизация полученного алюминия.

Известен хлоридный способ производства алюминия (патент US 3893899, опубл. 07.08.1975). В нем в качестве сырья используется AlCl3, растворенный в расплавленных хлоридах щелочных металлов. Проведение процесса возможно при низких температурах электролиза (~700°C). Преимуществами такого способа являются высокие плотности тока, т.к. в расплаве присутствует только один вид анионов, способных окисляться на аноде, отсутствие окисления хлором угольных анодов, что делает их нерасходуемыми.

К недостаткам способа относят необходимость в производстве и транспортировке чистого обезвоженного AlCl3. Содержание оксидов и гидроксидов должно быть низким, чтобы избежать окисления графитовых электродов и накопления шлама оксихлоридов, которые малорастворимы в хлоридном электролите. Высокие парциальные давления паров различных компонентов электролита, поэтому требуется очистка хлора, выделяемого при электролизе, от паров электролита и возврат уловленных хлоридов в электролизер. Наиболее эффективная попытка внедрения процесса была сделана компанией Alcoa. Несмотря на высокую производительность (около 13 т Al/сут) для одного электролизера и низкий удельный расход электроэнергии (около 9 кВт·ч/кг Al, без учета расхода энергии на процесс хлорирования), метод имеет несколько сложных технических проблем, которые до сих пор исключают его коммерческое применение.

Известно альтернативное получение алюминия из его сульфида (патент NL 20080202939, опубл. 28.08.2008). Безводный высокочистый сульфид алюминия получают из глинозема, далее электролитическим способом разлагают на алюминий и серу в многополярной ванне. При выходе по току в 90% удельный расход электроэнергии составит всего 5,24 кВт·ч/кг Al.

Главным недостатком является необходимость в производстве и создании отдельно технологического передела для получения очень чистого Al2S3, это делает технологию промышленно нереализуемой, также существует сложность самого агрегата.

Известен способ получения алюминия электролизом расплава (патент RU 2415973 C2, опубл. 10.04.2011). Способ включает электролиз расплава KF-NaF-AlF3 с добавками Al2O3 при температуре электролита 700-900°C и поддержание криолитового отношения (KF+NaF)/AlF3 от 1,1 до 1,9. Электролиз ведут при анодной плотности тока не более 1,0 А/см2 и катодной плотности тока не более 0,9 А/см2. Обеспечивается увеличение производительности с одновременным снижением удельного расхода электроэнергии и удешевлением известного способа электролитического получения алюминия и низкая скорость коррозии электродных материалов, в частности инертных анодов. Температура электролиза при их использовании не превышает 150°C, что снижает требования к материалам электролизера, корректировке состава электролита, уменьшает экологическую нагрузку на окружающую среду.

Недостатком способа является высокая стоимость электролита, невозможность прямого использования в качестве сырья глинозема, низкие плотности тока снижают экономическую конкурентоспособность процесса. Участвующие в процессе электролиза ионы калия существенно снижают значение выхода по току.

Известен принятый в качестве прототипа способ извлечения металлов из металлосодержащих катализаторов на основе оксидов алюминия или кремния в плазменных печах (патент RU 2075526, опубл. 20.03.1997), включающий переработку путем плавления катализаторов в смеси с известковыми флюсами и(или) глиноземом с использованием плазменно-дугового нагрева при температуре 1600-1650°C подачей углеродсодержащего восстановителя и железа с последующей продувкой полученного расплава нейтральным газом.

Недостатком способа извлечения является разрушение электродов при высоких температурах электродуговой плавки. Взаимодействие угольной пыли и осколков с жидким металлом ведет к возникновению обратных термических реакций с образованием карбидов. Процесс энергоемкий и экономически невыгодный, требует применения дорогостоящих огнеупорных материалов для футеровки. Для извлечения металла требуется полный слив печи и временная остановка процесса.

Техническим результатом предлагаемого способа является упрощение существующего способа получения алюминия и снижение материальных и энергетических затрат на его производство при высоких технико-экономических показателях процесса и экологичности процесса.

Технический результат достигается тем, что алюминий получают путем плавления непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе в интервале температур 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па, с последующим осаждением первичного алюминия на поверхности электрокорунда в электроосадительной камере путем пропускания через расплав постоянного тока 150-200 А и его рафинированием. При этом жидкий алюминий осаждают и собирают на поверхности электрокорунда при температуре 850-900°C.

Сущность заявляемого способа пояснена на фиг.1.

В реакционном пространстве высокотемпературной печи с углеродной системой нагрева и теплоизоляции, которая имеет двойной водоохлаждаемый корпус 1, создается вакуум до давления остаточных защитных газов 100-150 Па с помощью одновременной работы диффузионного вакуумного насоса 3 и форвакуумного насоса 4. Глинозем загружается на поверхность расплава при помощи дозатора 2. Затем проводится равномерный нагрев глинозема до получения расплава белого электрокорунда. Для нагрева и плавления порций глинозема используется плазменная дуга плазмотрона 5 на постоянном токе «прямой полярности». Необходимым условием стабильности электрической дуги является наличие источника питания, обладающего специальными характеристиками. Образовавшийся расплав заполняет электроосадительную камеру 6, перетекая за диафрагму-перегородку 7. Первичный алюминий осаждают на поверхности электрокорунда путем пропускания через расплав постоянного тока 150-200 А посредством углеграфитовых анода 8 и катода 9. Жидкий алюминий 10 находится на поверхности расплава, выполняя функцию катода, при достижении расчетного уровня через литниковую систему посредством верхнего слива 11 направляется в рафинировочную камеру 12 на очистку.

Наиболее рациональным с точки зрения перерабатываемого объекта методом извлечения металлического алюминия из оксида алюминия является плазменно-дуговой нагрев. При этом в заявляемых условиях глинозем представляет собой расплав белого электрокорунда. Температура плавления глинозема при степени вакуумирования - 1,1-1,3·10-4 Па снижается до 1300-1500°C. Полученный расплав электрокорунда перетекает по принципу сообщающегося сосуда в электроосадительную камеру через разделительную диафрагму-перегородку. При прохождении электрического тока через расплав на поверхности раздела в камере происходит электрохимическое восстановление ионов с образованием алюминия.

В межэлектродном зазоре глинозем представляет собой расплав, состоящий из оксида алюминия в аморфном состоянии, с развитой внутренней поверхности которого адсорбируются анионы O2- и катионы Al3+ на электродах. Сверху на поверхности катода идет реакция восстановления алюминия Al3+-3e=Al, а на аноде образуется молекулярный кислород O2--2e=O2, который транспортируется вверх по поверхности катода.

Жидкий металл находится на поверхности расплава с температурой 850-900°C, поскольку имеет плотность 2,30-2,35 г/см3, а плотность расплава белого электрокорунда составляет 3,70-3,95 г/см3. Алюминий перетекает через сливное отверстие в рафинировочную камеру по мере увеличения уровня.

Пример реализации технического решения

В реакционное пространство вакуумной электропечи загрузили 100 кг глинозема марки Г00. В результате переработки получено 52,7 кг жидкого алюминия марки А5, что соответствует удельному расходному коэффициенту глинозема 1895 кг/т Al по реакции разложения. Как следует из анализа полученных результатов, наилучшие показатели достигаются при поддержании температуры расплава на уровне 1430-1450°C, со скоростью подачи глинозема на поверхность расплава в зоне плавления 5 кг/сек.

Заявляемый способ успешно позволяет решить проблему комплексной экономичной переработки металлургического глинозема с целью извлечения алюминия, снизить расход материалов и электроэнергии, обеспечить экологические требования, предъявляемые процессу.

1. Способ получения алюминия, включающий переработку оксида алюминия путем плавления с использованием плазменно-дугового нагрева, отличающийся тем, что непрерывно поступающий глинозем плавят в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе в интервале температур 1300-1500°C со степенью вакуумирования 1,1-1,3·10-4 Па, а затем осаждают первичный алюминий на поверхности электрокорунда в электроосадительной камере путем пропускания через расплав постоянного тока 150-200 А и рафинируют в рафинировочной камере.

2. Способ по п.1, отличающийся тем, что жидкий алюминий осаждают и собирают на поверхности электрокорунда при температуре 850-900°C.



 

Похожие патенты:
Изобретение относится к области переработки алюмосиликатного сырья, в частности кианита, и может быть использовано при производстве глинозема, пригодного для получения корундовых огнеупоров, мелкодисперсного аморфного кремнезема, керамики, силумина и алюминия.

Изобретение относится к способу и устройству для получения металлического алюминия из водяной суспензии глиняных частиц. Способ включает размалывание алюмосодержащей глины на частицы с размерами 0,001-1,0 мм, перемешивание ее с водой в количестве 30-40% от суммарной массы размолотой глины с получением водяной суспензии, которую загружают в полость корпуса, продувку через зону обработки сжатого атмосферного воздуха, восстановление углеродом, входящим в состав газов, присутствующих в струях продуваемого через зону обработки воздуха, при воздействии на водяную суспензию переменным вращающимся магнитным полем напряженностью в зонах обработки 4*104-1*106 А/м, частотой 40-70 Гц путем перемещения водяной суспензии через последовательно расположенные в корпусе устройства зоны обработки, количество которых составляет от 2 до 6 и которые используют в качестве замыкающих соединительных звеньев для генерируемого магнитного потока при воздействии на водяную суспензию.

Изобретение относится к металлургии благородных металлов и может быть использовано при утилизации отработанных катализаторов, содержащих соединения палладия и других металлов.

Изобретение относится к способу нагревания рабочей массы в процессе получения соединений металлов, а также к устройству для его осуществления. .
Изобретение относится к переработке кианита. .
Изобретение относится к способу переработки фторсодержащих отходов электролитического производства алюминия. .

Изобретение относится к способам извлечения алюминия путем экстракции ионов алюминия и/или железа из глиноземистых руд или смеси. .
Изобретение относится к способу переработки отработанного молибден-алюминийсодержащего катализатора. .
Изобретение относится к глиноземной промышленности, точнее к переработке нефелиновых руд и концентратов методом спекания. .

Изобретение относится к области переработки полезных ископаемых и может быть использовано при обогащении золошлаковых отходов, сырья техногенного характера, содержащего железо и алюминий.

Изобретение относится к электроду для применения в алюминиевом электролизере, содержащему: от 0,01 до 0,75 вес.% добавок металлов, причем добавки металлов выбраны из группы, состоящей из Fe, Ni, Co и W, и их комбинаций; остальным являются TiB2 и неизбежные примеси, причем неизбежные примеси составляют менее 2 вес.% электрода. При этом электрод имеет плотность от 85% до 99% от его теоретической плотности. Также изобретение относится к алюминиевому электролизеру, получению данного электрода и способу применения электрода, а также к композиции для его получения. 5 н. и 15 з.п. ф-лы, 1 ил., 2 табл., 2 пр.
Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента водорастворимых карбоновых кислот жирного ряда с числом атомов углерода в молекуле менее 3. Из полученного раствора проводят разделение извлекаемых целевых продуктов. При этом выщелачивание проводят при порционном добавлении красного шлама с контролем значений pH, при достижении значения pH, равного 2,3-3,8, добавление красного шлама прекращают. По завершению выщелачивания раствор выдерживают при заданной температуре выщелачивания не менее одного часа. Техническим результатом является обеспечение высокой степени извлечения ценных компонентов и увеличение производительности процесса за счет исключения выпадения высокодисперсного гидроксида алюминия. 1 табл.

Изобретение относится к способу переработки алюминийсодержащего сырья и может быть использовано при получении глинозема. Способ включает обжиг алюминийсодержащего сырья, обработку обожженного материала соляной кислотой, разделение полученной пульпы на осветленный хлоридный раствор и сиштоф, промываемый водой перед отправкой в отвал, высаливание хлорида алюминия путем насыщения осветленного хлоридного раствора газообразным хлороводородом, кальцинацию хлорида алюминия для получения оксида алюминия и пирогидролиз маточного раствора с возвратом хлороводорода на стадии кислотной обработки и высаливания, осажденный в процессе высаливания гексагидрат хлорида алюминия обрабатывают водным аммиаком, полученный осадок направляют на кальцинацию, раствор хлорида аммония смешивают с алюминийсодержащим сырьем перед его обжигом или в процессе обжига, выделяемый при обжиге аммиак растворяют в воде, полученный при этом водный аммиак направляют на обработку гексагидрата хлорида алюминия, а обожженный материал перед кислотной обработкой подвергают водному выщелачиванию при отношении жидкой и твердой фаз, равном 0,6-1,4. Обеспечивается повышение качества глинозема и снижение энергозатрат. 3 з.п. ф-лы, 1 табл., 1 ил.

Изобретение относится извлечению металлического кобальта, рутения и алюминия из отработанного катализатора Co-Ru/Al2O3 для синтеза Фишера-Тропша. Катализатор подвергают воздействию прокаливанием и восстановительной обработке. При этом отделяют кобальтовый осадок на стадии щелочного плавления, затем его выщелачивают. Кобальт осаждают с помощью щавелевой кислоты или оксалата аммония. Полученный оксалат кобальта обрабатывают с получением Co(NO3)2∙6H2O. Рутенат подвергается воздействию с получением продукта β -RuCl3∙xH2O с высокой чистотой. Гидроксид алюминия получают из раствора метаалюмината посредством карбонизации, далее его прокаливают с получением оксида алюминия первого класса. Обеспечивается высокое извлечение кобальта, рутения и алюминия. 14 з.п. ф-лы, 1 ил., 1 табл., 3 пр.
Изобретение относится к извлечению рутения из отработанного катализатора в виде оксида алюминия, содержащего рутений. Способ включает его сушку, прокаливание, охлаждение и измельчение в черный порошок, содержащий оксид рутения. Помещение его в реактор с псевдоожиженным слоем, введение водорода для восстановления с получением при этом порошка, содержащего металлический рутений. Далее в реактор с восстановленным порошком вводят газовую смесь из кислорода и озона с получением при этом газообразного RuO4. Далее газообразный RuO4 вводят в раствор соляной кислоты с получением раствора H3RuCl6 и добавляют к нему избыток окислителя для образования гексахлорорутениевой (IV) кислоты. Далее добавляют избыток NH4Cl для получения твердого продукта гексахлорорутената (IV) аммония. Далее его восстанавливают и получают металлический рутений. Обеспечивается высокая степень извлечения рутения и упрощение процесса. 8 з.п. ф-лы, 4 пр.

Настоящее изобретение относится к обработке алюминийсодержащего материала, в частности к извлечению редкоземельных элементов из алюминийсодержащего материала. Способ включает стадии, в которых проводят выщелачивание алюминийсодержащего материала кислотой для получения экстракта, включающего по меньшей мере один ион алюминия, по меньшей мере один ион железа, по меньшей мере один редкоземельный элемент, и твердого вещества и отделение экстракта от твердого вещества. Способ также включает стадии, в которых селективно удаляют по меньшей мере один из по меньшей мере одного иона алюминия и по меньшей мере одного иона железа из экстракта и необязательно получают осадок. Способ также содержит стадии, в которых селективно удаляют по меньшей мере один редкоземельный элемент из экстракта и/или осадка. Техническим результатом является возможность извлечения редкоземельных элементов из разнообразных алюминийсодержащих матеиалов. 7 н. и 138 з.п. ф-лы, 5 ил., 3 пр.

Изобретения относятся к отделению ионов железа от ионов алюминия, содержащихся в кислотном составе. Данные способы включают взаимодействие кислотного состава с основным водным составом, имеющим pH по меньшей мере 10,5, для получения осадочного состава, поддерживая pH осадочного состава на уровне, превышающем 10,5, для выделение ионов железа. При этом существенно предотвращают выделение ионов алюминия и получают смесь, включающую жидкую часть и твердую часть. Затем ведут отделение жидкой части от твердой части. Техническим результатом является получение фабрикатов, таких как оксид алюминия, алюминий, гематит. 2 н. и 18 з.п. ф-лы, 4 ил., 2 пр.

Настоящее изобретение относится к усовершенствованиям в области химии, относящимся к получению оксида алюминия путем экстракции алюминия из материалов и/или оксида титана путем экстракции титана из материалов, содержащих титан. Указанные способы также могут являться эффективными при получении других продуктов, таких как гематит, MgO, оксид кремния и оксиды различных металлов, хлорид титана, а также редкоземельные элементы и алюминий. Указанные способы могут включать выщелачивание исходного материала с применением HCl с получением продукта выщелачивания и твердого вещества. Твердое вещество можно обрабатывать с обеспечением таким образом по существу селективного экстрагирования титана из указанного твердого вещества, тогда как продукт выщелачивания можно обрабатывать с обеспечением таким образом по существу селективного выделения хлорида первого металла из указанного продукта выщелачивания. Технический результат изобретения направлен на концентрирование редкоземельных элементов до очень высокой степени чистоты при помощи совмещенных стадий способа, а также на селективное удаление компонентов, которое обеспечивает концентрирование редкоземельных элементов до достижения очень высоких концентраций. 9 н. и 150 з.п. ф-лы, 10 ил., 28 табл., 7 пр.

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды. Для сокращения расхода нефелиновой руды в нефелиново-известняково-содовую шихту добавляют золошлаковые отходы в количестве от 0,1 до 10% от массы нефелиновой руды. Техническим результатом способа является сокращение расхода сырьевого компонента шихты - нефелиновой руды и утилизация золошлаковых отходов с доизвлечением из них ценных компонентов. 5 табл.

Изобретение относится к получению алюминиевого нанопорошка из отходов электротехнической алюминиевой проволоки, содержащих не менее 99,5 % алюминия. Ведут электроэрозионное диспергирование отходов в дистиллированной воде при частоте следования импульсов 95 - 105 Гц, напряжении на электродах 90 - 10 В и емкости конденсаторов 65 мкФ с последующим центрифугированием раствора для отделения крупноразмерных частиц от нанопорошка. Обеспечивается снижение энергетических затрат и повышается экологическая чистота процесса. 6 ил., 2 пр.
Наверх