Электролит для анодирования алюминия и его сплавов перед нанесением медных гальванопокрытий

Изобретение относится к области гальванотехники. Электролит содержит ортофосфорную кислоту 15% об., серную кислоту 15% об., фторсодержащее неорганическое вещество, выбранное из группы, включающей бифторид аммония, бифтористую кислоту, фторид натрия 4-15 г/л и воду - остальное. Технический результат - снижение энергетических и материальных затрат, снижение времени технологического процесса при высоком качестве покрытия. 2 табл., 2 ил., 2 пр.

 

Изобретение относится к электрохимическому способу нанесения покрытий на изделия из алюминия и его сплавов.

Алюминиевые сплавы являются основным конструкционным материалом в авиации, автомобилестроении, электротехнической промышленности. Сейчас наблюдается тенденция к расширению области применения их в других отраслях промышленности. Этому способствует нанесение на алюминиевые изделия различных гальванических покрытий, которые увеличивают их сопротивление коррозии и механическому износу, повышают поверхностную электропроводность, улучшают паяемость, проявляют декоративные свойства. Но нанесение гальванических покрытий на изделия из данного металла связано с рядом специфических трудностей, например наличием на их поверхности естественной оксидной пленки, препятствующей прочному сцеплению покрытия с основой. Кроме того, высокое электроотрицательное значение потенциала алюминия приводит к контактному вытеснению ионов покрываемого металла до начала прохождения электрического тока через раствор электролита, что тоже нарушает сцепление между покрытием и основой. Преодоление этих трудностей достигается специальными методами подготовки поверхности покрываемых изделий (цинкатная обработка, анодирование, химическое оксидирование).

Применяемая в современном гальваническом производстве обработка в цинкатных растворах имеет ряд недостатков: процесс не является достаточно стабильным и приводит к определенному проценту недоброкачественных покрытий, сцепление при этом способе не является достаточно высоким, гальванические покрытия следует использовать только в легких и средних условиях эксплуатации [1]. Химическое оксидирование - простой и дешевый способ обработки алюминия, который применяется для получения грунта под лакокрасочные покрытия. Пленки, полученные при химическом оксидировании, значительно уступают по защитным и механическим свойствам оксидным пленкам, полученным электрохимическим методом. Поэтому химическое оксидирование алюминия имеет ограниченное применение. К тому же эти электролиты имеют ограниченный ресурс [2].

Анодирование дает возможность получить более надежное сцепление гальванических покрытий с алюминиевой основой по сравнению с другими методами [3]. Полученные в процессе анодирования пленки имеют высокую твердость. Поэтому анодирование во много раз повышает сопротивляемость алюминиевых изделий механическим воздействиям (истиранию, царапанию и т.д.).

Известно, что анодирование алюминия и его сплавов перед нанесением гальванопокрытий проводят в растворе ортофосфорной кислоты, что дает положительные результаты в широком диапазоне концентраций. Однако существенным недостатком этого процесса является его большая чувствительность к малейшим изменениям в составе обрабатываемых сплавов. При анодировании в ортофосфорной кислоте встречается тем больше затруднений, чем чище алюминий. Анодирование в ортофосфорной кислоте не дает должного эффекта при гальваническом покрытии литейных сплавов [4].

Универсальным для анодирования алюминия и его сплавов в этом отношении является электролит, содержащий 15% (об.) H2SO4 и 15% (об.) H3PO4 [5]. Авторами показано, что пленка, полученная при анодировании в смеси кислот (фиг.2а), получается достаточно плотная (пористость составляет всего 7,3%). Это приводит при меднении при высоких плотностях тока (1-2 А/дм2) к непрокрытию поверхности сплава. В этом случае для нанесения качественного гальванического покрытия необходимо снижать катодную плотность тока (до 0,5-0,8 А/дм2), что в значительной мере увеличивает время технологического процесса нанесения гальванопокрытия.

Известен способ [6] нанесения медного гальванического покрытия на деталь из алюминия и его сплавов, анодированную в растворе, содержащем смесь кислот (серную и ортофосфорную), с последующем нанесением подслоя меди из раствора следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
HF 10÷15 г/л
Вода остальное

при катодной плотности тока jk - 1÷2 А/дм2 в течение 2÷3 мин и комнатной температуре.

Затем после промывки медное покрытие наращивается до необходимой толщины из стандартного сернокислого электролита:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока jk - 1÷2 А/дм2 в течение 2÷3мин и комнатной температуре.

Но при этом способе получения качественного гальванопокрытия необходимы дополнительные материальные (нанесение подслоя и расход воды на промывки) и энергетические затраты. Эти недостатки устраняются предлагаемым решением.

Поставлена задача - повышение технологичности способа.

Технический результат - снижение энергетических и материальных затрат, снижение времени технологического процесса при высоком качестве покрытия.

Технический результат достигается тем, что в электролит анодирования, содержащий ортофосфорную и серную кислоты, дополнительно вводят фторсодержащее неорганическое вещество из группы: бифторид аммония, борфтористая кислота, фторид натрия:

Ортофосфорная кислота 15% об.
Серная кислота 15% об.
Фторсодержащее неорганическое
вещество 4-15 г/л
Вода остальное

Электрокристаллизация осаждаемого металла покрытия начинается, прежде всего, в порах оксидной пленки, которые заполняются металлом, вследствие чего и обеспечиваются условия для прочного сцепления осадка с основой. Поэтому для нанесения гальванопокрытий с высокой степенью адгезии необходимо получить в процессе анодирования на поверхности алюминиевого сплава более пористую пленку, прочно сцепленную с основой [4]. С этой целью дополнительно в электролит анодирования были введены вещества, содержащие в своем составе F--ионы, способные повысить пористость оксидной пленки, образующейся на поверхности алюминия в процессе анодирования (фиг. 2б).

Положительное воздействие плавиковой кислоты на процесс получения пористого оксида на поверхности деталей любой формы, изготовленных из сплава титан-алюминий, было отмечено в работе [7]. Однако, учитывая высокую токсичность плавиковой кислоты и повышенный расход ее в процессе анодирования, приводящий при меднении к ухудшению качества медного покрытия, для исследований также были выбраны другие фторсодержащие неорганические вещества: фторид натрия NaF, бифторид аммония NH4HF2, борфтористо-водородная кислота HBF4. Полученные результаты представлены в табл.1.

Уменьшение энергозатрат происходит за счет снижения напряжения на ванне (примерно в 2÷4 раза), а материальных - за счет исключения ванны нанесения подслоя меди (по прототипу) и снижения расхода воды на промывки. При этом качество покрытия остается высоким, особенно для сложнопрофильных деталей. К тому же исключается возможность непрокрытия в труднодоступных местах.

Способ осуществляют следующим образом. Покрытию подвергали сложнопрофилированные детали, изготовленные из алюминиевых сплавов следующих марок АМц, АД0, АД1, АД31, АК4, АК9ч, АЛ2. Эскиз этих деталей представлен на фиг.1. Предварительно детали обезжиривали, осветляли в растворе HNO3:HF=3:1. Далее деталь анодируют в растворе 15% H2SO4 + 15% H3PO4 + фторсодержащее неорганическое вещество при растворе 15% H2SO4 + 15% H3PO4 + фторсодержащее неорганическое вещество при комнатной температуре и анодной плотности тока 2 А/дм2. После анодирования и тщательной промывки на деталь наносилось медное покрытие из стандартного сернокислого электролита. Толщина медного покрытия составляет 9 мкм.

После покрытия детали нагревались в вакуумной печи при температуре 200-230°C в течение 1 часа (стандартный прием). Прочность сцепления покрытия с основой определялась по методу сеток, методом кварцевания медными щетками и по контролю отслоений гальванопокрытий после отжига. Опытные образцы прошли все испытания. Отслоения покрытий не наблюдалось.

Примеры

Пример 1. Деталь из сплава марки АД1 анодно оксидировалась в электролите 15% H2SO4 + 15% H3PO4, вода - остальное (по прототипу) при комнатной температуре и плотности тока 2 А/дм2 в течение 5-6 минут. Напряжение на ванне при этом составило 19-21 В. Далее наносилось медное покрытие из стандартного сернокислого электролита следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока 14-2 А/дм2. При визуальном осмотре покрытия наблюдались непрокрытия по всей поверхности деталей.

Пример 2. Деталь из сплава марки АД1 анодно оксидировалась в электролите 15% H2SO4 + 15% H3PO4 + 4÷6 г/л бифторида аммония, вода - остальное при комнатной температуре и плотности тока 2 А/дм2 в течение 5-6 минут. Напряжение на ванне при этом составило 6÷9 В. Далее наносилось медное покрытие из стандартного сернокислого электролита следующего состава:

CuSO4·5H2O 200÷250 г/л
H2SO4 50÷70 г/л
C2H5OH 7÷10 мл/л
Вода остальное

при катодной плотности тока 1÷2 А/дм2. При визуальном осмотре поверхность детали покрыта полностью. Покрытие получилось мелкокристаллическим, полублестящим, беспористым.

При снижении концентрации бифторида аммония в электролите анодирования до 1-2 г/л высокое качество покрытия сохраняется. Однако при этом наблюдается значительное повышение напряжения на ванне анодирования до 11-12 В. Увеличение концентрации указанной добавки до 10-15 г/л приводит к снижению напряжения на ванне до 1-3 В. При этом качество медного покрытия остается прежним. Дальнейшее повышение концентрации добавки к существенному снижению напряжения не приводит.

Аналогично примеру 2 испытывались в качестве добавок в электролит анодирования борфтористо-водородная кислота и фторид натрия. Результаты испытаний представлены в табл.2. Из табл.2 видно, что наиболее оптимальной добавкой является бифторид аммония. Активирующая обработка в смеси кислот с добавкой бифторида аммония позволяет наносить медное покрытие на любые алюминиевые сплавы типа деформируемых сплавов АМц, АД0, АД1, АД31, АК4, силумина АК9ч, а также и литейного сплава АЛ2. Применение предложенного электролита анодирования позволяет в значительной мере снизить материальные, энергетические и временные затраты.

На фиг.1 приведен эскиз используемых алюминиевых деталей для нанесения гальванопокрытий.

На фиг.2а - структура оксидной пленки, полученной при анодировании в базовом электролите.

На фиг.2б - структура оксидной пленки, полученной при анодировании в базовом электролите с добавкой бифторида аммония.

Источники информации

1. Мамаев В.И. О причинах брака матового никелевого покрытия на алюминии // Гальванотехника и обработка поверхности. - 2012. - №3. - С.22-25.

2. Денкер И.И., Кулешова И.Д. Защита алюминия и его сплавов лакокрасочными покрытиями. 2-е изд., перераб. и доп.М.: Химия. - 1985. - С.23-27.

3. Худяков В.Л. Опыт применения анодных окисных пленок при хромировании алюминия // В кн.: Анодная защита металлов: Докл. 1-й межвуз. конф. / под ред. Богоявленского А.Ф. М.: Машиностроение, 1964. - С.292-309.

4. Лайнер В.И. Гальванические покрытия легких сплавов. М.: Металлургиздат, 1959 г. - С.21.

5. Девяткина Т.И., Большакова О.А., Рогожин В.В., Михаленко М.Г. Нанесение медного гальванического покрытия на детали из алюминия и его сплавов // Сборник материалов XI Международной молодежной научно-технической конференции "Будущее технической науки". 2012. - С.297.

6. Девяткина Т.И., Рогожин В.В., Большакова О.А., Думитраш О.В., Михаленко М.Г. Способ нанесения медного гальванического покрытия на детали из алюминия и его сплавов // Патент РФ №2471020, C25D 5/44, C25D 11/20, опубл. 27.12.2012.

7. Кокатев А.Н., Ханина Е.Я., Чупахина Е.А., Яковлев А.Н., Яковлева Н.М. Способ формирования пористого оксида на сплаве титан-алюминий // Заявка №2011114311/02. Заявлено 12.04.2011; опубл. 20.10.2012.

Таблица 1
Параметры оксидных пленок, полученных при анодировании в электролитах с различными добавками. Режим анодирования: jа=2 А/дм2, t=18÷20°C, τ=5÷6 мин.
Электролит анодирования δ, мкм Пористость, % Напряжение на ванне анодирования, В
15% H2SO4+15% H3PO4 2,14 7,3 19÷21
15% H2SO4+15% H3PO4+NaF 1,62 19 12÷13
15% H2SO4+15% H3PO4+HBF4 1,24 16 9÷11
15% H2SO4+15% H3PO4+NH4HF2 1,242 20 6÷9
Таблица 2
Визуальная оценка качества медного покрытия. Режим анодирования: ja=2 A/дм2, t=18÷20°C, τ=5÷6 мин. Электролит меднения: стандартный сернокислый. Режим меднения: jk=1,5А/дм2, t=18÷20°C, τ=27 мин.
Электролит анодирования Качество покрытия
15% H2SO4 + 15% H3PO4 Не прокрылось по всей площади детали
15% H2SO4 + 15% H3PO4 + NaF Полублестящее мелкокристаллическое покрытие, непрокрытий нет. При 500-кратном увеличении наблюдается незначительное количество пор на 1 мм2 поверхности на сплавах марок АК9ч и АЛ2.
15% H2SO4 + 15% H3PO4 + HBF4 Полублестящее мелкокристаллическое покрытие, непрокрытий нет. При 500-кратном увеличении наблюдается незначительное количество пор на 1 мм2 поверхности на сплавах марок АК4, АЛ2 и АД.
15% H2SO + 15% H3PO4 + NH4HF2 Полублестящее мелкокристаллическое покрытие, непрокрытий нет. Покрытие беспористое на всех сплавах.

Электролит для анодирования алюминия и его сплавов перед нанесением медных гальванопокрытий, включающий ортофосфорную кислоту, серную кислоту и воду, отличающийся тем, что он дополнительно содержит фторсодержащее неорганическое вещество из группы: бифторид аммония, бифтористая кислота, фторид натрия при следующем соотношении компонентов:

ортофосфорная кислота 15 об.%
серная кислота 15 об.%
Фторсодержащее неорганическое вещество 4-15 г/л
вода остальное



 

Похожие патенты:
Изобретение относится к области гальванотехники. .

Изобретение относится к области гальванотехники и может быть использовано в двигателестроении. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, судостроении и строительстве для нанесения антикоррозионных защитных оксидных покрытий на детали из алюминия и его сплавов.

Изобретение относится к области обработки поверхностей деталей, в частности к микродуговому оксидированию, и может использоваться в машиностроении, приборостроении и других отраслях промышленности.

Изобретение относится к области гальванотехники. .

Изобретение относится к области гальванотехники. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к области гальваностегии, в частности к микродуговому оксидированию, и может быть использовано в машиностроении и приборостроении. .

Изобретение относится к области гальванотехники, в частности к электролитическому способу нанесения покрытия, а именно к анодированию алюминия и его сплавов. Способ нанесения защитного покрытия на тонколистовую от 0,4 мм крупногабаритную от 1000 мм деталь из алюминиевого сплава включает химическое обезжиривание, травление, осветление, анодирование в растворе серной кислоты с концентрацией 180 г/л, наполнение анодной пленки, промывку после каждой операции, при этом анодирование детали осуществляют путем размещения детали между двумя прямоугольными рамами, с приваренной к ним подвеской, которую размещают на анодной штанге, с последующим опусканием рам с деталью в ванну с электролитом анодирования, выдержкой при температуре 15-23°C в течение 40 мин и контролем анодно-окисного покрытия методом капли. Технический результат: повышение коррозионной стойкости крупногабаритных от 1000 мм тонколистовых деталей толщиной от 0,4 мм из алюминиевых сплавов за счет обеспечения фиксации и жесткого контакта, что приводит к уменьшению количества брака и повышению производительности. 1 ил.

Изобретение относится к технологии получения декоративных покрытий при окраске металлических изделий в различные цвета и создания высокотехнологичных оптоэлектронных устройств с применением элементов, способных отражать или пропускать свет с определенной настраиваемой длиной волны. Способ получения декоративного покрытия с изменяющимся цветом при изменении угла наблюдения заключается в формировании одномерного фотонного кристалла с фотонной запрещенной зоной в видимом диапазоне с помощью анодирования поверхности вентильного металла или сплава на его основе с содержанием вентильного металла не менее 50% при циклически изменяющихся параметрах: тока и напряжения, причем каждый цикл состоит из двух стадий: на первой стадии анодирование проводят при стабилизации тока в интервале от 0,1 до 50 мА/см2 в течение времени, обеспечивающего протекание заряда от 0,05 до 5 Кл/см2; на второй стадии анодирование проводят при стабилизации напряжения, повышая его от значения напряжения в конце первой стадии до значения, лежащего в диапазоне от 10 до 200 В, с уменьшающейся скоростью подъема напряжения от 5 В/с до 0 В/с, и выдерживают при этом значении в течение времени, обеспечивающего протекание заряда от 0,05 до 5 Кл/см2, обеспечивая соотношение максимального напряжения на второй стадии к минимальному напряжению на первой стадии более 1,4, при этом металлическая поверхность в процессе получения декоративного покрытия служит в качестве анода, а в качестве катода используют инертный материал, при этом заряд анодирования на первой и второй стадиях сокращают на 0,01-10% на каждом последующем цикле анодирования, количество которых лежит в интервале от 20 до 300. Изобретение позволяет получать цветные декоративные покрытия высокого качества простым и воспроизводимым способом, характеризующимся безопасностью и экологичностью за счет исключения из технологии ядовитых веществ. 8 з.п. ф-лы, 10 ил., 2 табл., 5 пр.

Изобретение относится к области гальванотехники и может быть использовано для создания на поверхности алюминия и его сплавов покрытий с многомодальной шероховатостью, которые при последующем нанесении гидрофобизирующего агента придают деталям гидрофобные свойства. Способ включает промывку деталей, их обработку в растворе щелочи, последующую промывку деталей, их сушку и анодирование при комнатной температуре, при этом анодирование осуществляют в 10М водном растворе азотной кислоты при плотности тока 10-100 мА/см2 в течение 5-10 мин, после чего осуществляют промывку деталей и их сушку. Технический результат: создание покрытия с микро- и наноразмерной шероховатостью, которая может служить подслоем для создания гидрофобной поверхности, предлагаемая электрохимическая обработка не требует сложного оборудования, больших энергозатрат и выполняется в течение короткого времени. 3 ил., 1 табл., 2 пр.

Изобретение относится к промышленной экологии и может быть использовано для утилизации жидких отходов гальванических производств. Способ утилизации отработанного раствора анодного оксидирования алюминия и его сплавов включает смешивание указанного раствора с реагентом, образование осадка и отделение его от раствора. Отработанный раствор анодного оксидирования алюминия и его сплавов содержит в качестве основных компонентов алюминий(+3), щавелевую кислоту и, необязательно, серную кислоту. В качестве реагента используют отход получения покрытий никелем - отработанный раствор никелирования. При этом могут быть использованы отработанные растворы химического никелирования, гальванического никелирования или их смеси. Изобретение позволяет утилизировать отработанные растворы с получением товарного продукта – дигидрата оксалата никеля и снизить затраты на охрану окружающей среды. 5 з.п. ф-лы, 8 пр.
Наверх