Способ изготовления металло-тритиевой мишени


 


Владельцы патента RU 2529399:

Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики -ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU)

Изобретение относится к технологии изготовления металло-тритиевых мишеней, в частности к способу изготовления титан-тритиевых мишеней, которые могут быть использованы для получения моноэнергетических потоков нейтронов. Заявляемый способ заключается в напылении слоя гидридобразующего металла на подложку магнетронным методом с использованием газа-носителя, нагревании металла на подложке до температуры 450-500°C, насыщении слоя гидридобразующего металла тритием из газовой фазы и охлаждении полученной мишени. В качестве газа-носителя используют аргон, содержащий кислород в количестве 0,05…0,1 об. %, а охлаждение мишени проводят в камере насыщения в среде трития. Технический результат заключается в упрощении процесса насыщения мишеней за счет исключения операции контроля степени насыщения слоя гидридобразующего металла, необходимости прерывания процесса насыщения и удаления трития из камеры насыщения при высоких температурах, а также в повышении безопасности условий работы персонала.

 

Изобретение относится к технологии изготовления металло-тритиевых мишеней, которые могут быть использованы для получения моноэнергетических потоков нейтронов.

Известен способ изготовления титан-тритиевых мишеней, при котором проводят осаждение гидрида титана на подложки из других металлов, температура плавления которых не ниже 1200°C (Г.Д. Горловой, В.А. Степаненко. Тритиевые излучатели. М., Атомиздат. 1965, с.27-28). Порошковый гидрид титана суспензируют в этилацетате, в полученную суспензию помещают подложку. Гидрид титана равномерно осаждается на подложку, после чего этилацетат удаляют медленным испарением, остатки гидрида осторожно сдувают, подложку взвешивают и определяют толщину слоя. Подготовленную таким образом подложку помещают в вакуумную печь и около 5 минут подогревают до 1200°C при давлении не более 5×10-5 мм рт.ст. В результате нагрева гидрид титана разлагается, водород откачивается, а титан образует на подложке плотное покрытие. Полученные по такой методике подложки насыщают тритием.

Этот способ имеет следующие недостатки: - слой титана загрязнен органикой, в результате чего мишени насыщаются газом (тритием) до атомного отношения T/Ti=1. Малое насыщение мишени ограничивает ее ресурс работы в составе нейтронного генератора;

- при температуре отжига 1200°C титан способен образовывать сплавы с материалом подложки, которые не взаимодействуют с тритием.

Известен также способ изготовления титан-тритиевых мишеней, при котором нанесение слоя титана на подложку, например из молибдена, проводят методом высокочастотного распыления (там же, стр.19-25). Поверхность подложки очищают, после чего ее обезгаживают в вакууме (давление не выше 5×10-5 мм рт. ст.) при нагреве до 900-1000°C с помощью катушек индукционного нагрева. Нанесение титана проводится в камере высокочастотного испарения. Перед испарением подложку взвешивают с точностью до 0,01 мг и помещают ее в камере на расстоянии 50-60 мм от титанового испарителя. Для испарения титана применяют высокочастотный генератор; при температуре титана 1400-1500°C начинается интенсивное испарение титана, который осаждается на подложку. Температуру титана контролируют оптическим пирометром. Во время испарения необходимо следить за тем, чтобы давление было не выше 5×10-6 мм рт.ст. После напыления подложку охлаждают и насыщают тритием; достигаемое атомное отношение T/Ti~1. Авторы отмечают случаи, когда титан, нанесенный на подложку методом испарения, трескается и осыпается. Тщательная полировка подложек уменьшает шелушение, но незначительно.

К основным недостаткам способа можно отнести следующее:

- технология изготовления сложна, имеет трудно контролируемые стадии, в результате чего возникают трудности при получении покрытия заданной толщины;

- при насыщении слой тритида титана отслаивается от подложки и остается в камере насыщения. Это приводит к радиационному загрязнению и создает опасность облучения персонала.

Известен также способ изготовления мишени нейтронной трубки для использования в скважинно-геофизической аппаратуре, описанный в патенте US 3963934, МПК G21G 4/02, от 15.06.1976 г., включающий напыление титана на подложку и насыщение титана тритием.

Этот способ изготовления титано-тритиевой мишени нейтронной трубки заключается в том, что напыление титана на металлическую

подложку производят при температуре последней 350-450°C. После этого подложку с напыленным слоем титана извлекают из установки напыления и насыщают тритием в специальной установке. При насыщении слоя титана тритием необходимо следить за достижением предельного атомного отношения и извлекать мишень из установки в нужный момент, а это усложняет процесс.

В качестве прототипа выбран способ изготовления мишени нейтронной трубки, известный из патента РФ №2 222 064, МПК G21G 4/04, опубл.20.01.2004. Способ изготовления мишеней нейтронной трубки включает напыление титана на металлическую подложку при температуре последней 500-650°C. После этого подложку с напыленным слоем титана извлекают из установки напыления и насыщают тритием в специальной установке до атомного отношения трития к титану T/Ti~1,85. О проценте брака мишеней, связанного с отслоением тритида титана от подложки, при насыщении этим способом в патенте не сообщается. Напыление титана на металлическую подложку осуществляли методом термического испарения в вакууме ~2×10-6 мм рт.ст. при температуре 500-650°C. Нагрев металлической подложки до температуры 500-650°C осуществляли резистивным нагревателем, установленным на позиции напыления. Данный способ позволяет повысить термостойкость мишени, увеличить выход нейтронов и ресурс включений нейтронной трубки.

Недостатком этого способа являются сложности, возникающие при насыщении мишеней, т.к. реализуется предельное атомное отношения а.о. T/Ti≥1,85, что повышает вероятность отслоения тритида титана от подложки. Для устранения этого требуется остановка процесса поглощения трития на определенной стадии. Нами экспериментально установлено, что отслоение слоя тритида титана от подложки начинается при а.о. T/Ti>1,7 и тритид осыпается в камере насыщения. Это отрицательно сказывается на качестве мишени, приводит к радиационному загрязнению и создает опасность облучения персонала. Для того чтобы исключить отслаивание и получить нужную степень насыщения, необходимо прекратить доступ газа к мишеням при достаточно высоких температурах в камере насыщения. При этом необходимо осуществлять постоянный контроль степени насыщения.

Задачей настоящего изобретения является упрощение способа изготовления металло-тритиевых мишеней, повышение безопасности и качества мишени.

Технический результат, достигаемый при использовании предлагаемого способа, заключается в следующем:

- значительно упрощается процесс насыщения мишеней за счет исключения операции контроля степени насыщения металлического слоя;

- отпадает необходимость в прерывании процесса насыщения и удаления трития из камеры насыщения при высоких температурах;

- повышается качество мишеней;

- снижается вероятность отслоения тритида металла от подложки и, соответственно, радиационного загрязнения технологического оборудования;

- повышается безопасность условий работы персонала;

- неравномерность распределения массы сорбента по площади активной части мишени составляет менее 10%.

Для решения указанной задачи и достижения технического результата предложен способ изготовления металло-тритиевых мишеней, заключающийся в напылении слоя гидридобразующего металла на подложку, насыщении его тритием и охлаждении полученной мишени, в котором согласно изобретению напыление слоя гидридобразующего металла на подложку осуществляют магнетронным методом с использованием в качестве газа-носителя аргона, содержащего кислород в количестве 0,05…0,1% об., а охлаждение мишени проводят в камере насыщения в среде трития.

Напыление слоя гидридобразующего металла на подложку осуществляют магнетронным методом, и при этом используют в качестве газа-носителя аргон с примесью кислорода в количестве 0,05-0,1% об. При напылении кислород частично внедряется в кристаллическую решетку гидридобразующего металла, препятствуя внедрению трития в слой металла при насыщении. Заявляемое количество кислорода в аргоне позволяет обеспечить степень насыщения слоя гидридобразующего металла не более ~85% от максимально возможного атомного отношения трития к металлу, что упрощает изготовление (насыщение) и обеспечивает устойчивую работу мишени. При достижении предельного атомного отношения слой гидридобразующего металла мишени, находясь в камере насыщения в среде трития, не поглощает тритий, и степень насыщения его при этом не меняется, что позволяет проводить охлаждение мишени непосредственно в рабочей камере. Это исключает необходимость контроля степени насыщения, прерывания процесса насыщения и удаления трития из камеры насыщения при высоких температурах. Исключение перечисленных операций повышает безопасность условий работы персонала и значительно упрощает способ изготовления металло-тритиевой мишени. Использование при напылении слоя гидридобразующего металла в качестве газа-носителя аргона с примесью кислорода в количестве 0,05-0,1% об. позволяет насыщать металл до атомного соотношения трития к металлу ~85% от максимального значения, что исключает отслаивание тритида металла от подложки, что, в свою очередь, исключает загрязнение технологического оборудования.

Пример осуществления способа.

Очищенную подложку мишени из молибдена или меди перед напылением титана взвешивают с точностью до 0,01 мг и помещают в предварительно подготовленную вакуумную камеру установки магнетронного распыления. Основными условиями при получении пленки титана, насыщаемой до предельного атомного отношения T/Ti=1,7, является тщательная очистка материалов (титана, аргона и кислорода), герметичность вакуумной камеры и отсутствие газовыделения в ней. Вакуумная камера откачивается безмасляной системой высоковакуумной откачки до давления примерно 1×10-6 Па, после чего в нее подается предварительно подготовленная газовая смесь аргона высшего сорта ГОСТ 10157-79 и кислорода по ГОСТ5583-78, объемная доля которого составляет 0,05…0,1%, до давления устойчивого плазмообразования (около 8×10-2 Па).

Кислород, содержащийся в газовой смеси, вступает в реакцию с металлом в процессе роста осаждаемого слоя, что влияет на свойства распыляемого материала. Кислород сорбируется на поверхности напыленного металла, растворяется в металле и образует химические соединения, при этом кислород внедряется в кристаллическую решетку титана.

После напыления проводят насыщение мишени тритием на вакуумной установке. Экспериментально подтверждено, что при насыщении титанового слоя тритием высокой концентрации предельное атомное отношение (а.о.), при котором получены качественные мишени, составляет T/Ti=1,7. Поскольку степень насыщения титанового слоя не может превысить а.о. T/Ti=1,7, то охлаждение мишеней от температуры насыщения (450-500°C) до комнатной температуры проводится непосредственно в камере для насыщения в атмосфере трития без постоянного контроля степени насыщения. Адгезия насыщенного титанового слоя к подложке хорошая (тритид титана не отслаивается от подложки и не осыпается в течение более 4-х лет). Неравномерность распределения массы сорбента по площади активной части составляет менее 10%, скорость десорбции трития с активной части мишени при нормальных условиях <10-7 Ки/м2·с.

Заявляемый способ был применен для изготовления мишеней из других гидридобразующих металлов - циркония, скандия. Технология изготовления металл-тритиевых мишеней включает все вышеописанные стадии, а внедряющийся в кристаллическую решетку металла - сорбента кислород, связывая атомы металла, препятствует образованию химических связей металл-тритий, в результате чего предельное а.о. Т/Ме составляет 80-85% от максимального значения.

Заявляемый способ значительно повышает безопасность условий работы персонала за счет исключения операции контроля степени насыщения слоя гидридобразующего металла, которая была связана с необходимостью прерывания процесса насыщения и удаления трития из камеры насыщения при высоких температурах (300-350°C). При этом упрощается процесс насыщения мишеней и снижается вероятность отслоения тритида от подложки и, соответственно, радиационного загрязнения технологического оборудования, что также положительно сказывается на безопасности работы персонала.

Способ изготовления металло-тритиевой мишени, заключающийся в напылении слоя гидридобразующего металла на подложку, насыщении его тритием и охлаждении полученной мишени,
отличающийся тем, что напыление слоя гидридобразующего металла на подложку осуществляют магнетронным методом с использованием в качестве газа-носителя аргона, содержащего кислород в количестве 0,05…0,1 об. %, а охлаждение мишени проводят в камере насыщения в среде трития.



 

Похожие патенты:

Изобретение относится к реакторному материаловедению, в частности к способу исследования радиационной стойкости конструкционных и топливных материалов при высоких и предельных уровнях облучения для активных зон атомных реакторов на быстрых нейтронах с жидкометаллическим теплоносителем.

3аявленное изобретение относится к источникам протонов или нейтронов высокой энергии для производства медицинских изотопов и осуществления других процессов, включая превращение ядерных отходов.

Изобретение относится к ядерной технологии и предназначено для получения радиоактивных изотопов для медицинских целей. .

Изобретение относится к ускорительной технике и может быть использовано в мишенных устройствах линейных индукционных ускорителей (ЛИУ) с импульсным продольным магнитным полем при решении задачи, связанной с эффективным преобразованием энергии ~100 кДж сильноточного релятивистского электронного пучка (РЭП) с импульсным током ~100 кА и энергией электронов от 10 до 40 МэВ в тормозное излучение (ТИ).

Изобретение относится к области ускорительной техники, а точнее к технике получения высокоинтенсивного импульсного тормозного излучения. .

Изобретение относится к области атомной энергетики, точнее к ускорительно управляемым системам с жидкометаллическими мишенями. .

Изобретение относится к ядерной физике и медицине и может быть применено в источниках нейтронов, выполненных на основе ускорителей заряженных частиц. .

Изобретение относится к ядерной физике и медицине и может быть применено в источниках надтепловых нейтронов, выполненных на основе ускорителей заряженных частиц. .

Изобретение относится к области физики и техники ускорителей заряженных частиц, а именно к устройствам для установки и замены твердотельных мишеней при проведении экспериментов в физике высоких энергий для получения пучков вторичных излучений.

Изобретение относится к области ускорительной техники. Система производства изотопов содержит циклотрон с ярмом магнита, которое окружает ускорительную камеру. Циклотрон выполнен с возможностью направления пучка частиц из ускорительной камеры через ярмо магнита. Система производства изотопов также содержит систему мишени, которая расположена вблизи ярма магнита. Система мишени выполнена с возможностью удержания материала мишени и содержит радиационный экран, который проходит между ярмом магнита и местом размещения мишени. Радиационный экран имеет размер и форму, которые способствуют ослаблению гамма-излучения и нейтронного излучения, испускаемых из материала мишени в направлении ярма магнита. Система производства изотопов также содержит проход для пучка, который проходит от ускорительной камеры к месту расположения мишени. Проход для пучка, по меньшей мере частично, образован ярмом магнита и радиационным экраном системы мишени. Технический результат - снижение радиационного воздействия. 3 н. и 23 з.п.ф-лы, 12 ил.
Изобретение относится к способу изготовления титан-тритиевых мишеней, применяемых в вакуумной нейтронной трубке. В заявленном способе предусмотрена активация слоя гидридообразующего металла (титана), нанесенного на подложку, в камере насыщения путем нагрева до 300-500°С и подача трития в камеру насыщения с последующим ее охлаждением. Тритий в камеру насыщения подают перед активацией слоя гидридообразующего металла, при этом активацию проводят в среде трития. Количество поглощенного трития рассчитывают из условия достижения атомного отношения T/Ti, равного 1,5-1,7, а нагрев и охлаждение камеры насыщения проводят со скоростью 2-3°С/мин. Техническим результатом является повышение точности измерения количества трития, поглощенного мишенью, упрощение процесса насыщения мишеней за счет совмещения операций активации и насыщения, а также упрощение контроля степени насыщения титанового слоя, снижение вероятности отслоения тритида титана от подложки и, соответственно, радиационного загрязнения технологического оборудования, и повышение безопасности условий работы персонала. 1 пр.

Изобретение относится к технологии изготовления полимерных оболочечных мишеней для инерциального термоядерного синтеза. Технический результат - обеспечение возможности серийного изготовления оболочечной мишени при требуемой воспроизводимости заданных параметров мишени с повышенными прочностными характеристиками. Способ изготовления оболочечной мишени по его первому варианту включает формирование полимерной оболочки, легированной присадками, на первом этапе изготавливают первую, внутреннюю, и вторую, внешнюю, пленки-заготовки, затем осуществляют зонное легирование отдельно первой и второй пленок-заготовок частицами присадок различного типа соответственно для первой и второй пленок-заготовок так, что длина зоны легирования частиц присадок соответствует длине первой и второй пленок-заготовок соответственно, а заданную ширину зон легирования выбирают таким образом, что реализуют заданное распределение частиц присадок по радиусу оболочечной мишени; на втором этапе осуществляют перфорацию первой пленки-заготовки, далее создают выступы заданной высоты и конфигурации на первой пленке-заготовке; на третьем этапе осуществляют нарезку первой и второй пленки-заготовки так, что обеспечивают их заданную ширину и длину так, что обеспечивают заданное число слоев оболочечной мишени; на четвертом этапе осуществляют соединение первой и второй пленок заготовок по их длине с заданной адгезией; на пятом этапе сворачивают соединенные пленки-заготовки в рулон таким образом, что образующая рулона параллельна линии соединения пленок так, что первая пленка-заготовка образует рабочие активные слои, а вторая пленка-заготовка образует внешние, абляционные слои. Первый из абляционных слоев плотно прилегает к наружному витку первой пленки-заготовки, при таком сворачивании в рулон заданное число слоев первой пленки-заготовки определяет размер активной области мишени, а число слоев второй пленники-заготовки определяет толщину абляционного слоя мишени, после чего фиксируют внешний край рулона, получая оболочечную мишень; на шестом этапе осуществляют одновременно нарезку получившегося цилиндрического рулона до требуемой длины и формируют торцевые поверхности заготовок мишеней. Осуществление способа изготовления оболочечной мишени по его второму варианту аналогично описанному выше способу по его первому варианту до выполнения шестого этапа. Отличие заключается в том, что после осуществления пятого этапа, на котором формируют цилиндрическую заготовку оболочечной мишени, выполняют шестой этап. На этом этапе цилиндрическую заготовку оболочечной мишени сжимают с двух противоположных сторон. Для обеспечения равномерного распределения силы по площади заготовку оболочечной мишени помещают между двумя плоскими пластинами, прочность которых выше прочности заготовки мишени. 2 н.п. ф-лы, 1 ил.
Наверх