Способ суспензионной полимеризации винилхлорида



Способ суспензионной полимеризации винилхлорида
Способ суспензионной полимеризации винилхлорида
Способ суспензионной полимеризации винилхлорида
Способ суспензионной полимеризации винилхлорида
Способ суспензионной полимеризации винилхлорида
Способ суспензионной полимеризации винилхлорида

 


Владельцы патента RU 2529493:

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "КАУСТИК" (RU)

Изобретение относится к области химии полимерных материалов, в частности к способу получения поливинилхлорида, предназначенного для получения из композиций на его основе изделий производственно-технического назначения как с использованием пластификаторов, так и без них. Предложен способ получения поливинилхлорида (ПВХ) путем полимеризации винилхлорида (ВХ) в водной суспензии в присутствии инициатора, защитного коллоида и комплексной стабилизирующей системы, включающей кальциевую соль стеариновой кислоты и глицидиловые эфиры одноатомных и/или многоатомных спиртов при ее введении в полимеризационную смесь до загрузки мономера. Комплексную стабилизирующую систему, состоящую из кальциевой соли стеариновой кислоты и глицидиловых эфиров одноатомных и/или многоатомных спиртов, используют в количестве, равном 0,0792 - 0,1275% от массы ВХ. Кальциевая соль стеариновой кислоты вводится в полимеризационную смесь в количестве 0,072 - 0,123% от массы ВХ. Глицидиловые эфиры одноатомных и/или многоатомных спиртов вводятся в полимеризационную смесь в количестве 0,0045 - 0,0072% от массы ВХ.

Технический результат: при проведении процесса полимеризации ВХ с использованием комплексной стабилизирующей системы образуются частицы ПВХ с высокой термостабильностью, хорошей пористостью и относительно высокой насыпной плотностью. При переработке композиций на основе поливинилхлорида, синтезированного по заявленному способу, известными методами с использованием пластификаторов материалы получаются с высокими диэлектрическими и физико-механическими показателями. При переработке без использования пластификаторов, в том числе с применением экологически приемлемых кальций-цинковых стабилизаторов, изделия обладают повышенной устойчивостью к действию механических нагрузок, тепловому воздействию, а также к действию низких и высоких температур. При формировании изделий из композиций на основе ПВХ, полученного по заявляемому способу, отмечается понижение энергетических затрат на 5 - 8% и увеличение производительности перерабатывающего оборудования на 16 - 24%. 2 з.п. ф-лы, 7 табл., 10 пр.

 

Изобретение относится к области химии высокомолекулярных соединений, конкретнее к способу получения поливинилхлорида (ПВХ) суспензионной полимеризацией винилхлорида (ВХ).

По объему производства ПВХ входит в тройку наиболее востребованных полимеров в мире, а по способности к модификации и ассортименту изделий на его основе, от «мягких» пластифицированных до «жестких» ударопрочных материалов, он бесспорный лидер.

Общий порядок суспензионного способа полимеризации ВХ, очевидный для специалистов соответствующей области, заключается в следующем. Процесс проводят в реакторах-полимеризаторах периодического действия. Винилхлорид (температура кипения минус 13,8°C) с растворенным в нем инициатором перемешивают в водной среде, содержащей защитный коллоид. Полимеризационную смесь нагревают до температуры 45-65°C. Процесс заканчивается при степени конверсии ВХ 85-90%. Начиная со степени конверсии 75%, наблюдается падение давления в реакторе-полимеризаторе, что связано с изменением условий равновесия жидкого и парообразного винилхлорида вследствие растворения остаточного мономера в полимерной фазе. По окончании процесса незаполимеризовавшийся ВХ удаляют, порошок поливинилхлорида выделяют из суспензии на центрифуге, остаток сушат горячим воздухом до остаточной влажности 0,3%, просеивают и расфасовывают [В.М. Ульянов, А.Д. Гуткович и В.В. Щебырев. «Технологическое оборудование производства суспензионного поливинилхлорида». Нижний Новгород, 2004 г., с.18].

Известен способ суспензионной полимеризации винилхлорида, принятый за аналог, в котором процесс проводят в присутствии:

а) инициаторов - органических пероксидов - в общем количестве до 0,1% от массы винилхлорида;

б) защитного коллоида, включающего метилоксипропилцеллюлозу в количестве 0,009 -0,030%, гидроксида натрия, взятого в количестве 0,005%, и двух образцов поливиниловых спиртов (ПВС), полученных частичным гидролизом поливинилацетата (ПВА) и имеющих степень гидролиза 70-72% и 43-55%, в количестве соответственно 0,03-0,06 и 0,015-0,030% от массы винилхлорида;

в) вспомогательных добавок, усиливающих диспергирующую способность защитного коллоида, - моносорбитового эфира лауриновой кислоты (коммерческое название ШПАН-20) в количестве 0,00985% от ВХ и оксиэтилированного спирта (коммерческое название ОС-20) с длиной цепи C18-C20 при загрузке всех компонентов полимеризационной смеси в реактор-полимеризатор в начале процесса (В.М. Ульянов, А.Д. Гуткович и В.В. Щебырев. «Технологическое оборудование производства суспензионного поливинилхлорида». Нижний Новгород, 2004 г., стр.26-36). Недостатками известного способа являются:

1. Наличие в полимеризующейся смеси гидроксида натрия для поддержания величины ее рН в пределах 8-10. В противном случае полимеризующаяся смесь, содержащая метилоксипропилцеллюлозу, из-за снижения ее защитных свойств может потерять агрегативную устойчивость, что приведет к агломерации частиц ПВХ и получению некондиционного, трудноперерабатываемого продукта. Снижение величины рН полимеризующейся смеси происходит из-за присутствия в ней хлористого водорода, образующегося в результате побочных реакций дегидрохлорирования, протекающих в результате формирования полимерной макромолекулы из винилхлорида. Немаловажно и то, что гидроксид натрия - вещество I класса опасности, а его водные растворы - едкие и коррозионно-активные жидкости.

2. Недостаточно высокие показатели образующегося поливинилхлорида:

- относительно низкая насыпная плотность 0,52-0,53 г/см3;

- наличие до 3% частиц мелкой фракции, проходящей через сито 0063, регламентированное ГОСТ 14332-78 «Поливинилхлорид суспензионный», которые наименее термостабильны и наиболее подвержены деструкции при термическом воздействии на полимер и композицию на его основе при переработке.

Основным фактором, сдерживающим развитие производства и переработки ПВХ, является его низкая собственная термостабильность [Дж. Саммерс, У. Уилки, У. Даниэле. «ПВХ (поливинилхлорид). Получение, добавки и наполнители, сополимеры, свойства, переработка» - С.-Пб.: издательство «Профессия», 2007 г., 725 с.; Ф. Гроссман «Руководство по разработке композиций на основе ПВХ».- С.-Пб.: издательство «НОТ», 2009 г., 606 с.; В.В. Гузеев. «Структура и свойства наполненного ПВХ» С.-Пб. издательство «НОТ», 2012 г., с.277].

Известны способы повышения термостабильности ПВХ в процессе полимеризации ВХ за счет введения в полимеризационную смесь модифицирующих добавок, в частности эпоксидных соединений и антиоксидантов.

Известен способ повышения термостабильности ПВХ, заключающийся в использовании добавки, включающей эпоксидированное соевое масло и антиоксидант - дифенилолпропан в количестве 0,1775 - 0,1875% и 0,0625 - 0,025% от массы ВХ соответственно. Эту добавку необходимо вводить при 60-90% конверсии ВХ в ПВХ. При введении смеси эпоксидированного соевого масла и другого антиоксиданта 2,6 -дитретбутил-4-метилфенола в начальной стадии суспензионной полимеризации ВХ, образующийся ПВХ обладает незначительной термостабильностью [описание к изобретению СССР №498824. «Способ стабилизации поливинилхлорида». Опубликовано 05.10.1979 года. Бюллетень №37].

Недостатком этого способа повышения термостабильности ПВХ является необходимость введения в реактор-полимеризатор, работающий под избыточным давлением (не менее 6,5 кгс/см2), достаточно большого количества высоковязкой смеси этих добавок (20 кг эпоксидированного соевого масла и 1,0 кг порошкообразного дифенилолпропана на 8500 кг ВХ), требующих специальной предварительной подготовки.

В других технических решениях для получения термостойких ПВХ-материалов предлагается проводить процесс суспензионной полимеризации ВХ в присутствии такого эпоксидного соединения как винилглицидиловый эфир этиленгликоля (винилокс), вводимого в полимеризующуюся смесь до подачи в реактор ВХ [описание изобретения к патенту РФ №2100377 «Сополимеры винилхлорида, винилглицидилового эфира этиленгликоля и винилоксиэтилового эфира глицерина». Дата публикации формулы изобретения 27.12.1997 г.; описание изобретения к патенту РФ №2101298 «Сополимеры винилхлорида, винилглицидилового эфира этиленгликоля и винилоксиэтилового эфира глицерина». Дата публикации формулы изобретения 10.01.1998 г.].

Процесс суспензионной полимеризации ВХ с винилоксом проводят при температуре 68-70°C в присутствии в качестве инициаторов пероксида лауроила и дицетилпероксидикарбоната, а в качестве защитного коллоида систему, включающую метилоксипропилцеллюлозу (0,17% от массы ВХ), гидроксипропилцеллюлозу (0,15% от массы ВХ), моносорбитовый эфир лауриновой кислоты (0,11% от массы ВХ), а также гидроксид кальция (0,1% от массы ВХ).

Недостатками описанных способов являются достаточно высокая температура процесса полимеризации ВХ при которой давление в реакторе-полимеризаторе составляет 12-14 кгс/см2, а также необходимость растворения в ацетоне и последующего переосаждения в метанол полученного полимерного материала для формирования отностительно однородных частиц полимера.

То есть выбор добавок в присутствии которых может быть проведен процесс полимеризации ВХ с синтезом полимера, обладающего необходимым комплексом свойств, в частности повышенной термостабильностью, крайне ограничен, поскольку в реакционную массу могут быть введены только такие компоненты, которые не оказывают ингибирующего действия на процесс получения ПВХ.

Известны способы повышения термостабильности поливинилхлорида в процессе полимеризации за счет введения в полимеризационную систему карбоксилатов металлов [Зильберман Е.Н., Томащук В.И., Горбачевская И.И., Котляр И.Б. «Суспензионная полимеризации винилхлорида в присутствии солей карбоновых кислот». Журнал «Пластические массы», 1967 г., №1, с.5-7; Нафикова Р.Ф., Нагуманова Э.И., Абдрашитов Я.М., Минскер К.С.«Новые стабилизаторы для поливинилхлорида - смешанные соли карбоксилатов кальция». Журнал «Пластические массы», 2000 г., №5, с.19-22].

Необходимо отметить, что введение в полимеризационную смесь в качестве стабилизирующей добавки солей стеариновой кислоты, включающих катионы кальция, кадмия, свинца и бария, в начале процесса полимеризации в количестве 0,5% от массы ВХ приводит к повышению термостабильности получаемого ПВХ при 165°С соответственно до 8, 10, 15 и 16 минут (термостабильность полимера, полученного без стабилизирующих добавок в тех же условиях, составляет 2,5 минуты). При уменьшении содержания стеарата кальция в полимеризующейся системе с 0,5 до 0,2% от массы ВХ, термостабильность образовавшегося при этом ПВХ при 165°C снижается с 8 до 3 минут. Это связано с потерями стеарата кальция в процессе получения ПВХ из-за его взаимодействия с хлористым водородом, образующимся в ходе синтеза полимера и, как следствие, к необходимости введения значительных количеств этой стабилизирующей добавки (0,5 -1,0% от ВХ).

В целях экономии кальциевой соли стеариновой кислоты (стеарат кальция) в патенте РФ №2275384 предлагается ее вводить в конце процесса полимеризации в виде однородной водной суспензии. Для этого ее необходимо специально готовить в течение 1 -1,5 часов из порошкообразного стеарата кальция путем его диспергирования в воде, содержащей поверхностно-активные вещества, в частности смесь оксиэтилированных алкилфенолов с 7-10 атомами углерода в алкильной цепи. Введение в реактор-полимеризатор, работающий под давлением, даже водной суспензии стеарата кальция в конце процесса (после падения давления от регламентного около 8 кгс/см2 на 0,5 - 1,0 кгс/см2) представляется достаточно сложной в техническом плане задачей, но при этом минимизирован непроизводительный расход этого стабилизатора. Тем не менее, его требуется от 14 до 70 кг (0,07 - 0,35% от ВХ) на одну операцию по получению ПВХ [описание изобретения к патенту РФ №2275384 «Способ получения поливинилхлорида». Дата публикации заявки 20.09.2005 г.].

Известен способ получения поливинилхлорида, принятый за прототип [описание изобретения к авторскому свидетельству СССР №1781231 «Способ получения поливинилхлорида», 15.12.1992 г., бюллетень №46], в котором, как и в аналоге, процесс суспензионной полимеризации винилхлорида проводят в присутствии инициатора - органического пероксида, защитного коллоида, включающего комбинацию метилоксипропилцеллюлозы и гидроксида натрия, и при этом для повышения термостабильности образующегося полимера в полимеризующуюся смесь вводят многокомпонентную смесь, включающую:

- бариевую соль стеариновой кислоты (стеарат бария) в количестве 0,1-0,3% от массы ПВХ;

- эпоксидированное соевое масло в количестве 0,15-0,25% от массы ПВХ;

- антиоксидант - дифенилолпропан в количестве 0,02-0,06% от массы ПВХ.

Первый компонент - стеарат бария, в данном случае загружается в начале процесса до подачи винилхлорида, а остальные два - в конце процесса полимеризации после падения давления на 0,5 - 1,0 кгс/см2.

Недостатками этого способа являются:

1. Применение в качестве компонента термостабилизирующей системы стеарата бария, который является достаточно токсичным веществом (индекс токсичности равен 2) [Минскер К.С, Федосеева Г.Т. «Деструкция и стабилизация поливинилхлорида».- М.: «Химия». 1979 г., 272 с.].

2. Необходимость введения в реактор-полимеризатор, работающий при существенном (не менее 6,5 кгс/см2) избыточном давлении, достаточно вязкого раствора, состоящего из эпоксидированного соевого масла и дифенилолпропана в количестве 14 кг и 1,5 кг на одну операцию соответственно или его дополнительного разбавления в два раза диметиловым эфиром фталевой кислоты для уменьшения вязкости.

3. Недостаточно высокий выход целевого поливинилхлорида (около 83%), обусловленный введением значительного (0,02 - 0,06% от ПВХ) количества дифенилолпропана - эффективного ингибитора радикальных процессов, к коим относится процесс полимеризации винилхлорида.

4. Использование в процессе гидроксида натрия - вещества I класса опасности, или его растворов - едких, коррозионно-активных жидкостей.

Задачей заявляемого изобретения является разработка способа суспензионной полимеризации винилхлорида, обеспечивающего получение ПВХ с высокой термостабильностью, хорошей пористостью и относительно высокой насыпной плотностью, реализация которого будет возможна в промышленном масштабе с использованием экологически приемлемых компонентов, применение которых не было бы осложнено техническими и технологическими затруднениями как на стадии синтеза, так и при применении поливинилхлорида, полученного по заявляемому способу.

Решение поставленной задачи может быть достигнуто либо применением специальных технологических приемов [описание изобретения к патенту РФ №2402570 «Способ получения поливинилхлорида, обладающего превосходной способностью к переработке». Опубликовано 27.10.2010 г., патент США 4732954, патент США 5342906], либо особым составом полимеризационной смеси, что обеспечило бы необходимые условия формирования частиц поливинилхлорида, имеющих термостабильность не менее 30 минут при 160°C, достаточно высокую насыпную плотность (0,53 - 0,60 г/см3) и пористость не менее 19,5%, что соответствует показателю массы поглощения пластификатора - диоктилфталата (ДОФ) не менее 17 грамм на 100 грамм ПВХ [З.С. Захарова, И.А. Юрченко, Е.П. Шварев и др. «Синтез поливинилхлорида для переработки в жесткие изделия». Журнал «Пластические массы», 1995 г., №1,с.8-9].

Получение поливинилхлорида с такими показателями позволило бы перерабатывать его как с использованием пластификаторов, так и без них, а также применять в составе композиций на его основе экологически приемлемые стабилизаторы - органические соединения кальция и цинка.

Анализ технических решений, представленных в прототипе и аналоге, а также решений, приведенных в других патентах [патент Германии №3536936 «Способ получения (со)полимеров винилхлорида», патент Польши №132295 «Способ получения поливинилхлорида с заданной объемной плотностью», патент США №4749757 «Получение ПВХ с высокой насыпной плотностью суспензионной полимеризацией в присутствии ингибитора»], указывает на то, что подбор необходимого количества компонентов различной химической природы, которые входят в состав полимеризационной смеси, а также порядок их введения в реактор-полимеризатор для получения ПВХ с требуемыми на сегодняшний день показателями, прежде всего высокой термостабильностью, пористостью и насыпной плотностью, не является очевидным.

Поэтому в заявляемом изобретении предлагается использовать комплексную стабилизирующую систему, включающую кальциевую соль стеариновой кислоты и эпоксидные соединения - глицилиловые эфиры одноатомных и/или многоатомных спиртов при ее введении в полимеризационную смесь до загрузки винилхлорида. При этом, по сравнению с прототипом и аналогом, сокращается число и количество компонентов, обеспечивающих агрегативную устойчивость полимеризационной смеси и получение термостабильного ПВХ с высокой пористостью и насыпной плотностью, а также минимизируются риски, связанные с возможными отказами технологического оборудования при подготовке и последующем введении в реактор-полимеризатор химически активных реагентов (гидроксид натрия) в начале процесса или в конце процесса при падении давления в нем до величины не менее 6,5 кгс/см2 при дозировке высоковязкой смеси на основе эпоксидированного соевого масла (прототип).

Сущность настоящего изобретения заключается в том, что в заявляемом способе суспензионной полимеризации винилхлорида, осуществляемом в присутствии органического пероксидного инициатора, защитного коллоида - частично гидролизованных (на 69 - 82%) производных поливинилацетата (поливиниловые спирты или ПВС) для получения частиц поливинилхлорида с высокой термостабильностью, хорошей пористостью и относительно высокой насыпной плотностью, которые могут быть переработаны в материалы с использованием экологически приемлемых кальций-цинковых стабилизаторов как с применениям пластификаторов, так и без них, технологический процесс проводят в присутствии комплексной стабилизирующей системы, включающей кальциевую соль стеариновой кислоты и глицидиловые эфиры одноатомных и/или многоатомных спиртов при загрузке всех компонентов в начале процесса.

Комплексная стабилизирующая система вводится в полимеризационную смесь в количестве 0,0792 - 0,1275% от массы винилхлорида. Кальциевая соль стеариновой кислоты вводится в полимеризационную систему в количестве 0,072 - 0,123% от массы винилхлорида, а глицидиловые эфиры одноатомных и/или многоатомных спиртов - в количестве 0,0045 - 0,0072% от массы винилхлорида.

Предлагаемое техническое решение (данные о составе и количестве компонентов, используемых в полимеризационной смеси, и показатели полученного при этом полимера, в том числе параметры его переработки и свойства сформированных при этом материалов, представлены в таблицах 1-6) позволяет:

1. Исключить из состава полимеризационной смеси достаточно токсичные вещества - гидроксид натрия и стеарат бария (гидроксид натрия - вещество I класса опасности, стеарат бария имеет индекс токсичности 2);

2. Повысить термостабильность порошкообразного ПВХ (по ГОСТ 14041) и пленочных материалов на его основе (ГОСТ 14332) вследствие акцептирования эпоксидными соединениями и кальциевой солью стеариновой кислоты хлористого водорода и минимизации его негативного воздействия на макромолекулу ПВХ на всех стадиях ее формирования: в процессе синтеза полимера, его дегазации, сушки, а также последующей стадии переработки ПВХ-композиции в изделия;

3. Обеспечить получение однородных частиц ПВХ с повышенной степенью сферичности за счет поддержания агрегативной устойчивости полимеризующейся системы в ходе всего процесса полимеризации.

4. Получать ПВХ с относительно высокой насыпной плотностью (0,53-0,60 г/см3) и с хорошей пористостью (не менее 19%), обеспечивающей возможность переработки композиций на его основе как с использованием пластификаторов, так и без них;

5. Снизить энергозатраты при переработке композиций на основе поливинилхлорида, полученного по заявляемому способу, в изделия, что обусловлено модифицированием зерен ПВХ за счет адсорбирования на их поверхности частиц стеарата кальция и глицидиловых эфиров одноатомных и/или многоатомных спиртов, загружаемых в начале процесса. То есть при переработке частиц ПВХ, полученного по заявляемому способу, наблюдается сочетание смазывающего эффекта, обусловленного присутствием стеарата кальция, и пластифицирующего эффекта эпоксидных соединений.

Немаловажен и тот факт, что глицидиловые эфиры одноатомных и/или многоатомных спиртов и стеарат кальция по показателям токсичности относятся к IV классу опасности и, кроме этого, индекс токсичности последнего равен 1000 (у стеарата бария этот показатель равен 2) [Минскер К.С., Федосеева Г.Т. «Деструкция и стабилизация поливинилхлорида».- М.: «Химия». 1979 г., 272 с.].

Глицидиловые эфиры одноатомных и/или многоатомных спиртов выпускаются в Российской Федерации и зарегистрированы под торговой маркой «Лапроксид». Базовые показатели использованных в заявляемом способе глицидиловых эфиров одноатомных и многоатомных спиртов представлены в справочной таблице №7. Стеарат кальция также выпускается в РФ. То есть компоненты комплексной стабилизирующей системы, обеспечивающие получение ПВХ с высокой термостабильностью, хорошей пористостью и относительно высокой насыпной плотностью, являются технически и коммерчески доступными соединениями.

В качестве инициатора в заявляемом техническом решении предлагается использование пероксидикарбонатов и диацилпероксидов в количестве 0,03 - 0,10% от массы ВХ, загружаемого в реактор-полимеризатор.

В качестве вспомогательной добавки в заявляемом способе, как и в случае прототипа, предлагается использование 2,6-дитретбутил-4 метилфенола в количестве 0,01% от массы ВХ.

Таким образом, поливинилхлорид, полученный по заявляемому способу, характеризуется высокой термостабильностью (не менее 30 минут по ГОСТ 14332), хорошей пористостью (не менее 19%) и относительно высокой насыпной плотностью (0,53-0,60 г/см3), а также стабильным размером частиц ПВХ.

Новизна, полезность и возможность реализации предлагаемого технического решения, направленного на получение поливинилхлорида с высокой термостабильностью, хорошей пористостью и относительно высокой насыпной плотностью иллюстрируется следующими примерами.

Отличительными признаками заявляемого способа от технологии аналога и прототипа являются состав комплексной стабилизирующей системы и порядок ее введения в полимеризационную смесь.

Сочетание в комплексной стабилизирующей системе стеарата кальция и эпоксидных соединений - глицидиловых эфиров одноатомных и/или многоатомных спиртов, загружаемых в полимеризационную смесь до подачи винилхлорида, обеспечивает высокую термостабильность получаемого ПВХ даже при загрузке ее в 2,2-2,5 раза меньшей, чем при раздельном введении стеарата бария и эпоксидированного соевого масла, как в технологии прототипа.

Использование ПВХ с повышенной термостабильностью, полученного по заявленному способу, в качестве полимерной основы композиций для переработки традиционными методами как с использованием пластификаторов, так и без них позволяет применять в их составе экологически приемлемые кальций-цинковые термостабилизаторы взамен стабилизаторов, содержащих соединения, включающие тяжелые металлы (свинец, барий и другие). Однородный гранулометрический состав получаемого ПВХ с наличием на поверхности частиц полимера адсорбированных стеарата кальция и эпоксидных соединений, обладающих кроме термостабилизирующих дополнительными смазывающими свойствами в сочетании с их хорошей сферичностью, позволяет перерабатывать пластифицированные композиции на его основе с большей (на 16-24%) производительностью, понижать затраты энергии, необходимой для перехода порошкообразной композиции в расплав, на 10-15%, а при переработке с кальций-цинковыми стабилизаторами уменьшать нагрузку на силовые агрегаты экструдера на 5-8%.

Материалы, сформированные известными способами, из композиций на основе ПВХ, полученного по заявляемому способу, характеризуются высокими прочностными показателями, хорошей устойчивостью к воздействию низких и высоких температур.

Приведенные примеры подтверждают позитивное действие комплексной стабилизирующей системы, включающей кальциевую соль стеариновой кислоты и глицидиловые эфиры одноатомных и/или многоатомных спиртов как на процесс суспензионной полимеризации винилхлорида, так и на свойства частиц образующегося при этом поливинилхлорида.

Пример 1. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,0792% от массы полимеризующегося винилхлорида, включающей стеарат кальция и смесь (1: 1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

В реактор-полимеризатор, снабженный перемешивающим устройством и рубашкой для поддержания заданных температурных параметров, перед началом процесса полимеризации винилхлорида загружают (в процентах от массы ВХ) 200 воды деминерализованной, 0,04 защитного коллоида на основе поливиниловых спиртов (ПВС) и 0,0792 комплексной стабилизирующей системы, включающей 0,072 кальциевой соли стеариновой кислоты и 0,0072 смеси (1:1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

В качестве инициатора использовали органические пероксиды - пероксид лауроила и пероксидикарбонаты, выпускаемые по СТО 00237328-04-2008 «Пероксидная инициирующая композиция для производства поливинилхлорида суспензионного».

По окончании загрузки указанных компонентов в реактор-полимеризатор вводили 100 ВХ и полимеризационную смесь при перемешивании нагревали до температуры (58±2)°C. Процесс полимеризации завершали при снижении давления в реакторе-полимеризаторе до 4,5 - 5,5 кгс/см2. По окончании процесса полимеризации из реакционной массы удаляли непрореагировавший ВХ, а образовавшийся ПВХ выделяли из водной суспензии центрифугированием. Далее ПВХ сушили до влажности менее 0,3% и анализировали согласно ГОСТ 14332-78 «Поливинилхлорид суспензионный» по показателям «термостабильность пленки», «насыпная плотность» и «масса поглощения пластификатора».

Термостабильность пленки из полученного ПВХ при 160°C составляла 30 минут. Данные других анализов представлены в таблице 2.

Пример 2. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,105% от массы ВХ, включающей стеарат кальция и глицидиловый эфир 2-этилгексилового спирта.

Суспензионную полимеризацию проводили в условиях, аналогичных приведенным в примере 1, за исключением того, что в начале процесса в реактор-полимеризатор загружали 170 воды деминерализованной и 0,105 комплексной стабилизирующей системы, включающей 0,100 стеарата кальция и 0,0050 глицидилового эфира 2-этилгексилового спирта.

Термостабильность пленки из полученного ПВХ при 160°C составляла 35 минут. Данные других анализов приведены в таблицах 5 и 6.

Пример 3. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,105% от массы ВХ, включающей стеарат кальция и триглицидиловый эфир полиоксипропилентриола.

Суспензионную полимеризацию ВХ проводили в условиях, аналогичных приведенным в примере 2, за исключением того, что в начале процесса загружали 0,105 комплексной стабилизирующей системы, включающей 0,100 стеарата кальция и 0,005 триглицидилового эфира полиоксипропилентриола.

Термостабильность пленки из полученного ПВХ при 160°C составила 40 минут. Данные других анализов представлены в таблице 5.

Пример 4. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,105% от массы ВХ, включающей стеарат кальция и диглицидиловый эфир 1,4-бутандиола.

Суспензионную полимеризацию ВХ проводили в условиях, аналогичных приведенным в примере 2, за исключением того, что в начале процесса загружали 0,105 комплексной стабилизирующей системы, включающей 0,100 стеарата кальция и 0,005 диглицидилового эфира 1,4-бутандиола.

Термостабильность пленки из полученного ПВХ при 160°C составляла 40 минут. Данные других анализов представлены в таблице 5.

Пример 5. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,105% от массы полимеризующегося винилхлорида, включающей стеарат кальция и смесь (1: 1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

Суспензионную полимеризацию ВХ проводили в условиях, аналогичных приведенным в примере 1, за исключением того, что в начале процесса загружали 170 воды деминерализованной и 0,1050 комплексной стабилизирующей системы, включающей 0,100 стеарата кальция и 0,0050 смеси (1:1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

Термостабильность пленки из полученного ПВХ при 160°C составила 40 минут.Данные других анализов представлены в таблице 5.

Пример 6. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,105% от массы полимеризующегося винилхлорида, включающей стеарат кальция и смесь (1:1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

Суспензионную полимеризацию ВХ проводили в условиях, аналогичных приведенным в примере 5, за исключением того, что процесс полимеризации ВХ проводили при температуре (53±1)°C и в качестве инициатора использовали выпускаемую по СТО 00237328-04-2008 «пероксидную инициирующую композицию для производства поливинилхлорида суспензионного».

Термостабильность пленки из полученного ПВХ при 160°C составляла 40 минут. Данные других анализов представлены в таблицах 3 и 4.

Пример 7. Полимеризация винилхлорида в присутствии комплексной стабилизирующей системы в количестве 0,1275% от массы полимеризующегося винилхлорида, включающей стеарат кальция и смесь (1: 1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

Суспензионную полимеризацию ВХ проводили в условиях, аналогичных приведенным в примере 1, за исключением того, что в реактор-полимеризатор загружали 170 воды деминерализованной и 0,1275 комплексной стабилизирующей системы, включающей 0,123 стеарата кальция и 0,0045 смеси (1:1) глицидилового эфира 2-этилгексилового спирта и триглицидилового эфира полиоксипропилентриола.

Термостабильность пленки из полученного ПВХ при 160°C составила 40 минут. Данные других анализов представлены в таблице 2.

Пример 8 (сравнительный по технологии аналога)

Термостабильность пленки из ПВХ, полученного по рецептурному формату аналога без использования комплексной стабилизирующей системы, при 160°C составляет 15 минут. Данные других анализов представлены в таблицах 2,3,5,6.

Примеры 9 и 10 (сравнительные по технологии прототипа).

Термостабильность пленки из ПВХ, полученного по рецептурному формату прототипа при использовании стеарата бария (0,082% от массы ВХ) и эпоксидированного соевого масла (0,164% от массы ВХ), при 160°C составляет 40 минут, а при использовании этих компонентов в количестве 0,123 и 0,066% от массы ВХ равна 25 минут. Данные других анализов представлены в таблицах 2,3,5,6.

Примечания к таблице 6 (справочно)

Условия формирования профилей из композиций на основе образцов ПВХ, полученных по заявляемому способу и технологии прототипа и аналога при использовании кальций-цинкового стабилизатора.

1. Состав композиции в массовых частях: ПВХ - 100

Стабилизатор кальций-цинковый (однопакетный) - 3,2;

Карбонат кальция - 8;

Двуокись титана - 4,5;

Акрилатные сополимеры:

Гомогенизирующая добавка - 0,5;

Модификатор ударной вязкости - 5,5.

Все компоненты смешивали в комбинированном двухстадийном (горячий и холодный) смесителе. При достижении в горячем смесителе температуры 120°C полученную композицию передавали в холодный смеситель, где охлаждали до температуры 40°C.

2. ПВХ-композиции перерабатывали, формируя из них оконный профиль на экструдере фирмы «Battenfeld» марки ВЕХ-2-65 с двумя параллельными шнеками диаметром 65 мм.

Температурный режим переработки, °C:

По зонам экструдера: 185→190→190→185.

Адаптер 185.

Головка: 202→202→204→202.

Таблица 7 (справочная)
Показатели глицидиловых эфиров одноатомных и многоатомных спиртов марки «Лапроксид»
№ п/п Марка Наименование Массовая доля эпоксидных групп, % Вязкость при 25°C, мПа·с
1 Лапроксид 301 Г Глицидиловый эфир 2-этилгексилового спирта 17,0-22,0 3-8
2 Лапроксид БД Диглицидиловый эфир 1,4 -бутандиола 28,0-34,0 10-30
3 Лапроксид 603 Триглицидиловый эфир полиоксипропилентриола 16,5-19,5 80-150

1. Способ суспензионной полимеризации винилхлорида в присутствии инициатора, защитного коллоида и вспомогательных веществ с получением частиц полимера с высокой термостабильностью, хорошей пористостью, относительно высокой насыпной плотностью, отличающийся тем, что процесс полимеризации проводят в присутствии комплексной стабилизирующей системы, включающей кальциевую соль стеариновой кислоты и глицидиловые эфиры одноатомных и/или многоатомных спиртов при ее введении в полимеризационную смесь до загрузки винилхлорида.

2. Способ по п.1 отличается тем, что комплексная стабилизирующая система вводится в полимеризационную смесь в количестве 0,0792 - 0,1275% от массы винилхлорида.

3. Способ по п.1 отличается тем, что кальциевая соль стеариновой кислоты вводится в полимеризационную смесь в количестве 0,072 - 0,123% от массы винилхлорида, а глицидиловые эфиры одноатомных и/или многоатомных спиртов - в количестве 0,0045-0,0072% от массы винилхлорида.



 

Похожие патенты:

Изобретение относится к технологии получения полимерных микросфер из полидициклопентадиена. Получают микросферы со сферичностью не менее 0,9, средний размер которых находится в диапазоне 0,25-1,1 мм, с объемной плотностью в диапазоне 0,4-0,7 г/см3.

Изобретение относится к тройным сополимерам на основе тетрафторэтилена и может использовано в промышленности синтетического каучука для получения термоагрессивостойких материалов.
Изобретение относится к способу полимеризации. Способ полимеризации включает следующие стадии: обеспечение реактора полимеризации, включающего газофазный реактор с псевдоожиженным слоем, зону уноса, подачу катализатора с целью введения каталитической системы, способной производить полимер на основе олефина, подачу по меньшей мере одной этилендииминовой добавки с целью подачи по меньшей мере одной этилендииминовой добавки независимо от катализаторной смеси; (а) контактирование по меньшей мере одного олефина с каталитической системой при условиях полимеризации в реакторе с псевдоожиженным слоем; (б) введение по меньшей мере одной этилениминовой добавки в реакторную систему в любое время до, во время или после запуска реакции полимеризации, причем этилениминовая добавка включает полиэтиленимин, этилениминовый сополимер или смесь перечисленного; (в) отслеживание уровня электростатической активности в зоне уноса; и (г) количество по меньшей мере одной этилениминовой добавки, вводимой в реакторную систему, регулируют с целью поддержания уровня электростатической активности в зоне уноса, близкой к нулю или равной нулю.

Изобретение относится к способу регенерации очистительного слоя, находящегося в сосуде, который применяется в процессах полимеризации олефинов, а также к системе регенерации очистительного слоя, находящегося в сосуде при выполнении вышеуказанного процесса.

Изобретение относится к композиции полимеров на пропиленовой основе и способу их получения. Способ полимеризации включает введение пропилена и необязательно по меньшей мере одного другого олефина в условиях проведения полимеризации в контакт с композицией катализатора, содержащей замещенный фениленароматический сложный диэфир.

Изобретение относится к многостадийному способу получения полипропилена путем полимеризации. Способ включает использование по меньшей мере двух последовательно соединенных реакторов.

Заявляемое изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотополимеризующейся композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей.
Изобретение относится к тонкодисперсным, содержащим крахмал, дисперсиям полимеров, способу их получения и применению. Тонкодисперсную, содержащую крахмал дисперсию полимеров, предназначенную в качестве средства проклейки и покрывающего средства для бумаги, картона и картонажа, получают путем инициируемой радикалами эмульсионной полимеризации этиленово ненасыщенных мономеров в присутствии, по меньшей мере, одного окислительно-восстановительного инициатора и крахмала.
Изобретение относится к способу изготовления полимерной ионообменной мембраны, которую применяют для разделения вещества с помощью электрохимических процессов, таких как электродиализ, электролиз, для получения электричества в гальванических батареях, в частности, для топливного элемента.

Изобретение относится к получению полимерно-битумных композиций на основе нефтяных битумов. Получаемые композиции могут быть использованы в дорожном строительстве в качестве вяжущего для асфальтобетонных смесей, в промышленном и гражданском строительстве для кровельных, гидроизоляционных работ, для производства мастик и клеев.

Изобретение относится к химии высокомолекулярных соединений и может быть использовано для синтеза суспензионных полимеров винилхлорида, предназначенных для производства пластифицированных материалов, таких как кабельный и медицинский пластикаты, пленки и прочее.

Изобретение относится к применению в свободнорадикальной полимеризации органического пероксида, полученного методом ex situ с помощью реакторов непрерывного действия.

Изобретение относится к суспензионному способу получения поливинилхлорида, предназначенного для изготовления изделий производственно-технического назначения (оконный профиль, труба, стеновая панель) без использования пластификаторов.

Изобретение относится к способу получения поливинилхлорида. .
Изобретение относится к способу полимеризации, в котором, по меньшей мере, один пероксид с периодом полураспада от 1 час до 0,001 час при температуре полимеризации в момент добавления дозируют в реакционную смесь при температуре полимеризации и в котором, по меньшей мере, в течение части периода дозирования пероксида i) охлаждающее устройство реактора поддерживают по существу при максимальной охлаждающей способности и ii) активно регулируют добавляемое количество инициатора при помощи регулятора температуры, достигая, таким образом, температуры полимеризации и поддерживая ее в пределе 0,3°С или ниже от указанной желаемой температуры полимеризации.
Изобретение относится к области химии и технологии полимеров, а именно к способу получения суспензионного поливинилхлорида (ПВХ), и направлено на повышение его качества.
Изобретение относится к способу полимеризации одного или более мономеров в реакторе с определенной охлаждающей мощностью, где указанная охлаждающая мощность ограничивает объемную производительность реактора.
Изобретение относится к области химии и технологии полимеров, а именно к способу получения суспензионного поливинилхлорида (ПВХ), и направлено на повышение его качества.

Изобретение относится к способу получения поливинилхлоридной смолы. Способ получения поливинилхлорида (ПВХ), обладающего частицами со средним диаметром, равным от 10 до 80 мкм, осуществляют путем полимеризации винилхлорида. Способ отличается тем, что включает следующие стадии: (a) введение воды, инициатора (инициаторов), необязательно одного или большего количества вспомогательных веществ и части винилхлорида в контейнер и смешивание компонентов; (b) диспергирование и добавление одного или большего количества вспомогательных веществ для образования суспензии с продолжением диспергирования; (c) нагревание смеси до установления температуры полимеризации; (d) добавление оставшегося винилхлорида, которое проводят от начала нагревания или во время нагревания или начинают после установления температуры полимеризации; и (e) обработку продукта. Технический результат - получение наполнителей-смол ПВХ, с оптимизированными характеристиками, они обеспечивают снижение вязкости при получении пасты или пластизоля. 2 н. и 11 з.п. ф-лы, 4 табл., 11 пр.
Наверх