Элемент теплопереноса для роторного регенеративного теплообменника

Авторы патента:


Элемент теплопереноса для роторного регенеративного теплообменника
Элемент теплопереноса для роторного регенеративного теплообменника
Элемент теплопереноса для роторного регенеративного теплообменника
Элемент теплопереноса для роторного регенеративного теплообменника
Элемент теплопереноса для роторного регенеративного теплообменника
Элемент теплопереноса для роторного регенеративного теплообменника

 


Владельцы патента RU 2529621:

АЛЬСТОМ ТЕКНОЛОДЖИ ЛТД (CH)

Изобретение относится к области теплотехники и может быть использовано в теплообменниках. Роторный регенеративный теплообменник содержит элементы теплопереноса, содержащие V-образные канавки, которые обеспечивают расстояние между соседними элементами, и гребни (гофры), расположенные между V-образными канавками. Гофры имеют разную высоту и/или ширину. Технический результат - улучшение переноса теплоты посредством увеличения турбулентности воздуха или топочного газа между элементами. 3 н. и 17 з.п. ф-лы, 6 ил.

 

Предпосылки к созданию изобретения

Настоящее изобретение относится к элементам теплопереноса, относящимся к типу, встречающемуся в роторных регенеративных теплообменниках.

Роторные регенеративные теплообменники широко используются для переноса теплоты от топочных газов, выходящих из печи, в подаваемый воздух для сгорания. Известные роторные регенеративные теплообменники, например, показанный на фиг.1, имеют ротор 12, установленный в корпусе 14. Корпус 14 определяет входной канал 20 для топочного газа и выходной канал 22 для топочного газа, по которым горячие топочные газы 36 проходят через теплообменник 1. Корпус 14 далее определяет впускной воздушный канал 22 и выпускной воздушный канал 26 для прохода воздуха 38 для сгорания через теплообменник 1. Ротор 12 имеет радиальные перегородки 16 или диафрагмы, определяющие между ними отсеки 17 для поддерживающих корзин (рамок) 40 теплообменных элементов. Роторный регенеративный теплообменник 1 разделен на воздушный сектор и сектор топочных газов секторными пластинами 28, которые проходят через корпус 14 рядом с верхней и нижней гранями ротора 12.

На фиг.2 показана вертикальная проекция примера элемента 40 корзины, содержащей несколько уложенных в нее элементов 10. Хотя показано только несколько элементов, следует понимать, что корзина 40 обычно бывает заполнена элементами 10. Как показано на фиг.2, элементы 10 уложены на расстоянии друг от друга в корзине 40 для формирования между элементами 10 каналов 70 для пропускания воздуха или топочных газов.

Как показано на фиг.1 и 2, поток 36 горячих топочных газов направляется через газовый сектор теплообменника 1 и отдает теплоту элементам 10 на непрерывно вращающемся роторе. Элементы 10 затем поворачиваются вокруг оси 18 в воздушный сектор теплообменника 1, где на элементы 10 направляется поток 38 воздуха для сжигания, который в результате нагревается. В других конструкциях роторного регенеративного теплообменника элементы 10 неподвижны, а вращаются впускной и выпускной участки корпуса 14.

На фиг.3 показаны участки известных элементов 10, уложенных друг на друга, а на фиг.4 показано сечение одного из известных элементов 10. Типично элементы 10 являются стальными листами, которым придана форма, содержащая одну или множество различных V-образных канавок 50 и волнообразных гребней 65.

V-образные канавки 50, которые отходят наружу от элемента 10 с по существу одинаковыми интервалами, поддерживают зазор между соседними элементами 10, когда элементы 10 уложены друг на друга, как показано на фиг.3, и, таким образом, образуют боковые стороны каналов 70 для воздуха и топочных газов между элементами 10. Типично V-образные канавки 50 проходят под заранее определенным углом (например, 90°) относительно потока текучей среды через ротор (12 на фиг.1).

В дополнение к V-образным канавкам 50 элемент 10 выполнен по существу гофрированным для создания серии гребней (гофр) 65, проходящих между соседними V-образными канавками 50 под острым углом Au к потоку текучей среды в теплообменнике, показанному стрелкой "А" на фиг.3. Гофры 65 имеют высоту Hu и предназначены для увеличения турбулентности воздуха или топочных газов, текущих по каналам 70, и тем самым разрушения теплового приграничного слоя, который в противном случае возникал бы в той части текучей среды (либо воздуха, либо топочного газа), которая примыкает к поверхности элемента 10. Наличие ненарушенного приграничного слоя текучей среды ухудшает теплоперенос между элементом 10 и текучей средой. Гофры 65 на соседнем элементе 10 проходят наклонно к направлению потока. Поэтому гофры 65 улучшают теплоперенос между элементом 10 и текучей средой. Кроме того, элементы 10 могут содержать плоские участки (не показаны), проходящие параллельно и находящиеся в полном контакте с V-образными канавками 50 соседних элементов 10. Примерами других теплообменных элементов 10 являются патенты США №№: 2596642; 2940736; 4396058; 4744410; 4553458 и 5836379.

Хотя такие элементы показывают хорошую скорость теплопереноса, результаты могут меняться в довольно широких пределах, в зависимости от конкретной конструкции и размерных соотношений между V-образными канавками и гофрами. Например, хотя гофры обеспечивают повышенную скорость теплопереноса, они также увеличивают перепад давления на теплообменнике (1 на фиг.1). В идеале, гофры на элементах создают поток с относительно высокой турбулентностью в той части текучей среды, которая движется рядом с элементами, тогда как V-образным канавкам придают такие размеры, чтобы в текучей среде, не прилегающей к этим элементам (т.е. текущая ближе к центру каналов), возникала меньшая турбулентность и, следовательно, меньшее сопротивление потоку. Однако создание оптимальной степени турбулентности с помощью гофр может быть затруднено, поскольку и теплоперенос, и перепад давления пропорциональны степени турбулентности, создаваемой гофрами. Конструкция гофров, которая увеличивает теплоперенос, также увеличивает перепад давления, и, наоборот, форма, уменьшающая перепад давления, уменьшает также теплоперенос.

Конструкция этих элементов также должна давать такую конфигурацию поверхности, которую можно легко чистить. Для очистки элементов обычно используют воздуходувку для обдува сажи, которые подают струю воздуха или пара под высоким давлением через каналы между уложенными друг на друга элементами, чтобы сместить любые отложения твердых частиц с их поверхностей и вынести их, оставляя относительно чистую поверхность. При выполнении обдува сажи форма элементов преимущественно должна быть такой, чтобы при укладке элементов друг на друга в корзину каналы были достаточно открыты, чтобы пространство между элементами могло просматриваться, что позволит струе воздуходувки проникнуть между листами для выполнения очистки. Некоторые элементы не создают такой открытый канал, и хотя они имеют хорошие показатели теплопереноса и перепада давления, они не очень хорошо очищаются обычными воздуходувками. Такие открытые каналы также позволяют установить датчик для измерения количества инфракрасного излучения, исходящего от элемента. Датчики инфракрасного излучения можно использовать для обнаружения "горячей точки", которая обычно считается предшественником возгорания в корзине (10 на фиг.2). Такие датчики, известные как "датчики горячих точек", полезны для предотвращения возникновения и распространения возгораний. Элементы, не имеющие открытого канала, препятствуют выходу инфракрасного излучения из элемента и не позволяют его обнаружить датчиком горячих точек.

Таким образом, имеется потребность в элементе роторного регенеративного теплообменника, который создает уменьшенный перепад давления для данной величины теплопереноса и выполненном с возможностью очистки воздуходувкой для обдува сажи и совместимом с датчиком горячих точек.

Краткое описание изобретения

Настоящее изобретение может быть реализовано в форме элемента (100) теплопереноса для роторного регенеративного теплообменника (1), содержащего:

V-образные канавки (150), проходящие параллельно друг другу и выполненные с возможностью образовать каналы (170) между соседними элементами (100) теплопереноса, при этом каждая V-образная канавка (150) содержит грани (151), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеющие высоту между пиками, равную Hn;

первые гофры (165), проходящие параллельно друг другу между V-образными канавками (150), при этом каждый из первых гофров (165) содержит грани (161), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеющие высоту между пиками, равную Hu1; и

вторые гофры (185), проходящие параллельно друг другу между V-образными канавками (150), при этом каждый из вторых гофров (185) содержит грани (181), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеющие высоту между пиками, равную Hu2, в котором Hu2 меньше Hu1.

Изобретение также может быть реализовано в форме элемента (100) теплопереноса для роторного регенеративного теплообменника (1), содержащего:

V-образные канавки (150), проходящие параллельно друг другу и выполненные с возможностью образовать каналы (170) между соседними элементами (100) теплопереноса, при этом каждая V-образная канавка (150) содержит грани (151), выступающие наружу от противоположных сторон элемента (100) теплопереноса;

первые гофры (165), расположенные между V-образными канавками (150), при этом первые гофры (165) проходят параллельно друг другу и имеют ширину Wu1; и

вторые гофры (185), проходящие между V-образными канавками (150), при этом вторые гофры (185) проходят параллельно друг другу и имеют ширину Wu2, в котором Wu1 не равно Wu2.

Настоящее изобретение может быть реализовано в форме корзины (40) для роторного регенеративного теплообменника (1), содержащей:

множество элементов (100) теплопереноса, уложенных друг на друга и разнесенных друг от друга, образуя множество каналов (170) между соседними элементами (100) теплопереноса для пропускания между ними текучих сред, между которыми происходит теплообмен, при этом каждый элемент (100) теплопереноса содержит:

V-образные канавки (150), проходящие параллельно друг другу и выполненные с возможностью образовать каналы (170) между соседними элементами (100) теплопереноса, при этом каждая V-образная канавка (150) содержит грани (151), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеющие высоту между пиками, равную Hn;

первые гофры (165), проходящие параллельно друг другу между V-образными канавками (150), при этом каждый из первых гофров (165) содержит грани (161), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеющие высоту между пиками, равную Hu1; и

вторые гофры (185), проходящие параллельно друг другу между V-образными канавками (150), при этом каждый из вторых гофров (185) содержит грани (181), выступающие наружу от противоположных сторон элемента (100) теплопереноса и имеют высоту между пиками, равную Hu2, в котором Hu2 меньше Hu1 и Hu1 меньше Hn.

Краткое описание чертежей

Предмет настоящего изобретения определен в формуле изобретения, приложенной к настоящему описанию. Вышеописанные и другие признаки и преимущества настоящего изобретения будут очевидны из нижеследующего подробного описания со ссылками на приложенные чертежи, где:

Фиг.1 - вид в перспективе с частичным вырезом роторного регенеративного теплообменника по предшествующему уровню техники.

Фиг.2 - вид сверху корзины элементов по предшествующему уровню техники, содержащей множество элементов теплопереноса.

Фиг.3 - вид в перспективе части трех элементов теплообмена по предшествующему уровню техники, уложенных друг на друга.

Фиг.4 - вертикальная проекция в сечении элемента теплопереноса по предшествующему уровню техники.

Фиг.5 - вертикальная проекция в сечении элемента теплопереноса по варианту настоящего изобретения.

Фиг.6 - вид в перспективе части элемента теплопереноса по варианту настоящего изобретения.

Описание предпочтительного варианта

На фиг.5 и 6 показана часть элемента 100 теплопереноса по варианту настоящего изобретения. Элемент 100 можно использовать вместо известных элементов 10 в роторном регенеративном теплообменнике (1 на фиг.1). Например, элементы 100 можно уложить друг на друга, как показано на фиг.3, и вставить в корзину 40, как показано на фиг.2, для использования в роторном регенеративном теплообменнике 1, относящемся к типу, показанному на фиг.1.

Изобретение будет описано ниже со ссылками на фиг.5 и 6. Элемент 100 выполнен из тонкого металлического листа, который можно прокатывать или штамповать, придавая ему требуемую конфигурацию. Элемент 100 имеет множество V-образных канавок 150, разнесенных друг от друга и проходящих продольно и приблизительно параллельно направлению потока текучей среды, участвующей в теплообмене, по элементу 100, как показано стрелкой "А". Эти V-образные канавки 150 удерживают соседние элементы 100 на заранее определенном расстоянии друг от друга и образуют проточные каналы 170 между соседними элементами 100, когда эти элементы 100 уложены друг на друга. Каждая V-образная канавка 150 содержит одну грань 151, выступающую наружу от поверхности элемента 100 на одной стороне, и другую грань 151, выступающую наружу от элемента 100 на противоположной стороне. Каждая грань 151 может иметь форму U-образной канавки с пиками 153 V-образных канавок 150 направленными наружу от элемента 100 в противоположных направлениях. Пики 153 V-образных канавок 150 контактируют с соседними элементами 100 для удержания элементов 100 на расстоянии друг от друга. Как уже упоминалось, элементы 100 могут быть расположены так, чтобы V-образные канавки 150 на одном элементе располагались приблизительно посередине между V-образными канавками 150 на соседних элементах 100 для создания максимальной опоры. Хотя на чертежах это не показано, предусмотрено, что элемент 100 может содержать плоский участок, проходящий параллельно V-образным канавкам 150 и на которые опирается V-образная канавка соседнего элемента 100. Высота между пиками между гранями 151 каждой V-образной канавки 150 имеет обозначение Hn.

На элементе 100 между V-образными канавками 150 расположены гребни (гофры) 165, 185, имеющие две разные высоты. Имеется два множества гофр 165 и 185 соответственно. Хотя на чертеже показана лишь часть элемента 100, следует понимать, что элемент 100 может содержать множество V-образных канавок и между каждой парой канавок 150 расположены гофры 165 и 185.

Каждый гофр 165 проходит параллельно другим гофрам 165 между канавками 150. Каждый гофр 165 содержит одну грань 161, выступающую наружу от поверхности элемента 100 с одной стороны, и одну грань 161, выступающую наружу от поверхности элемента 100 с другой стороны. Каждая грань 161 может иметь форму U-образного канала с пиками 163 каналов, направленными наружу от элемента 100 в противоположных направлениях. Каждый из гофр 165 имеет высоту между пиками 163, равную Hu1.

Каждый гофр 185 проходит параллельно другим гофрам 185 между канавками 150. Каждый гофр 185 содержит одну грань 181, выступающую наружу от поверхности элемента 100 с одной стороны, и одну грань 181, выступающую наружу от поверхности элемента 100 с другой стороны. Каждая грань 181 может иметь форму U-образного канала с пиками 183 каналов, направленными наружу от элемента 100 в противоположных направлениях. Каждый из гофр 185 имеет высоту между пиками 183, равную Hu2.

Согласно одному аспекту настоящего изобретения Hu1 и Hu2 имеют разные величины. Отношение Hu1/Hun является критическим параметром, поскольку оно определяет высоту открытой области между соседними элементами 100, образующей канал 170 для потока среды.

В показанном варианте Hu2 меньше Hu1, и Hu1 также как и Hu2 меньше, чем Hn. Предпочтительно, отношение Hu2/Hu1 больше приблизительно 0,20 и меньше приблизительно 0,80; более предпочтительно отношение Hu2/Hu1 больше приблизительно 0,35 и меньше приблизительно 0,65. Отношение Hu2/Hn предпочтительно больше приблизительно 0,06 и меньше приблизительно 0,72, а отношение Hu1/Hn предпочтительно больше приблизительно 0,30 и меньше приблизительно 0,90. Когда отношение Hu2/Hu1 снижается до менее 0,20, меньшие гофры оказывают меньший эффект на возникновение турбулентности и становятся менее эффективными.

Когда отношение Hu2/Hu1 превышает 0,80, две высоты гофров почти равны и по сравнению с прототипом дают минимальное улучшение.

После выбора отношений Hu1/Hn и Hu2/Hu1 фиксируют отношение Hu2/Hn.

Согласно другому аспекту настоящего изобретения индивидуальная ширина каждого гофра 165 может отличаться от индивидуальной ширины каждого гофра 185, как показано позициями Wu1 и Wu2 . Предпочтительно отношение Wu2/Wu1 больше 0,20 и меньше 1,20, более предпочтительно Wu2/Wu1 больше 0,50 и меньше 1,10. Выбор Wu1 и Wu2 в значительной степени зависит от величин, выбранных для Hu1 и Hu2. Одной из общих целей предпочтительного варианта настоящего изобретения является создание оптимальной турбулентности рядом с поверхностью элементов. Это значит, что форма в сечении обоих типов гофров должна быть создана в соответствии с этой целью и форма каждого гофра определяется в основном отношением его высоты к его ширине. Кроме того, выбор ширины гофров может повлиять на величину площади поверхности элементов, а площадь поверхности также влияет на величину теплопереноса между текучей средой и элементами.

Наоборот, как показано на фиг.4, гофры 65 известного элемента 10 имеют одинаковую высоту Hu и одинаковую ширину Wu. Испытания в аэродинамической трубе неожиданно показали, что замена известных равномерных гофр 65 на гофры 165 и 185 по настоящему изобретению может существенно снизить перепад давления (приблизительно на 14%), при той же скорости теплообмена и потока текучей среды. Это дает экономию издержек, поскольку снижение перепада давления воздуха и топочного газа, когда они текут через роторный регенеративный теплообменник, позволяет снизить потребление электроэнергии вентиляторами, которые используются для принудительного прокачивания воздуха и топочного газа через теплообменник.

Не углубляясь в теорию, считается, что разница высоты и/или ширины между гофрами 165 и 185, с которыми сталкивается текучая среда, участвующая в теплообмене и текущая между элементами 100, создает увеличенную турбулентность в приграничном слое текучей среды, прилегающем к поверхности элементов 100, и уменьшенную турбулентность в открытой секции каналов 170, которая находится дальше от поверхности элементов 100. Эта добавленная турбулентность в приграничном слое увеличивает скорость теплопереноса между текучей средой и элементами 100. Уменьшенная турбулентность на расстоянии от поверхности элементов 100 способствует снижению перепада давления в каналах 170. Подбирая две высоты Hu1 и Hu2 гофров, можно уменьшить перепад давления при сохранении общего количества переносимой теплоты.

В дополнение к улучшенным характеристикам теплопереноса и перепада давления, элемент 100 по настоящему изобретению также имеет преимущество, заключающееся в том, что угол между гофрами 165 и основным направлением потока текучей среды, участвующей в теплообмене, можно несколько уменьшить, сохраняя в то же время то же количество переносимой теплоты по сравнению с элементом 10, имеющим известные равномерные гофры 65. Это в равной степени относится и к углу между гофрами 185 и основным направлением потока текучей среды, участвующей в теплообмене.

Это облегчает очистку струей воздуходувки, поскольку гофры 165 и 185 меньше наклонены относительно струи. Кроме того, поскольку уменьшенный угол наклона гофров обеспечивает лучшую видимость между элементами 100, настоящее изобретение совместимо с датчиком инфракрасного излечения (горячих точек).

Хотя изобретение было описано со ссылками на иллюстративные варианты, специалистам понятно, что в него могут быть внесены различные изменения и элементы могут быть заменены на эквивалентные, что не является выходом за пределы объема настоящего изобретения. Кроме того, специалистам понятны многие модификации, предназначенные для адаптации конкретного устройства, ситуации или материала к идеям настоящего изобретения без выхода за пределы его объема. Поэтому настоящее изобретение не ограничивается конкретным вариантом, описанным в качестве предпочтительного, а включает все варианты, входящие в объем, определенный приложенной формулой.

1. Элемент теплопереноса для роторного регенеративного теплообменника, обладающий высокой эффективностью и не требующий больших затрат на обслуживание, содержащий:
V-образные канавки, проходящие параллельно друг другу и выполненные с возможностью образовать каналы между соседними элементами теплопереноса, при этом каждая V-образная канавка содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hn;
первые гофры, проходящие параллельно друг другу между V-образными канавками, при этом каждый из первых гофров содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hu1; и
вторые гофры, проходящие параллельно друг другу между V-образными канавками, при этом каждый из вторых гофров содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hu2, в котором Hu2 меньше Hu1.

2. Элемент по п.1, в котором Hu1 меньше, чем Hn.

3. Элемент по п.1, в котором отношение Hu2/Hu1 больше 0,2 и меньше 0,8.

4. Элемент по п.3, в котором отношение Hu2/Hn больше приблизительно 0,06 и меньше приблизительно 0,72.

5. Элемент по п.4, в котором отношение Hu1/Hn больше приблизительно 0,30 и меньше приблизительно 0,9.

6. Элемент по п.1, в котором первые гофры имеют ширину Wu1, вторые гофры имеют ширину Wu2 и Wu1 не равно Wu2.

7. Элемент по п.6, в котором отношение Wu2/Wu1 больше приблизительно 0,2 и меньше приблизительно 1,2.

8. Элемент по п.1, дополнительно содержащий плоский участок, расположенный между V-образными канавками и проходящий параллельно им.

9. Элемент по п.1, в котором отношение Hu1 меньше Hn.

10. Элемент по п.1, в котором отношение Hu2/Hu1 больше 0,2 и меньше 0,8.

11. Элемент по п.3, в котором отношение Hu2/Hn больше приблизительно 0,06 и меньше приблизительно 0,72.

12. Элемент по п.4, в котором отношение Hu1/Hn больше приблизительно 0,30 и меньше приблизительно 0,9.

13. Элемент теплопереноса для роторного регенеративного теплообменника, обладающий высокой эффективностью и не требующий больших затрат на обслуживание, содержащий:
V-образные канавки, проходящие параллельно друг другу и выполненные с возможностью образовать каналы между соседними элементами теплопереноса, при этом каждая V-образная канавка содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса;
первые гофры, расположенные между V-образными канавками, проходящие параллельно друг другу и имеющие ширину Wu1;
вторые гофры, расположенные между V-образными канавками, проходящие параллельно друг другу и имеющие ширину Wu2, в котором Wu1 не равно Wu2.

14. Элемент по п.13, в котором первые гофры имеют высоту Hu1, вторые гофры имеют высоту Hu2 и Hu1 не равно Hu2.

15. Корзина для роторного регенеративного теплообменника, обладающего высокой эффективностью и не требующего больших затрат на обслуживание, содержащая:
множество элементов теплопереноса, уложенных друг на друга и разнесенных друг от друга, образуя множество каналов между соседними элементами теплопереноса для пропускания между ними текучих сред, между которыми происходит теплообмен, при этом каждый элемент теплопереноса содержит:
V-образные канавки, проходящие параллельно друг другу и выполненные с возможностью образовать каналы между соседними элементами (100) теплопереноса, при этом каждая V-образная канавка содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hn;
первые гофры, проходящие параллельно друг другу между V-образными канавками, при этом каждый из первых гофров содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hu1; и
вторые гофры, проходящие параллельно друг другу между V-образными канавками, при этом каждый из вторых гофров содержит грани, выступающие наружу от противоположных сторон элемента теплопереноса и имеющие высоту между пиками, равную Hu2, в котором Hu2 меньше Hu1 и Hu1 меньше Hn.

16. Корзина по п.15, в которой отношение Hu2/Hu1 больше приблизительно 0,20 и меньше приблизительно 0,80.

17. Корзина по п.16, в которой отношение Hu1/Hn больше приблизительно 0,3 и меньше приблизительно 0,9.

18. Корзина по п.15, в котором первые гофры имеют ширину Wu1, вторые гофры имеют ширину Wu2 и Wu1 не равно Wu2.

19. Корзина по п.18, в котором Wu2/Wu1 больше приблизительно 0,2 и меньше приблизительно 1,2.

20. Корзина по п.15, далее содержащая плоский участок, расположенный между V-образными канавками и проходящий параллельно им.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано в пластинчатых теплообменниках. Пластина (2) пластинчатого теплообменника с основным участком (14) теплообмена, содержащая первую область (16), содержащую первое поле (30) с первыми гофрами, расположенное по существу на одной стороне от прямой первой линии (26), пересекающей вторые боковые кромки (6а, 6b), и второе поле (32) со вторыми гофрами, расположенное по существу на противоположной стороне от первой линии (26).

Изобретение относится к области теплотехники и может быть использовано в теплообменниках для нагрева воды. Теплообменник изготовлен из одной заготовки из теплопроводного материала и содержит ребра, направляющие текучую среду и передающие теплоту между текучей средой и теплообменником; между указанными ребрами имеются поперечные ребра, которые выступают в направлении, по существу перпендикулярном указанным ребрам, на расстояние, которое меньше, чем расстояние между указанными ребрами, и в направлении по существу поперек направления движения текучей среды, при этом поперечные ребра расположены поочередно вблизи к или на расположенных напротив друг друга ребрах с тем, чтобы текучая среда протекала между ребрами и следовала извилистому пути между ребрами, при этом поперечное направление проходит по существу перпендикулярно указанным ребрам.

Пластинчатый теплообменник содержит по меньшей мере одну теплообменную пластину, предпочтительно группу теплообменных пластин. По меньшей мере одна из теплообменных пластин содержит по меньшей мере один участок, имеющий рифления, предназначенные для установки впритык к соответствующим рифлениям теплообменной пластины соответствующей конструкции.

Представлена металлическая пластина для теплообмена, в которой сформированы углубления, имеющие глубину 5 мкм или более и составляющие 10% или менее от толщины металлической пластины.

Изобретение относится к теплотехнике и может быть использовано в теплообменной аппаратуре, например в радиаторах и кондиционерах автомобилей, холодильниках и других теплообменных устройствах.

Изобретение относится к области теплообмена, а именно к теплопередающим поверхностям, содержащим множество элементов с поверхностями нагрева в форме волнистых металлических пластин.

Изобретение относится к теплотехнике и может быть использовано в теплообменной аппаратуре, например в радиаторах и кондиционерах автомобилей, холодильниках и других теплообменных устройствах.

Изобретение относится к теплотехнике, а именно к пластинчатым теплообменникам, и в частности к пластинам с элементами воздействия на пограничный слой в потоке текучей среды.

Изобретение относится к области машиностроения, более конкретно к системам вентиляции и кондиционирования кабин транспортных средств и/или помещений стационарных объектов, и предназначено для очистки воздуха от вредных примесей.

Изобретение относится к теплотехнике и может быть использовано при изготовлении пластин из тонколистового материала для теплообменников беструбного типа. .
Изобретение относится к устройству для влаго- и/или теплообмена, например к пластинчатому теплообменнику, сорбционному ротору, адсорбционному влагопоглощающему ротору и тому подобному, с поверхностями для влаго- или теплообмена, с помощью которых влага и/или тепло могут передаваться потоку текучей среды, и/или забираться потоком текучей среды, и/или обмениваться между потоками текучей среды, и покрытием, которым покрыты поверхности для влаго- или теплообмена и которое образовано из цеолитового материала и вяжущего средства.

Изобретение относится к области теплообмена, а именно к теплопередающим поверхностям, содержащим множество элементов с поверхностями нагрева в форме волнистых металлических пластин.

Изобретение относится к регенеративным теплоутилизаторам, применяемым в системах вентиляции и кондиционирования воздуха. .

Изобретение относится к энергетике, в частности к теплообменникам с подвижным промежуточным теплоносителем, и может быть использовано в системах вентиляции жилых, производственных помещений.

Изобретение относится к регенеративным противоточным теплообменникам и предназначено для использования в вентиляционных системах. .

Изобретение относится к вентиляционной технике и может быть использовано в устройствах для регенерации тепла и холода, например в системах кондиционирования воздуха.

Изобретение относится к области теплоэнергетики и может быть использовано в установках для газодинамического уплотнения регенеративных воздухоподогревателей для снижения перетоков воздуха в дымовые газы.

Изобретение относится к области теплотехники и может быть использовано во вращающихся регенеративных теплообменниках. Теплопередающие листы для вращающегося регенеративного теплообменника содержат множество элементов (59), продолжающихся вдоль листа по существу параллельно направлению потока горячего дымового газа, образующих участок проточного канала между смежными теплопередающими листами и располагающих листы на расстоянии, и множество волнистых поверхностей (71,81), расположенных между каждой парой смежных элементов (59), причем множество волнистых поверхностей содержит первую (71) волнистую поверхность, образованную множеством удлиненных гребней (75), продолжающихся вдоль теплопередающего листа параллельно друг другу под первым углом А1 относительно элементов (59) и вторую волнистую поверхность (81), образованную множеством удлиненных гребней (85), продолжающихся вдоль теплопередающего листа параллельно друг другу под вторым углом А2 относительно элементов (59), причем первый угол А1 отличается от второго угла А2. Технический результат - улучшение теплопередачи путем повышения турбулентности потока. 3 н. и 12 з.п. ф-лы, 9 ил.
Наверх