Способ измерения вовлекаемой массы спортсмена при выполнении им двигательных действий и устройство для его осуществления

Изобретение относится к измерительной технике, в частности к средствам объективного контроля индивидуальных физических данных спортсмена, и может быть использовано в самых различных видах спорта. Способ заключается в том, что спортсменом делается два идентичных двигательных действия. С помощью спектранализатора измеряется ускорение руки, на которой закреплен пьезоакселерометр. На руку спортсмена, на которой закреплен пьезоакселерометр, дополнительно навешивается калиброванный груз. По двум полученным значениям ускорения руки и известной массе дополнительного груза находится искомая величина. Тренажер для измерения вовлекаемой массы спортсмена, например лыжника, представляет собой прямоугольную раму, на коротких сторонах которой параллельно друг другу установлены неподвижные валы, на концах которых при помощи подшипников качения насажены стальные бобины цилиндрической формы. На каждую пару бобин вдоль длинных сторон рамы натянуты армированные резиновые ленты. В центральной части конструкции, ближе к одному из валов, приварена площадка, на которой стоит лыжник и отталкивается палками от ленты, приводя ее в круговое движение. Техническим результатом изобретения является повышение точности измерений. 2 н.п. ф-лы, 6 ил.

 

Изобретение относится к измерительной технике, в частности к средствам объективного контроля индивидуальных физических данных спортсмена, и может быть использовано в самых различных видах спорта, например в лыжных гонках.

Любое двигательное действие спортсмена характеризуется величиной приложенной силы. Зависимость между силой, массой и ускорением определяется вторым законом Ньютона

F = M a                                   ( 1 ) ,

где F - сила [ньютон], М - масса [кг], а - линейное ускорение объекта приложения силы (руки или ноги) [м/с2].

Например, в лыжах при отталкивании палками и одновременном бесшажном ходе спортсмен прикладывает усилие, пропорциональное массе его тела и ускорению [1].

Однако неизвестно, как определить усилие, которое ему необходимо затратить.

Наиболее близким по технической сущности к заявляемому изобретению является измерение ускорения при помощи датчика ускорений - пьезокерамического акселерометра (ПА), который прикрепляется к месту приложения двигательного усилия лыжника (в данном случае, к руке или к ноге) [2]. Пьезокерамический акселерометр, в свою очередь, подключен к спектроанализатору со сменными RC-фильтрами.

Однако, помимо измерения развиваемого ускорения, необходимо также знать еще и массу объекта приложенной силы. В настоящее время этот параметр подменяется параметром «количество движений»

I = m v                                  ( 2 ) ,

где v - скорость движения руки, a m - масса руки, которую принимают равной от четырех и более кг. Поэтому основным недостатком существующего способа определения величины прилагаемой силы является невозможность рассчитать вовлекаемую массу в процесс движения. К тому же сам измеритель ускорения является громоздким, имеет большую погрешность, с его помощью также невозможно контролировать действия спортсмена во время соревнований.

Задача изобретения - определение величины вовлекаемой массы спортсмена при выполнении им двигательных действий, повышение качества тренировочного процесса, сокращение сроков подготовки.

Поставленная задача решается тем, что первоначально измеряют ускорение объекта источника приложения силы a1, затем, при том же усилии, но с дополнительной известной массой М на том же объекте, на котором закреплен датчик, определяют ускорение a2. Вовлекаемая масса будет вычисляться по формуле

X a 1 = ( X + M ) a 2                                             ( 3 ) ,

где Х - вовлекаемая масса спортсмена. Преобразовывая формулу 3, получаем

X = M a 2 a 1 a 2                                                           ( 4 )

По измеренным значениям по формуле 4 определяется искомая величина вовлекаемой массы спортсмена при совершении им двигательного действия.

На фиг.1 приведена схема тренажера для измерения вовлекаемой массы спортсмена при одновременном отталкивании (бесшажном ходе) лыжными палками. Тренажер представляет собой прямоугольную раму, на коротких сторонах которой параллельно друг другу установлены неподвижные валы 1. На концах этих валов при помощи подшипников качения насажены стальные бобины цилиндрической формы 2. На каждую пару бобин вдоль длинных сторон рамы натянуты армированные резиновые ленты 3 такой ширины, которая позволяла бы закрыть всю поверхность бобин. В центральной части конструкции, ближе к одному из валов, приварена площадка 4, на которой стоит лыжник 5 и отталкивается палками от ленты, приводя ее в круговое движение.

Блок-схема измерения вовлекаемой массы спортсмена приведена на фиг.2.

Тренажер для вовлекаемой массы спортсмена обозначен цифрой 6, пьезоакселерометр, который крепится на руку спортсмена - цифрой 7, спектранализатор со сменными RC-фильтрами - цифрой 8, милливольтметр, который служит индикатором ускорения руки спортсмена в режиме отталкивания - цифрой 9, калиброванный по массе груз, равный 1000 грамм - цифрой 10.

Принципиальная схема спектранализатора с подключенным на вход ПА представлена на фиг.3. R1; R2; C1; C2 - сменные радиокомпоненты.

Примеры конкретного выполнения. Лыжник с массой руки 3,7 кг выполняет на тренажере (фиг.1) серию из 6-8 одновременных отталкиваний и возбуждает тем самым колебания в пьезоакселерометре, который закреплен на кисти одной из его рук. Сигнал с пьезоакселерометра поступает на вход спектранализатора со сменными RC-фильтрами и далее на милливольтметр. Величину ускорения записывают в табл.1. Затем на кисть руки, на которой закреплен пьезоакселерометр, вешают груз массой 1000 грамм в виде манжеты и снова повторяют серию из 6-8 отталкиваний. Величину ускорения руки, но уже с дополнительным грузом, также записывают в табл.1. Последовательно меняя сменные RC-фильтры в спектранализаторе и повторяя те же самые серии отталкиваний, заполняют данными табл.1 ускорения в милливольтах.

Таблица 1
(1,83-2,0) Гц (2,83-3,0) Гц (3,33-3,5) Гц (3,83-4,0) Гц (4,33-4,5) Гц (5,83-6,0) Гц (9,83-10,0) Гц
б/г с/г б/г с/г б/г с/г б/г с/г б/г с/г б/г с/г б/г с/г
90 76 80 72 89 75 125 75 110 80 120 90 70 50
х=5,4 кг х=9,0 кг х=5,3 кг х=1,5 кг х=2,7 кг х=3,0 кг х=2,5 кг
б/г - без груза; с/г - с грузом.

На фиг.4 приведено графическое отображение полученной спектрограммы, из которой видно, что при данной технике отталкивания вносимая масса тела спортсмена (заштрихованная на графике) присутствует в частотном диапазоне от 1,83 до 3,5 Гц, а дальше, на более высоких частотах, отталкивание происходит исключительно за счет силы мышц рук.

На фиг.5 представлен внешний вид измерительного устройства (а - в сборе, б - разобранном виде), на фиг.6 - способ его крепления непосредственно на лыжнике.

Заявляемый способ измерения вовлекаемой массы спортсмена позволяет по сравнению с известными способами получить истинное значение массы спортсмена, участвующей в двигательном действии.

1. Способ определения вовлекаемой массы спортсмена при выполнении им двигательных действий, заключающийся в измерении ускорений объекта приложения силы (руки или ноги), отличающийся тем, что измерения проводят с помощью спектранализатора первоначально без дополнительно навешиваемого на него калиброванного по массе груза, а затем с вышеупомянутым грузом, по измеренным значениям которого определяют искомую величину.

2. Устройство для реализации способа по п.1, состоящее из пьезокерамического акселерометра и спектранализатора со сменными RC-фильтрами, отличающееся тем, что пьезокерамический датчик ускорения прикреплен к руке или ноге спортсмена, подключен к спектранализатору и индикатору, проградуированному в единицах ускорения, а калиброванный по массе груз с закрепленным на нем пьезоакселерометром дополнительно навешивается при повторном измерении ускорения.



 

Похожие патенты:

Система измерения частоты вращения ротора газотурбинного двигателя относится к системам измерения частоты вращения ротора авиационных и наземных газотурбинных двигателей, имеющих циркуляционную систему смазки подшипниковых опор.

Изобретение относится к кабельной технике, а именно: к способам контроля электрических кабелей на соответствие техническим требованиям, отражающим эксплуатационные параметры.

Изобретение относится к конвейеростроению, а именно к стендам для исследования параметров улавливания оборвавшейся ленты наклонного конвейера с желобчатыми опорными роликоопорами на грузонесущей ветви конвейерной ленты при использовании подвесных канатных ловителей, которые отличаются от других типов ловителей простотой конструкции и надежностью срабатывания при обрыве конвейерной ленты.

Изобретение относится к устройству измерения показателей силового взаимодействия между тележкой и кузовом, применяемому при испытаниях железнодорожных подвижных транспортных средств.

Изобретение относится к индикаторам нагрузки и касается индикации жесткой посадки самолета и воздействующих на самолет буксировочных усилий, превышающих допустимые.

Изобретение относится к измерительной технике и может быть использовано в гидромашиностроении при разработке оборудования нефтедобывающей промышленности, в частности многоступенчатых погружных центробежных насосов.

Изобретение относится к средствам объективного контроля индивидуальных физических данных спортсменов в легкой атлетике. .

Изобретение относится к способам определения работоспособности газонефтепроводных стальных труб магистральных трубопроводов и может быть использовано в нефтяной и газовой промышленности.

Изобретение относится к испытанию и техническому диагностированию машин, в частности к способу определения номинальной эффективной мощности двигателя транспортной машины, преимущественно трактора.

Изобретение относится к испытательным средствам для автомобильного транспорта. .
Изобретение относится к испытательной технике, в частности к испытаниям, связанным с дозированием энергии при импульсном брикетировании металлической стружки. Сущность: объему пластически деформируемой стружки предварительно к моменту брикетирующего удара придают жесткое боковое ограничение, обеспечивающее числовое равенство безразмерных величин - истинной относительной деформации по высоте получаемого брикета и степени его пористости α. Дозу энергии Е для импульсного брикетирования стружки вычисляют по уравнению Е=σтαV, где σт - динамическое напряжение в сплошном металле; αV - объемное количество металла в брикете. Технический результат: повышена точность дозирования энергии для получения брикетов с заранее назначенной плотностью и сформированы условия для создания оборудования, способного надежно работать в условиях удара.

Изобретение относится к области электротехники и может быть использовано в регулируемых электроприводах общепромышленных механизмов и транспортных средств. Технический результат - расширение функциональных возможностей, повышение надежности и точности работы. В устройстве для измерения электромагнитного момента в электроприводе с синхронным реактивным двигателем в цепь каждой фазной обмотки статора включен последовательно датчик тока, выходные клеммы которого подключены к первой группе входных клемм первого коммутатора сигналов и к первой группе входных клемм второго коммутатора сигналов. Датчик положения ротора механически соединен с валом электродвигателя, а его выходные клеммы соединены со второй группой входов первого и второго коммутаторов сигналов. Выходные клеммы коммутаторов соединены с входными клеммами сумматоров, выходные клеммы которых соединены с входными клеммами блока произведения, напряжение на выходе которого соответствует величине электромагнитного момента двигателя. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к способам опознавания воздействий на подъемно-транспортную машину. Осуществляя контроль эксплуатации транспортного средства, обнаруживают перегрузки при столкновении транспортного средства. Контролируют скорость транспортного средства на основе информации, полученной от датчика скорости. Рассчитывают изменения количества движения транспортного средства на основе контролируемой скорости транспортного средства. Определяют, произошли ли изменения количества движения и обнаружены ли перегрузки при столкновении транспортного средства в течение заданного периода времени между ними. Формируют сигнал воздействия, указывающий, что изменение количества движения и обнаруженные перегрузки при столкновении транспортного средства произошли в течение заданного периода времени. Достигается опознавание воздействий на подъемно-транспортные машины, определение перегрузки и изменения количества движения для обнаружения воздействий и определения, какие воздействия достаточно значимы, чтобы о них сообщить, занести их в журнал или иным образом довести их до сведения оператора машины и для управления оператором при помощи беспроводных решений 2 н. и 19 з.п. ф-лы, 18 ил.

Изобретение относится к буровой технике и предназначено для измерения параметров силового воздействия на буровое долото режуще-скалывающего действия в процессе разрушения им породы. Лабораторная установка для определения нагрузки, действующей на буровое долото, содержит измерительную балку, жестко закрепленную на базовой плите, с установленным на ней долотом. На измерительной балке смонтированы тензометрические датчики, образующие шесть тензометрических мостов для измерения осевой нагрузки Rza на измерительную балку вдоль ее оси, Mza - момента, скручивающего измерительную балку относительно ее оси, Mxa, Mxb - моментов соответственно в поперечных сечениях измерительной балки, отстоящих друг от друга на расстоянии a, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат, Mya, Myb - моментов соответственно в поперечных сечениях измерительной балки, изгибающих измерительную балку в плоскости, проходящей через ее ось, и ось декартовой системы координат. Техническим результатом изобретения является повышение точности измерений. 8 ил.

Изобретение относится к способу определения наличия заданных свойств контейнерного изделия, в частности, выполненного из пластмассы. Кроме того, изобретение относится к устройству для осуществления указанного способа. Способ определения наличия заданных свойств наполненного и запаянного контейнерного изделия (9, 11, 109, 111), сформированного способом выдува, в частности, выполненного из пластмассы. При этом фактическое значение, по меньшей мере, одного заданного свойства автоматически определяют на, по меньшей мере, одном участке (1-7, 101-107) контроля контрольного прибора и сравнивают с расчетным значением этого свойства. Для контейнерного изделия в форме контейнерной ленты (9, 109) с контейнерами (11, 111), выполненными из пластмассы и соединенными вместе с возможностью разделения в соединительных точках, контейнеры (11, 111) разделяют с помощью станка. При этом задано усилие отрыва, необходимое для указанного разделения. Затем контейнеры разделяют путем их откручивания от контейнерной ленты (9, 109) на отдельном, предпочтительно первом, участке (1, 101) контроля. При этом вращательный момент, необходимый для откручивания, определяется автоматически. Далее для контейнеров (11, 111), наполненных контейнерным содержимым, отделенные контейнеры (11, 111) с помощью станка перемещают на участок (2, 102) контроля, где они взвешиваются для автоматического определения их общей массы. При этом взвешенные контейнеры (11, 111) с помощью станка перемещают на участок (3, 103) контроля и опустошают там, а опустошенные контейнеры (11, 111) с помощью станка доставляют на участок (4, 104) контроля, где они взвешиваются для определения их собственной массы тары. При этом общую массу автоматически сравнивают с указанной массой тары, определенной для установления массы контейнерного содержимого. Техническим результатом является повышение рентабельности при производстве контейнерных изделий посредством эффективной модели контроля качества, обеспечение возможности эффективно определять различные существенные свойства изделия, а также повышение достоверности. 2 н. и 18 з.п. ф-лы, 20 ил.

Устройство определения положения точки нулевого момента (ТНМ) при ходьбе человека без сгибания стопы представляет собой две прямоугольной формы подошвы с креплениями к ноге человека. По краям каждой подошвы размещено 4 тензодатчика, чувствительные части которых располагаются между двумя подложками из резины. Тензодатчики подключены гибкой шиной проводов к плате микроконтроллера. Сигнал с каждого датчика считывается и преобразуется в цифровую информацию для дальнейшей передачи на компьютер, где происходит расчет траектории ТНМ человека при ходьбе в целях дальнейшего использования полученных данных в процессе создания математической модели передвижения антропоморфного шагающего бипедального робота для обучения ходьбе антропоморфного робота. Технический результат – повышение точности определения положения точки нулевого момента при ходьбе человека без сгибания стопы. 4 ил.

Изобретение относится к отжимным прессам, предназначенным для воздействия прижимными силами на движущиеся полотна при получении различных материалов. Несколько групп датчиков расположены по окружности с некоторым интервалом друг от друга в каждом поперечном положении на чувствительном вале отжимного пресса для измерения и устранения, или практического устранения, воздействий вращательной изменчивости, которые могут существовать на чувствительном вале. Эти стратегически расположенные датчики предназначены для измерения давления, прилагаемого к полотну, которое проходит через отжимной пресс. Среднее из результатов измерения нескольких датчиков, расположенных с интервалом друг от друга по окружности, обеспечивает эффективное устранение любой вращательной изменчивости, которая может существовать в поперечном положении на чувствительном вале. Технический результат заключается в повышении точности измерения профиля давления в зоне прессования и выполнении более точных регулировок для уменьшения изменчивости профиля давления в зоне прессования, а также возможности прогнозирования неисправностей покрытия или подшипников, резонансных частот и других аномалий вала. 5 н. и 20 з.п. ф-лы, 15 ил.
Наверх