Быстродействующая дистанционная защита для сетей энергоснабжения



Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения
Быстродействующая дистанционная защита для сетей энергоснабжения

 


Владельцы патента RU 2529773:

СИМЕНС АКЦИЕНГЕЗЕЛЛЬШАФТ (DE)

Изобретение относится к способу для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью. Сущность: принимаются значения выборок тока и напряжения и формируется сигнал неисправности, если выполненная электрическим устройством (12а) защиты оценка неисправности указывает на короткое замыкание (16), имеющееся в линии (10). Вычисляются мгновенные опорные значения напряжения из принятых перед наступлением короткого замыкания (16) мгновенных значений выборок тока и напряжения и мгновенные сравнительные значения напряжения из принятых перед наступлением короткого замыкания (16) мгновенных значений выборок тока и напряжения и принятых во время короткого замыкания (16) мгновенных значений выборок тока и напряжения. Затем вычисляется выпрямленное значение опорного напряжения из следующих друг за другом мгновенных опорных значений напряжения и выпрямленное сравнительное значение напряжения из следующих друг за другом мгновенных сравнительных значений напряжения. Формируется сигнал неисправности, если разность между выпрямленным сравнительным значением напряжения и выпрямленным опорным значением напряжения превышает пороговое значение срабатывания. Технический результат: повышение быстродействия. 2 н. и 10 з.п. ф-лы, 9 ил.

 

Изобретение относится к способу для распознавания коротких замыканий в линии многофазной электрической сети энергоснабжения с заземленной нулевой точкой в соединении звездой (нейтралью), при котором принимаются значения выборок тока и напряжения в месте измерений на конце контролируемой линии посредством электрического устройства защиты, и формируется первый сигнал неисправности, указывающий на короткое замыкание в линии, если выполненная электрическим устройством защиты оценка неисправности для значений выборок тока и напряжения указывает на короткое замыкание, имеющееся в линии. Изобретение также относится к устройству защиты, выполненному соответствующим образом.

В электрической сети энергоснабжения с заземленной нейтралью при однозначно определенных коротких замыканиях должна обеспечиваться возможность особенно быстрого отключения неисправной линии. На основе высокой мощности короткого замыкания в таких сетях энергоснабжения короткие замыкания особенно опасны, потому что они, с одной стороны, сильно нагружают термически средства производства сети энергоснабжения, такие как линии, трансформаторы, компенсационное оборудование, генераторы и т.д., а с другой стороны, могут обусловить нестабильный колебательный режим работы с так называемыми электрическими качаниями. Эти оба эффекта могут привести к длительным отказам сети (так называемому временному отключению), так что поставка энергии в определенные области сети более не гарантируется. Поэтому, для того чтобы гарантировать надежную работу сети энергоснабжения, быстрое отключение коротких замыканий на неисправной линии имеет большое значение.

Базовым методом защиты для автоматического контроля линий электрической сети энергоснабжения является так называемый метод дистанционной защиты. Часто используемый в рамках дистанционной защиты алгоритм для распознавания короткого замыкания на линии базируется на измерении так называемого импеданса короткого замыкания. Устройства защиты измеряют при этом импеданс до места неисправности и определяют отсюда расстояние (дистанцию) до места неисправности. Импеданс короткого замыкания (пересчитанный на дистанцию неисправности) применяется для того, чтобы установить, действительно ли зарегистрированное короткое замыкание находится на защищаемой линии. Для этого должны быть известны длина линии, а также ее импеданс на единицу длины. Если установлено, что короткое замыкание имеет место в защищаемой линии, то соответствующая линия отключается, и неисправный участок сети отсоединяется от системы. Тем самым гарантируется дальнейшее надлежащее функционирование сети.

Для выполнения этого алгоритма дистанционной защиты на местах измерений на каждом конце контролируемой линии берутся выборки и оцениваются сигналы тока и напряжения. Затем временные величины должны быть преобразованы в комплексные величины. Это осуществляется с помощью специально рассчитанных для этой задачи фильтров, которые удаляют нежелательные сигналы (например, постоянную (DC) составляющую) и выдают действительную и мнимую часть векторов тока или напряжения. Упрощенным образом можно вычислить импеданс короткого замыкания на основе комплексных величин как частное от деления комплексного напряжения на комплексный ток. Если этот импеданс короткого замыкания меньше, чем известный импеданс линии, то имеет место внутренняя неисправность в контролируемой зоне защиты линии.

Дистанционное измерение может также выполняться с помощью комплексных «дельта-величин» тока и напряжения. Эти дельта-величины могут определяться путем сравнения измеренных значений, зарегистрированных до короткого замыкания, с теми, которые получены во время короткого замыкания. При этом оценивается как бы составляющая характеристики тока и напряжения, сформированная в линии за счет короткого замыкания.

Оба описанных метода имеют недостаток, заключающийся в том, что для вычисления комплексных значений тока и напряжения в зависимости от величины применяемого окна измерений необходимо некоторое минимальное количество выборок, так что решение о наличии короткого замыкания в линии может приниматься только с некоторым запаздыванием.

Поэтому в основе изобретения лежит задача предложить способ и соответствующее устройство защиты таким образом, что, в частности, при однозначно определенных неисправностях в контролируемой линии сигнал неисправности может формироваться еще быстрее, чем до сих пор.

Решение этой задачи в отношении способа вышеописанного типа достигается тем, что для оценки неисправности для выборок тока и напряжения вычисляются мгновенные опорные значения напряжения для опорного местоположения на линии из полученных перед наступлением короткого замыкания мгновенных значений выборок тока и напряжения, а также мгновенные сравнительные значения напряжения для опорного местоположения на линии из полученных перед наступлением короткого замыкания мгновенных значений выборок тока и напряжения и полученных во время короткого замыкания мгновенных значений выборок тока и напряжения. Из следующих друг за другом мгновенных опорных значений напряжения затем вычисляется выпрямленное опорное значение напряжения, и из следующих друг за другом мгновенных сравнительных значений напряжения вычисляется выпрямленное сравнительное значение напряжения. Выпрямленное опорное значение напряжения сравнивается с выпрямленным сравнительным значением напряжения, и генерируется первый сигнал неисправности, если разность между выпрямленным сравнительным значением напряжения и выпрямленным опорным напряжением превышает пороговое значение срабатывания.

Особое преимущество соответствующего изобретению способа состоит в том, что посредством применения мгновенных значений (вместо комплексных значений) для опорных значений напряжения и сравнительных значений напряжения может приниматься очень быстрое решение о наличии короткого замыкания в линии, так как не нужно ожидать в течение полной длительности применяемого измерительного окна. Так как из этих мгновенных значений затем формируются выпрямленные значения, может предотвращаться опасность ложного решения на основе отдельных ошибок измерения или выпадающих значений в значениях выборок тока и напряжения.

За счет применения соответствующего изобретению способа при сильноточных коротких замыканиях может формироваться соответствующий сигнал ошибки. Так как способ работает исключительно с зарегистрированными в локальном месте измерений значениями выборок тока и напряжения, коммуникация с другими устройствами защиты (например, на другом конце линии) не требуется.

Предпочтительное дальнейшее развитие соответствующего изобретению способа состоит в том, что вычисление мгновенных опорных значений напряжения осуществляется согласно следующему уравнению:

где

uref(n) - мгновенное опорное значение напряжения;

up(n)=u(n-N) - значение выборки напряжения перед неисправностью на одну длительность сетевого периода перед мгновенным значением u(n) выборки напряжения;

ip(n)=i(n-N) - значение выборки тока перед неисправностью на одну длительность сетевого периода перед мгновенным значением i(n) выборки тока;

Т - длительность периода;

N - число значений выборок на длительность периода;

n - номер значения выборки после возникновения неисправности;

Lref - индуктивность линии от места измерений до опорного местоположения;

Rref - сопротивление линии от места измерений до опорного местоположения.

Таким способом могут определяться опорные значения напряжения только на основе значений выборок, зарегистрированных перед возникновением неисправности, и известных параметров линии.

Другая предпочтительная форма выполнения соответствующего изобретению способа предусматривает, что вычисление мгновенных сравнительных значений напряжения выполняется согласно следующему уравнению:

где

uv(n) - мгновенное сравнительное значение напряжения;

Δuf(n) - мгновенное дельта-значение напряжения после возникновения неисправности;

Δif(n) - мгновенное дельта-значение тока после возникновения неисправности;

Lref - индуктивность линии от места измерений до опорного местоположения;

Rref - сопротивление линии от места измерений до опорного местоположения;

Т - длительность периода;

n - номер значения выборки после возникновения неисправности.

Таким способом сравнительные значения могут определяться на основе дельта-параметров для токов и напряжений и известных параметров линии.

Конкретно, для определения дельта-параметров может быть предусмотрено, что, с одной стороны, определяются мгновенные дельта-значения напряжения согласно следующему уравнению:

где

Δuf(n) - мгновенное дельта-значение напряжения после возникновения неисправности;

u(n) - мгновенное значение выборки напряжения после возникновения неисправности;

up(n)=u(n-N) - значение выборки напряжения перед неисправностью на одну длительность сетевого периода перед мгновенным значением u(n) выборки напряжения;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода;

а с другой стороны, определяются мгновенные дельта-значения тока согласно следующему уравнению:

где

Δif(n) - мгновенное дельта-значение тока после возникновения неисправности;

i(n) - мгновенное значение выборки тока после возникновения неисправности;

ip(n)=i(n-N) - значение выборки тока перед неисправностью на одну длительность сетевого периода перед мгновенным значением i(n) выборки тока;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода.

Таким способом дельта-параметры могут вычисляться на основе полученных перед коротким замыканием и во время короткого замыкания значений выборок.

В отношении выпрямленного опорного значения напряжения и выпрямленного сравнительного значения напряжения может быть, кроме того, конкретно предусмотрено, что, с одной стороны, вычисление выпрямленного опорного значения напряжения осуществляется согласно следующему уравнению:

где

uref(n) - выпрямленное опорное значение напряжения;

uref(k) - мгновенное опорное значение напряжения для значения k выборки;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода;

k - индекс суммирования с накоплением;

и что, с другой стороны, вычисление выпрямленного сравнительного значения напряжения осуществляется согласно следующему уравнению:

где

uv(n) - выпрямленное сравнительное значение напряжения;

uv(k) - мгновенное сравнительное значение напряжения для значения k выборки;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода;

k - индекс суммирования с накоплением.

В качестве особенно предпочтительного, кроме того, рассматривается, если в качестве опорного местоположения применяется конец контролируемой устройством защиты зоны контроля в линии.

В этом предпочтительном варианте осуществления соответствующего изобретению способа сигнал неисправности может определяться очень просто для всей контролируемой зоны контроля или защиты в линии (например, 85% длины линии, исходя от места измерений, в котором находится соответствующее устройство защиты).

Другая предпочтительная форма выполнения соответствующего изобретению способа предусматривает, что устройство защиты распознает начало короткого замыкания, если принимаемые значения выборок тока показывают скачок тока, который превышает пороговое значение скачка, формируется первый сигнал возбуждения, когда устройство защиты распознало начало короткого замыкания, и устройство защиты только после наличия первого сигнала возбуждения начинает оценку неисправности значений выборок тока и напряжения.

Таким способом соответствующий изобретению способ может выполняться особенно ресурсосберегающим образом, так как оценка неисправности значений выборок тока и напряжения только тогда инициируется, когда устройство защиты на основе скачка тока обнаружило наличие короткого замыкания на линии, в противном случае, никакая дальнейшая вычислительная мощность для оценки значений выборок тока и напряжения не применяется.

В этой связи другая предпочтительная форма выполнения соответствующего изобретению способа предусматривает, что устройство защиты при наличии первого сигнала возбуждения сначала выполняет анализ значений выборок тока и напряжения в том отношении, в каком фазном проводнике линии возникает короткое замыкание, формируется второй сигнал возбуждения, который указывает по меньшей мере один затронутый коротким замыканием фазный проводник, и устройство защиты выполняет оценку неисправности только в отношении по меньшей мере одного фазного проводника, указанного вторым сигналом возбуждения.

Тем самым способ может выполняться ресурсосберегающим образом, так как оценка неисправности значений выборок тока и напряжения выполняется только относительно фактически затронутого коротким замыканием неисправного шлейфа.

Другая предпочтительная форма выполнения соответствующего изобретению способа предусматривает, что пороговое значение срабатывания динамически устанавливается таким образом, что при возрастающем количестве значений выборок тока и напряжения, используемых для вычисления выпрямленного сравнительного значения, значение порога срабатывания снижается по меньшей мере ступенями.

Тем самым чувствительность соответствующего изобретению способа особенно предпочтительным образом подстраивается к количеству значений выборок, положенных в основу оценки. При возрастании количества значений выборок результат оценки неисправности становится более надежным, так что значение порога срабатывания, применяемое для формирования сигнала неисправности, может снижаться.

Другая предпочтительная форма выполнения соответствующего изобретению способа предусматривает, что мгновенные значения выборок тока и напряжения также применяются для того, чтобы вычислять комплексное значение импеданса контролируемой устройством защиты линии, и устройством защиты формируется второй сигнал неисправности, указывающий на короткое замыкание в линии, когда комплексное значение импеданса лежит внутри заданной области срабатывания в комплексной плоскости.

Таким способом, по существу параллельно с вышеописанным соответствующим изобретению способом, может выполняться классический алгоритм дистанционной защиты, который основывается на расчете комплексных импедансов неисправности. Тем самым можно еще более надежно принять решение о наличии короткого замыкания.

В этой связи согласно другой предпочтительной форме выполнения соответствующего изобретению способа предусмотрено, что устройство защиты формирует сигнал срабатывания для срабатывания силового выключателя, ограничивающего линию, как только имеется первый или второй сигнал неисправности.

Таким способом сигнал неисправности может формироваться уже тогда, когда только один из обоих алгоритмов дистанционной защиты распознал короткое замыкание в линии, так что для конкретного случая короткого замыкания может соответственно осуществляться наиболее скоростной алгоритм отключения линии. Тем самым надежность способа дополнительно повышается.

В отношении устройства защиты, вышеуказанная задача решается устройством защиты для контроля линии многофазной электрической сети энергоснабжения с заземленной нейтралью, в отношении коротких замыканий, возникающих в линии, при этом устройство защиты выполнено с возможностью осуществления способа согласно любому из пунктов 1-11 формулы изобретения.

Изобретение поясняется далее с помощью примеров выполнения со ссылками на чертежи, на которых показано следующее:

Фиг.1 - схематичный вид контролируемой линии многофазной электрической сети энергоснабжения;

Фиг.2 - три электрические эквивалентные схемы контролируемой линии для пояснения принципа суперпозиции;

Фиг.3 - три диаграммы с характеристиками напряжения для пояснения принципа суперпозиции;

Фиг.4 - диаграмма с характеристикой напряжения для пояснения численного определения дельта-параметров;

Фиг.5 - две эквивалентные схемы контролируемой линии для пояснения функционирования скоростного алгоритма дистанционной защиты;

Фиг.6 - диаграмма характеристики напряжения при коротком замыкании в контролируемой линии;

Фиг.7 - диаграмма для пояснения динамической подстройки значения порога срабатывания;

Фиг.8 - три диаграммы с характеристиками тока при коротком замыкании в контролируемой линии для пояснения детектора скачков;

Фиг.9 - блок-схема для пояснения способа функционирования выбора шлейфа.

На фиг.1 показана линия 10 в остальном не показанной более подробно многофазной электрической сети энергоснабжения. Линия 10 на ее обоих концах А и В ограничена силовыми выключателями 11а и 11b, посредством которых в случае неисправности может осуществляться отключение соответствующих фазных проводников линии 10. С этой целью на концах А и В линии в местах 15а и 15b измерений предусмотрены электрические устройства 12а и 12b защиты. К ним на соответствующих местах 15а, 15b измерений посредством соответствующих схематично изображенных преобразователей 13а, 13b тока и преобразователей 14а, 14b напряжения подаются принимаемые сигналы тока и напряжения.

Устройства 12а, 12b защиты осуществляют посредством аналого-цифрового преобразования дискретизацию сигналов тока и напряжения и выполняют для полученных таким образом значений выборок тока и напряжения оценку неисправности, чтобы иметь возможность распознавать возможные короткие замыкания 16 на линии 10. При таком коротком замыкании 16 речь может идти о либо однополюсном коротком замыкании между фазным проводником и землей или о двух- или многополюсном коротком замыкании с участием нескольких фазных проводников. Если оценка неисправности дает короткое замыкание 16 в линии, то формируется сигнал срабатывания Saus, который подается на соответствующий силовой выключатель 11а, 11b, чтобы вызвать размыкание его переключающих контактов и таким образом отделить затронутый коротким замыканием 16 фазный проводник от остальной сети энергоснабжения.

Такая оценка неисправности на основе только получаемых на одном конце значений выборок тока и напряжения может обычно выполняться не для полной длины линии, так как определяемые на месте измерений, например, на месте 15а измерений на конце А линии значения выборок, в случае короткого замыкания, расположенного вблизи соответствующего другого конца линии, например, конца В линии, ввиду высокого импеданса линии, от места измерений до места неисправности могут регистрироваться лишь очень неточно. По этой причине в устройствах 12а, 12b защиты обычно устанавливают так называемые зоны контроля или защиты, которые указывают те длины линии, начиная от соответствующего места 15а, 15b измерений, которые устройством 12а или 12b защиты эффективно контролируются. На фиг.1 такая зона 17 контроля представлена схематично посредством штриховки контролируемой устройством 12а защиты части линии 10. Длина зоны контроля обычно задается в качестве параметра в соответствующем устройстве 12а, 12b защиты в процентах от длины линии; например, зона контроля может достигать 85% всей длины линии 10. Конец 18 соответствующей зоны 17 защиты обозначается как так называемый предел устойчивости.

На основе последующих чертежей будут пояснены только примеры выполнения для способа дистанционной защиты, выполняемого устройством 12а защиты на конце А линии, чтобы быстро распознавать короткое замыкание 16, возникающее в зоне 17 контроля, и выполнять отключение.

Поясняемый ниже быстродействующий способ дистанционной защиты использует для оценки неисправности на основе значений выборок тока и напряжения так называемые «дельта-значения», которые определяются по принципу суперпозиции, который прежде всего кратко поясняется далее.

Каждый линейный электрический контур тока может, согласно принципу суперпозиции, быть разложен на несколько эквивалентных контуров, причем все эквивалентные контуры должны иметь одинаковые пассивные топологии, которые также имеют исходный контур. Кроме того, рассматриваемая в электрическом смысле сумма всех активных элементов (источников и приемников энергии), разложенных по принципу суперпозиции контуров, должна соответствовать активным элементам реального выходного контура. На фиг.2 показана эквивалентная схема 20а линии 10 с коротким замыканием 16 по фиг.1 (на фиг.2 для соответствующих компонентов с фиг.1 использованы те же ссылочные позиции). Линия 10 запитывается от источников ES,A и ES,B напряжения с соответствующими предварительными импедансами ZS,A и ZS,B с обоих концов А, В линии. В месте 15а измерений могут быть сняты сигнал iA тока и сигнал uA напряжения. Короткое замыкание 16 имитируется посредством замыкания одного из переключателей. Импеданс ZL линии относится ко всей длине линии 10; соответствующим образом можно указать импеданс линии от места 15а измерения на конце А линии до места неисправности указать как a·ZL (здесь а - отнесенное ко всей длине линии удаление от конца А линии до места неисправности).

Эквивалентную схему 20а по фиг.2 можно разложить по принципу суперпозиции на эквивалентную схему 20b, которая отображает рабочее состояние линии 10 до возникновения короткого замыкания 16, и эквивалентную схему 20с, которая указывает изменения состояния линии 10, вызванные возникновением короткого замыкания 16.

Эквивалентная схема 20b включает в себя источники ES,A и ES,B напряжения. В месте, в котором в эквивалентной схеме 20а возникает короткое замыкание 16, приложено напряжение uk. В месте 15а измерений имеется напряжение up,A перед неисправностью и ток ip,A перед неисправностью.

Следующая эквивалентная схема 20с представляет ситуацию после изменения сетевой топологии. Полученные из этого контура параметры тока и напряжения называют дельта-параметрами Δif,А(n) и Δuf,А(n), так как они относятся к изменениям тока и напряжения, вызванным коротким замыканием. Эти дельта-параметры вызываются фиктивным источником -uk напряжения в месте неисправности, представляющим короткое замыкание 16.

При наложении (суперпозиции) эквивалентных схем 20b (ситуация перед коротким замыканием) и 20с (изменения, вызванные коротким замыканием) получается эквивалентная схема 20а.

Так как в действительности, ввиду отсутствия информации о расстоянии а до места неисправности, сетевая топология и ее компоненты не известны, то дельта-параметры невозможно определить, из вычисления сетевого контура. Но они могут быть определены путем формирования разности между параметрами ip,A и up,A перед неисправностью и параметрами iA и uA неисправности. При этом принимается, что параметры перед неисправностью отображают стабильное поведение сети.

Фиг.3 показывает взаимосвязь между параметрами iA и uA неисправности, параметрами ip,A и up,A перед неисправностью и дельта-параметрами Δif,А и Δuf,А еще раз в форме трех диаграмм 30а, 30b и 30с. При этом диаграмма 30а показывает временную характеристику напряжения uA, измеряемого реально на месте 15а измерений перед и после возникновения неисправности в момент времени t=0. Диаграмма 30b представляет ситуацию таким образом, как если бы никакой неисправности не было, относится, таким образом, только к характеристике параметров up,A перед неисправностью, в то время как показанная на диаграмме 30с характеристика дельта-напряжения Δuf,А относится исключительно к изменениям, вызванным коротким замыканием. При сложении характеристик параметров up,A перед неисправностью и дельта-параметров Δuf,А вновь получается характеристика реально регистрируемого на месте 15а измерений напряжения uA неисправности, поэтому можно вычислить соответствующие дельта-параметры путем формирования разности характеристик для напряжения uA и напряжения up,A перед неисправностью.

Способ действий при практическом вычислении дельта-параметров для тока и напряжения более подробно представлен на фиг.4. Фиг.4 показывает диаграмму 40, на которой сплошной линией показана характеристика фактически регистрируемого в месте 15а измерений напряжения uA. Можно видеть, что напряжение uA при начале короткого замыкания при t=0 скачкообразно спадает и затем проходит с соответственно более низкой амплитудой. Пунктирной линией нанесена после возникновения неисправности при t=0 - фиктивная - характеристика напряжения up,A перед неисправностью, которая получилась бы, если бы в момент t=0 не возникло короткое замыкание. Значение соответствующего напряжения up,A перед неисправностью можно определить посредством временного сдвига вдоль оси времени на полный период Т колебания (или кратное значение полного периода колебания), как указано стрелкой 31 на фиг.3. Следовательно, для напряжения перед неисправностью справедливо соотношение:

Практически, в устройстве 12а защиты (см. фиг.1), выполняющем оценку неисправности, должны быть сохранены регистрируемые значения выборок для длительности по меньшей мере одного полного периода колебаний, чтобы иметь возможность вычислить характеристику фиктивных параметров up,A перед неисправностью. Как, кроме того, можно видеть из фиг.3, можно определить характеристику дельта-напряжения Δuf,А - как показано другой стрелкой 32 - путем формирования разности согласно соотношению:

Между параметрами до неисправности и дельта-параметрами возникает еще одна математическая связь, а именно напряжение uk в месте неисправности, которое можно определить из обоих параметров. Этот фиктивный источник напряжения является решающим фактором для дистанционного определения неисправности:

И

причем, как пояснено выше, uA и iA являются измеряемыми, а Δuf,А и Δif,А - вычисленными параметрами.

Однако неизвестным параметром является импеданс aZL до места неисправности, который отображает точку короткого замыкания в сети. Чтобы определить, находится ли короткое замыкание на защищаемом участке (зона 17 контроля, см. фиг.1), нужно ввести устанавливаемое значение Zref для опорного местоположения 18, которое предпочтительно находится на конце зоны 17 контроля, которое, таким образом, определяет соответствующую зону контроля. Это устанавливаемое значение Zref может интегрироваться в вычисления таким образом, что определение местоположения неисправности возможно таким образом, что находящуюся в зоне контроля неисправность можно различить от таковой вне зоны контроля. Посредством устанавливаемого значения Zref можно, с одной стороны, в отношении напряжений перед неисправностью вычислить фиктивное опорное напряжение на конце установленной зоны контроля перед возникновением неисправности. С другой стороны, можно с применением устанавливаемого значения Zref и дельта-напряжений также определить фиктивное сравнительное напряжение в месте неисправности, которое имелось бы, если бы возникла неисправность на конце зоны контроля. Из анализа обоих вычисленных напряжений можно сделать следующие выводы:

- Если короткое замыкание имеет место на конце зоны контроля (aZL=Zref), то значения опорного напряжения и сравнительного напряжения (почти) совпадают.

- Если короткое замыкание имеет место в зоне контроля (aZL<Zref), то вычисленное из дельта-напряжений сравнительное напряжение больше, чем опорное напряжение.

- Если неисправность имеет место вне зоны контроля (aZL>Zref или aZL<0), то опорное напряжение больше, чем полученное из дельта-напряжений сравнительное напряжение.

Таким образом, дельта-параметры могут быть полезны при измерении расстояния. Чтобы в основывающемся на дельта-параметрах методе не иметь никакой временной задержки из-за применения временных окон для вычисления комплексных параметров, он реализуется во временной форме с мгновенными значениями. При этом преобразование параметров перед неисправностью и дельта-параметров в комплексную форму не требуется. Тем самым решение устройства защиты о наличии короткого замыкания ускоряется, так как не нужно ожидать, пока окно измерения будет заполнено измеренными значениями, и смогут вычисляться комплексные параметры. Аналогично вышеописанному способу действий, сначала определяются мгновенные опорные значения напряжения и мгновенные сравнительные значения напряжения. Это определение будет пояснено с помощью показанных на фиг.5 эквивалентных схем 50а и 50b.

Вычисление опорного напряжения uref может быть пояснено на основе эквивалентной схемы 50а на фиг.5. Эта эквивалентная схема отображает параметры перед неисправностью. Опорное напряжение uref определяется посредством следующего уравнения, относящегося к значениям выборок n:

причем импеданс Zref заменен на эквивалентную индуктивность Lref и сопротивление Rref. Кроме того, up=u(n-N) означает значение выборки напряжения перед неисправностью, которое появилось за одну длительность Т периода перед мгновенным значением u(n) выборки напряжения, и ip(n)=i(n-N) означает значение выборки тока перед неисправностью, которое появилось за одну длительность Т периода перед мгновенным значением i(n) выборки тока. Число значений выборок на длительность периода равно N. Индекс n соответствует номеру значения выборки после возникновения неисправности.

Для оценки неисправности нужно еще определить сравнительное напряжение uv, получаемое из дельта-параметров (то есть из вызванных коротким замыканием изменений) тока и напряжения в конце устанавливаемой посредством импеданса Zref зоны контроля. Это сравнительное напряжение uv можно вычислить посредством эквивалентной схемы 50b из фиг.5. При этом сначала должны быть определены дельта-параметры как разность из мгновенных значений выборок и соответствующих значений выборок перед неисправностью, то есть сохраненных значений выборок, которые были зарегистрированы за один период колебаний (или кратное ему значение) перед текущими значениями выборок. С помощью этих дельта-параметров Δuf и Δif получается сравнительное напряжение, относящееся к значениям n выборок:

Представленные уравнения для uref и uv позволяют сначала выполнить вычисление мгновенных значений, которые для оценки неисправности являются слишком неточными, так как они могут подвергаться влиянию ошибок измерения, выбросов или случайных колебаний. Поэтому мгновенные значения не являются надежной базой для оценки неисправности. По этой причине предлагается выполнять оценку на основе выпрямленных значений опорного напряжения uref и сравнительного напряжения uv. Выпрямленное опорное значение uref напряжения определяется следующим образом:

где

uref(n) - выпрямленное опорное значение напряжения;

uref(k) - мгновенное опорное значение напряжения для значения k выборки;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода;

k - индекс суммирования с накоплением.

Чтобы сократить вычисление и при этом повысить скорость способа, можно определять выпрямленное опорное напряжение в течение половины сетевого периода. Так как выпрямленное опорное напряжение остается постоянным перед возникновением неисправности, его измерительно-техническая регистрация не вызывает проблем.

Выпрямленное сравнительное напряжение UV соответственно определяется согласно следующему уравнению:

где

Uv(n) - выпрямленное сравнительное значение напряжения;

uv(k) - мгновенное сравнительное значение напряжения для значения k выборки;

n - номер значения выборки после возникновения неисправности;

N - число значений выборок на длительность периода;

k - индекс суммирования с накоплением.

Это означает, что способ при частоте выборки 1 кГц требует максимально 10 значений выборок, чтобы иметь возможность определять выпрямленное сравнительное напряжение UV. Решение относительно наличия короткого замыкания в линии может, следовательно, приниматься спустя максимум 10 значений выборок, благодаря чему достигается заметное повышение скорости.

На фиг.6 показан результат оценки неисправности для однополюсного короткого замыкания внутри зоны контроля. На фиг.6 на диаграмме 60 представлены временные характеристики фактически измеренного в месте 15а измерений (см. фиг.1) напряжения u, выпрямленного опорного напряжения Uref и выпрямленного сравнительного напряжения Uv. До возникновения короткого замыкания при t=0 значения для выпрямленного опорного напряжения Uref и выпрямленного сравнительного напряжения Uv совпадают, то есть разница между обоими лежит ниже значения порога срабатывания. Напротив, непосредственно перед возникновением короткого замыкания в месте 61 можно видеть повышение выпрямленного сравнительного напряжения Uv, в то время как выпрямленное опорное напряжение Uref, так как оно сформировано на основе параметров перед неисправностью, продолжает оставаться постоянным. Таким образом, в месте 61 разность выпрямленного опорного напряжения и выпрямленного сравнительного напряжения в первый раз превышает значение порога срабатывания, и формируется соответствующий сигнал неисправности для отключения линии.

На основе характеристики выпрямленного сравнительного напряжения Uv на фиг.6 можно видеть, что всегда требуется некоторое количество n значений выборок, чтобы при коротких замыканиях внутри зоны контроля превысить значение порога срабатывания. Однако в примере по фиг.6 решение может приниматься внутри временного интервала менее половины длительности периода.

Суммируя, можно установить, что представленный выше способ для распознавания короткого замыкания в линии электрической сети энергоснабжения предпочтительно использует оценку неисправности на основе выпрямленных значений мгновенного опорного напряжения uref и сравнительного напряжения uv. Применение выпрямленных значений имеет по сравнению с мгновенными значениями преимущество, состоящее в том, что возможно существенно более надежное решение относительно короткого замыкания внутри контролируемой зоны, так как выбросы отдельных значений выборок не ведут немедленно к возможному ложному срабатыванию. К тому же кратковременные ошибки измерения после возникновения внешнего, то есть находящегося вне зоны контроля короткого замыкания, не приводят непосредственно к ложному срабатыванию и поэтому имеют меньшее влияние на режим оценивания неисправности. Кроме того, может гарантироваться, что и при неточном задании параметров линии на точность оценки неисправности не оказывается сильного влияния.

Для стабилизации решения оценки неисправности дополнительно может использоваться представленная на фиг.7 характеристика значения порога срабатывания. Для этого фиг.7 показывает так называемую характеристику 70 срабатывания, которая задает ход изменения значения порога срабатывания (который на характеристике 70 срабатывания указывается положительной составляющей 71а и отрицательной составляющей 71b) при возрастающем количестве n применяемых для вычисления выпрямленного сравнительного напряжения Uv значений выборок тока и напряжения. Заштрихованная область 72а выше положительной составляющей 71а значения порога срабатывания дает область для разности выпрямленного опорного напряжения Uref и выпрямленного сравнительного напряжения Uv, внутри которой принимается решение о внутреннем коротком замыкании в пределах зоны контроля, в то время как область 72b ниже отрицательной составляющей 71b значения порога срабатывания указывает на находящееся вне зоны контроля внешнее короткое замыкание. Внутри промежуточной области, лежащей между этими обеими областями 72а и 72b, не может, однако, приниматься однозначное решение. Можно видеть, что при увеличении количества n применяемых для оценки неисправности значений выборок тока и напряжения промежуточная область 73, внутри которой решение невозможно, ступенчато уменьшается, так как с увеличением количества значений выборок значение выпрямленного сравнительного напряжения Uv может быть определено все более надежно, и, тем самым, надежность оценки неисправности в целом повышается.

На фиг.7 показаны три графика 74а-74с разности выпрямленного сравнительного напряжения Uv и выпрямленного опорного напряжения Uref. График 74а принимает ранее отрицательные значения и приводит в итоге к распознаванию внешней неисправности в месте 75а. График 74b принимает сразу после возникновения неисправности положительные решения и приводит уже рано в месте 75b к распознаванию внутреннего короткого замыкания на контролируемой линии. График 74с, напротив, сначала принимает отрицательные значения, но затем становится положительным и приводит наконец в месте 75с к распознаванию внутреннего короткого замыкания на контролируемой линии.

Наряду с количеством применяемых для оценки неисправности значений выборок, также другие факторы могут определять характеристику (график) значения порога срабатывания (на фиг.7 не показано). Например, область 73, внутри которой не может быть принято решение, может получаться тем большей, чем больше имеется помех в форме, например, высших гармоник или частотных отклонений относительно регистрируемых токов и напряжений.

Описываемый способ может, за счет предшествующих оценке неисправности мероприятий, выполняться более ресурсосберегающим образом, так что доля вычислительной мощности, которую должно применять устройство обработки данных (CPU, DSP) устройства защиты для выполнения оценивания неисправности, может быть снижена. Для этого может, например, быть предусмотрено, что сначала только на основе более простых критериев выполняется проверка того, имеется ли вообще короткое замыкание в линии. Для этого используется так называемый детектор скачков, который анализирует токи фаз для соответствующих фазных проводников или выведенные из токов фаз значения (например, основанные на токах фаз дельта-параметры, при необходимости, в выпрямленной форме) на наличие заметных скачков тока и выдает первый сигнал возбуждения, если был распознан такой скачок тока, то есть изменение тока, которое превышает пороговое значение тока.

Фиг.8 показывает в этой связи характеристику тока Iϕψ, зарегистрированную детектором скачков; индексы ϕ и ψ служат при этом обозначениями отдельных рассматриваемых фазных проводников (фаза 1, фаза 2, фаза 3) 3-фазной линии. Так на первой диаграмме 81 сплошной линией представлена характеристика тока I1-2 фаз для фазных проводников «фаза 1» и «фаза 2». На диаграмме 82 сплошной линией представлена характеристика тока I2-3 фаз для фазных проводников «фаза 2» и «фаза 3», и, наконец, на диаграмме 83 сплошной линией представлена характеристика тока I3-1 фаз для фазных проводников «фаза 3» и «фаза 1». Пунктирной линией на отдельных диаграммах 81, 82, 83 показаны, соответственно, относящиеся к ним пороговые значения скачка I1-2*, I2-3*, I3-1*, причем в примере выполнения согласно фиг.8 эти пороговые значения скачков для стабилизации распознавания скачков динамически подстраиваются, например, к величине протекающего нулевого тока.

В примере выполнения согласно фиг.8 должно приниматься, что в фазе 1 произошло однополюсное короткое замыкание. Соответственно, характеристики тока I1-2 на диаграмме 81 и I3-1 на диаграмме 83 в местах 84 и 85 показывают нарушение порогового значения, в то время как диаграмма 82 характеристики тока I2-3 явно остается ниже характеристики порогового скачка I2-3*. Детектор скачков в этом примере с нарушением соответствующего порогового значения скачка в местах 84 и 85 выдает первый сигнал возбуждения, который, например, может использоваться как запускающий сигнал для последующей оценки неисправности значений выборок тока и напряжения. Пока никакой первый сигнал возбуждения не формируется детектором скачков, в соответствии с этим не происходит никакой оценки значений выборок тока и напряжения в отношении короткого замыкания в линии, так что посредством предварительного включения детектора скачков могут экономиться значительные вычислительные ресурсы CPU устройства защиты.

Другая возможность экономии вычислительной мощности при оценке неисправности состоит в том, что при наличии первого сигнала возбуждения проводится распознавание шлейфа, с помощью которого может распознаваться соответствующий шлейф (например, фаза 1 - земля или фаза 2 - фаза 3), затронутый коротким замыканием, и оценка значений выборок тока и напряжения затем проводится исключительно для распознанного шлейфа. Это поясняется более подробно со ссылкой на фиг.9.

Фиг.9 показывает для этого блок-схему способа функционирования для функции распознавания шлейфа. Выработанный детектором скачков первый сигнал возбуждения San1 подается на первый блок 91 обработки. Первый сигнал возбуждения San1 служит тем самым как триггер для запуска распознавания шлейфа и обуславливает то, что на первом блоке 91 обработки дополнительно считываются приложенные значения u и i выборки. Затем в первом блоке 91 обработки вычисляются выпрямленные дельта-параметры токов и напряжений и подаются на второй блок 92 обработки. Второй блок 92 обработки выполняет различные сравнения с пороговыми значениями в отношении полученных из значений выборок тока дельта-параметров.

Результат этого опрашивания подается на третий блок 93 обработки, который на основе дополнительных проверок в отношении дельта-параметров, полученных из значений выборок тока и напряжения, проверяет результаты, полученные во втором блоке 92 обработки. Если при проверке в третьем блоке 93 обработки могут быть подтверждены результаты из второго блока 92 обработки, то третий блок 93 обработки выдает второй сигнал возбуждения San2, который указывает неисправный шлейф, в котором имеет место короткое замыкание.

Для проверки на однополюсное короткое замыкание фаза-земля, во втором блоке 92 обработки может проверяться следующее условие (индексы φ, ψ и γ служат при этом в качестве обозначений трех фаз линии):

Здесь I30 обозначает нулевое напряжение системы, k с различными индексами обозначает параметр сравнения. Если вышеназванное условие выполняется, то на третий блок 93 обработки выдается соответствующий промежуточный сигнал. Третий блок 93 обработки выполняет затем проверку результата второго блока 92 обработки, при этом проверяется, например, следующее условие:

Если это условие выполняется, то третий блок 93 обработки подтверждает результат второго блока 92 обработки и выдает второй сигнал возбуждения San2, что шлейф «фаза ψ - земля» указывается как имеющий короткое замыкание.

При выборе шлейфа в блоке 92 может также проверяться следующее условие:

Если это условие выполняется, то блок 92 обработки выдает соответствующий промежуточный сигнал на блок 93 обработки. Последний выполняет проверку на основе следующего условия:

Если оно выполняется, то с третьего блока 93 обработки выдается второй сигнал возбуждения San2, который указывает шлейф «фаза ψ - фаза φ» как имеющий неисправность.

В третьем блоке 93 обработки, кроме того, проверяется следующее условие:

Если это условие выполняется, то выдается второй сигнал возбуждения San2, который указывает шлейф «фаза ψ - земля» как имеющий неисправность.

Кроме того, третий блок 93 обработки выполняет следующую проверку:

Если это условие выполняется, то выдается второй сигнал возбуждения San2, который указывает шлейф «фаза φ - земля» как имеющий неисправность.

Посредством проверок, выполняемых при выборе фазы, может очень надежно указываться шлейф, фактически имеющий неисправность, так что оценка значений выборок тока и напряжения должна выполняться только в отношении имеющего неисправность шлейфа, указанного при выборе шлейфа.

Наконец, может быть предусмотрено, что параллельно с описанной оценкой неисправности также может выполняться «классический» способ дистанционной защиты, который на основе комплексных значений тока и напряжения определяет импедансы короткого замыкания и сравнивает их с заданными областями срабатывания. Тот алгоритм, который сначала распознал внутреннее короткое замыкание в зоне контроля, выдает соответствующий сигнал неисправности, который преобразуется соответствующим устройством защиты в сигнал срабатывания для срабатывания соответствующего силового выключателя. Таким образом, может гарантироваться, что однозначно определенные короткие замыкания, при которых выпрямленное опорное напряжение и выпрямленное сравнительное напряжение сильно отличаются друг от друга, с помощью представленной здесь оценки неисправности приводят к быстрому срабатыванию, в то время как при менее однозначно определенных коротких замыкания, например, в непосредственной близости от предела устойчивости, можно полагаться на надежность порой более медленного классического способа дистанционной защиты.

1. Способ для распознавания короткого замыкания (16) в линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью, при котором выполняются следующие этапы:
- прием значений выборок тока и напряжения в месте (15а) измерений на конце (А) контролируемой линии (10) посредством электрического устройства (12а) защиты; и
- формирование первого сигнала неисправности, указывающего на короткое замыкание (16) в линии (10), если выполненная электрическим устройством (12а) защиты оценка неисправности для значений выборок тока и напряжения указывает на короткое замыкание (16), имеющееся в линии (10),
отличающийся тем, что
- для оценки неисправности для значений выборок тока и напряжения выполняются следующие этапы:
- вычисление мгновенных опорных значений напряжения для опорного местоположения (18) на линии (10) из принятых перед наступлением короткого замыкания (16) мгновенных значений выборок тока и напряжения;
- вычисление мгновенных сравнительных значений напряжения для опорного местоположения (18) на линии (10) из принятых перед наступлением короткого замыкания (16) мгновенных значений выборок тока и напряжения и принятых во время короткого замыкания (16) мгновенных значений выборок тока и напряжения;
- вычисление выпрямленного значения опорного напряжения из следующих друг за другом мгновенных опорных значений напряжения и выпрямленного сравнительного значения напряжения из следующих друг за другом мгновенных сравнительных значений напряжения;
- сравнение выпрямленного опорного значения напряжения с выпрямленным сравнительным значением напряжения; и
- формирование первого сигнала неисправности, если разность между выпрямленным сравнительным значением напряжения и выпрямленным опорным значением напряжения превышает пороговое значение срабатывания.

2. Способ по п.1, отличающийся тем, что
- вычисление мгновенных опорных значений напряжения осуществляется согласно следующему уравнению:

где
uref(n) - мгновенное опорное значение напряжения;
up(n)=u(n-N) - значение выборки напряжения перед неисправностью на одну длительность периода перед мгновенным значением u(n) выборки напряжения;
ip(n)=i(n-N) - значение выборки тока перед неисправностью на одну длительность периода перед мгновенным значением i(n) выборки тока;
Т - длительность периода;
N - число значений выборок на длительность периода;
n - номер значения выборки после возникновения неисправности;
Lref - индуктивность линии от места измерений до опорного местоположения;
Rref - сопротивление линии от места измерений до опорного местоположения.

3. Способ по п.1, отличающийся тем, что
- вычисление мгновенных сравнительных значений напряжения выполняется согласно следующему уравнению:

где
uv(n) - мгновенное сравнительное значение напряжения;
Δuf(n) - мгновенное дельта-значение напряжения после возникновения неисправности;
Δif(n) - мгновенное дельта-значение тока после возникновения неисправности;
Lref - индуктивность линии от места измерений до опорного местоположения;
Rref - сопротивление линии от места измерений до опорного местоположения;
Т - длительность периода;
n - номер значения выборки после возникновения неисправности.

4. Способ по п.3, отличающийся тем, что
- мгновенные дельта-значения напряжения определяются согласно следующему уравнению:

где
Δuf(n) - мгновенное дельта-значение напряжения после возникновения неисправности;
u(n) - мгновенное значение выборки напряжения после возникновения неисправности;
up(n) = u(n-N) - значение выборки напряжения перед неисправностью на одну длительность периода перед мгновенным значением u(n) выборки напряжения;
n - номер значения выборки после возникновения неисправности;
N - число значений выборок на длительность периода;
и
- мгновенные дельта-значения тока определяются согласно следующему уравнению:

где
Δif(n) - мгновенное дельта-значение тока после возникновения неисправности;
i(n) - мгновенное значение выборки тока после возникновения неисправности;
ip(n)=i(n-N) - значение выборки тока перед неисправностью на одну длительность периода перед мгновенным значением i(n) выборки тока;
n - номер значения выборки после возникновения неисправности;
N - число значений выборок на длительность периода.

5. Способ по п.1, отличающийся тем, что
- вычисление выпрямленного опорного значения напряжения осуществляется согласно следующему уравнению:

где
uref(n) - выпрямленное опорное значение напряжения;
uref(k) - мгновенное опорное значение напряжения для значения k выборки;
n - номер значения выборки после возникновения неисправности;
N - число значений выборок на длительность периода;
k - индекс суммирования с накоплением;
и
- вычисление выпрямленного сравнительного значения напряжения осуществляется согласно следующему уравнению:

где
uv(n) - выпрямленное сравнительное значение напряжения;
uv(k) - мгновенное сравнительное значение напряжения для значения k выборки;
n - номер значения выборки после возникновения неисправности;
N - число значений выборок на длительность периода;
k - индекс суммирования с накоплением.

6. Способ по п.1, отличающийся тем, что
- в качестве опорного местоположения (18) применяется конец контролируемой устройством (12а) защиты зоны (17) контроля в линии (10).

7. Способ по п.1, отличающийся тем, что
- устройство (12а) защиты распознает начало короткого замыкания (16), если принимаемые значения выборок тока имеют скачок тока, который превышает пороговое значение скачка;
- формируется первый сигнал возбуждения, когда устройство (12а) защиты распознало начало короткого замыкания (16); и
- устройство (12а) защиты только после наличия первого сигнала возбуждения начинает оценку неисправности значений выборок тока и напряжения.

8. Способ по п.7, отличающийся тем, что
- устройство (12а) защиты при наличии первого сигнала возбуждения сначала выполняет анализ значений выборок тока и напряжения в том отношении, в каком фазном проводнике линии (10) возникает короткое замыкание (16),
- формируется второй сигнал возбуждения, который указывает по меньшей мере один затронутый коротким замыканием (16) фазный проводник; и
- устройство (12а) защиты выполняет оценку неисправности только в отношении по меньшей мере одного фазного проводника, указанного вторым сигналом возбуждения.

9. Способ по п.1, отличающийся тем, что
- пороговое значение срабатывания динамически устанавливается таким образом, что при возрастающем количестве значений выборок тока и напряжения, используемых для вычисления выпрямленного сравнительного значения, пороговое значение срабатывания снижается по меньшей мере ступенями.

10. Способ по любому из пп.1-9, отличающийся тем, что
- мгновенные значения выборок тока и напряжения также применяются для того, чтобы вычислять комплексное значение импеданса контролируемой устройством (12а) защиты линии (10), и
- устройством (12а) защиты формируется второй сигнал неисправности, указывающий на короткое замыкание (16) в линии (10), когда комплексное значение импеданса лежит внутри заданной области срабатывания в комплексной плоскости.

11. Способ по п.10, отличающийся тем, что
- устройство (12а) защиты формирует сигнал срабатывания для срабатывания силового выключателя (11а), ограничивающего линию (10), как только имеется первый или второй сигнал неисправности.

12. Устройство (12а) защиты для контроля линии (10) многофазной электрической сети энергоснабжения с заземленной нейтралью, в отношении коротких замыканий (16), возникающих в линии (10),
отличающееся тем, что
- устройство (12а) защиты выполнено с возможностью осуществления способа согласно любому из пп.1-11.



 

Похожие патенты:

Изобретение относится к контролю электрических параметров и может быть применено в авиационной технике. Устройство состоит из основного блока и универсального соединителя.

Изобретение относится к области электроэнергетики и позволяет упростить процесс диагностирования технического состояния однофазных высоковольтных трансформаторов напряжения.

Изобретение относится к электрическим испытаниям электрооборудования на восприимчивость к электромагнитному воздействию. Способ испытаний микропроцессорной системы управления двигателем автотранспортного средства на восприимчивость к электромагнитному воздействию, в котором испытуемую систему управления в составе транспортного средства подвергают импульсному воздействию электромагнитного излучения с помощью генератора грозового разряда.

Изобретение относится к области электроизмерительной техники, в частности к автоматизированным системам контроля электрического сопротивления и прочности изоляции, и может быть использовано при контроле сопротивления изоляции электрических цепей электро- и радиотехнических изделий.

Использование: изобретение относится к технике высоких напряжений, в частности к диагностике высоковольтных аппаратов по параметрам электрических шумов, вызванных частичными разрядами.

Изобретение относится к электроэнергетике и может быть использовано для мониторинга функционирования автоматических регуляторов возбуждения (АРВ) и систем возбуждения синхронных генераторов.

Изобретение относится к области электроизмерительной техники. Техническим результатом является построение устройства автоматизированного управления элементами мостового выпрямителя, как диодного, так и тиристорного мостового выпрямителя, исключающего влияние неисправностей типа «обрыв» и «пробой» полупроводниковых элементов двухдиагонального моста на работоспособность мостового выпрямителя, без изменения мощности, выделяемой на нагрузку.

Изобретение относится к области высоковольтной электротехники и может найти применение при проведении предусмотренных стандартами типовых испытаний силовых трансформаторов на стойкость к токам короткого замыкания (КЗ).

Изобретение относится к технике испытаний электронных компонентов в полосковых линиях передачи в СВЧ диапазоне с помощью векторного анализа цепей компонентов. Устройство для испытаний электронных компонентов в полосковом тракте, содержащее установленные на основании неподвижную стойку и подвижную по его продольной оси стойку, в которых закреплены коаксиально-полосковые переходы, блок установки измерительного или калибровочного узла с испытываемым электронным компонентом, отличающееся тем, что блок установки измерительного или калибровочного узла с испытываемым электронным компонентом выполнен в виде размещенной между стойками, подвижной вдоль оси основания каретки с площадкой для установки этого узла, а стойки снабжены микровинтами для позиционирования и регулирования силы прижатия выходов центральных проводников коаксиально-полосковых переходов к микрополосковым проводникам измерительного или калибровочного узла.

Изобретение относится к системе автоматизации электрических железных дорог, а именно к способу управления автоматическим повторным включением (АПВ) выключателя фидера с контролем короткого замыкания в отключенной контактной сети.

Изобретение относится к устройствам автоматизации фидера контактной сети переменного тока железных дорог. Технический результат: повышение надежности определения устойчивого короткого замыкания на двухпутных участках при аварийном отключении контактной сети переменного тока Сущность: устройство содержит сигнальное устройство, три выключателя с блок-контактами, трансформатор напряжения, два реле напряжения. Первичная обмотка трансформатора одним концом подключена к контактной сети, а вторым концом - к рельсу. К вторичной обмотке трансформатора через размыкающий блок-контакт первого выключателя подключена катушка первого реле напряжения. Сигнальное устройство одним концом подключено к -110 В оперативного напряжения, а другим концом - к первому выводу замыкающего контакта первого реле напряжения. Второе реле напряжения имеет повышенную уставку срабатывания. Его катушка подключена параллельно катушке первого реле напряжения, а замыкающий контакт первым выводом соединен с первым выводом замыкающего контакта первого реле напряжения, а вторым выводом соединен с +110 В оперативного напряжения через замыкающий блок-контакт третьего выключателя. Размыкающий блок-контакт третьего выключателя одним концом соединен со вторым выводом замыкающего контакта первого реле напряжения, а вторым концом соединен с +110 В оперативного напряжения. 2 ил.

Изобретение относится к области контрольно-измерительной техники, в частности - к способам и устройствам контроля качества электрических цепей (внутреннего электромонтажа) сложных технических изделий, включая изделия вооружения, военной и специальной техники. Устройство содержит компьютер, а также измеритель параметров электрических цепей и низковольтный коммутатор, включающий две коммутационные матрицы при контроле электрических цепей без активных элементов, или измеритель параметров электрических цепей, программноуправляемый источник тестовых воздействий и низковольтный коммутатор, включающий четыре коммутационные матрицы - при контроле электрических цепей с активными элементами. Также дополнительно введены высоковольтный измерительный прибор, высоковольтный коммутатор, технологический жгут для подключения к контактам электрических цепей объекта контроля и высоковольтный технологический жгут для подключения к контактам высоковольтных электрических цепей объекта контроля. При этом входы и выходы компьютера через интерфейсную магистраль подключены к управляющим входам источника тестовых воздействий, измерителя параметров электрических цепей, низковольтного коммутатора, высоковольтного измерительного прибора и высоковольтного коммутатора. Кодовые выходы измерителя параметров электрических цепей и высоковольтного измерительного прибора через интерфейсную магистраль подключены к компьютеру. Вход и корпус измерителя параметров электрических цепей подключены к общим точкам первой и второй коммутационных матриц низковольтного коммутатора. Выход и корпус источника тестовых воздействий при контроле электрических цепей с активными элементами подключены к общим точкам третьей и четвертой коммутационных матриц низковольтного коммутатора. Выход и вход высоковольтного измерительного прибора подключены к общим точкам первой и второй коммутационной матрицы высоковольтного коммутатора. К контактам коммутационных матриц низковольтного коммутатора подключен технологический жгут. К контактам коммутационных матриц высоковольтного коммутатора подключен высоковольтный технологический жгут. Технический результат заключается в упрощении контроля электрических цепей. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе. Коммутатор содержит три входные цепи, четыре выходные цепи, электромагнитные реле, содержащие контакты и обмотки управления, и входы управления, связанные с обмотками управления, два резистора R1 и R2, диод. Реле объединены в две группы. Цепи управления каждой группы реле объединены между собой и соединены с входами управления реле. При этом первая входная цепь предназначена для подключения к шине питания «плюс» изделия и соединена с первым перекидным контактом (ПК) первой контактной группы (ПКГ). Вторая входная цепь предназначена для подключения к шине питания «минус» изделия и соединена со вторым ПК ПКГ. Третья входная цепь предназначена для подключения к корпусу изделия и соединена с третьими ПК ПКГ и второй контактной группы (ВКГ). Первая выходная цепь предназначена для подключения первого вывода измерительного прибора и соединена с первым нормально замкнутым контактом (НЗК) ВКГ. Вторая выходная цепь предназначена для подключения второго вывода измерительного прибора и соединена со вторым НЗК ВКГ. Первый НЗК ПКГ соединен с первым ПК ВКГ. Второй НЗК ПКГ соединен со вторым ПК ВКГ. Первые нормально разомкнутые контакты (НРК) ПКГ и ВКГ соединены с одним выводом первого резистора R1. Вторые НРК ПКГ и ВКГ соединены с одним выводом второго резистора R2. Другие выводы упомянутых резисторов соединены с четвертыми ПК ПКГ и ВКГ. Третий НРК ПКГ и четвертый НРК ВКГ соединены с третьей выходной цепью, предназначенной для подключения первого вывода второго измерительного прибора. Третий НРК ВКГ и четвертый НРК ПКГ соединены с четвертой выходной цепью, предназначенной для подключения второго вывода второго измерительного прибора. Катод диода соединен с первой выходной цепью, анод диода соединен со второй выходной цепью. Технический результат заключается в повышении производительности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области технологических устройств и может быть использовано при контроле цепей питания электротехнической системы. Технический результат: увеличение производительности, исключение влияния помех и ошибок подключения измерительного прибора на надежность собираемой электротехнической системы изделия, обеспечение объективности и достоверности контроля и выявление ошибок или дефектов в собираемой электротехнической системе изделия, в том числе - идентификацию короткого замыкания любой из шин питания электротехнической системы изделия на его корпус. Сущность: устройство содержит три входные цепи (для подключения к шинам питания и к корпусу изделия) и четыре выходные цепи для подключения измерительных приборов (омметра и мегомметра), переключатель на три положения и четыре направления, диод и два низкоомных резистора R1 и R2 с разными номиналами по сопротивлению и существенно меньшими эквивалентного сопротивления нагрузки Rh на шины питания (R1≠2)<Rн и электрические связи между элементами устройства, обеспечивающие безопасное проведение контроля качества цепей питания электротехнической системы изделия в процессе ее сборки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники и может быть использовано в релейной защите и автоматике. Технический результат - повышение чувствительности при обработке электрической величины с высокой частотой измерений и возможность выявления и корректировки измерения электрической величины с выбросами. В способе измеряют электрическую величину в равномерно фиксированные моменты времени, настраивают адаптивный фильтр на подавление электрической величины, формируют выходной сигнал настроенного фильтра путем обработки последующих после настройки измерений электрической величины и подают его на вход исполнительного реле и по возврату исполнительного реле фиксируют начало нового и окончание предыдущего интервалов однородности электрической величины. Из измерений электрической величины составляют равномерно сдвинутые во времени децимированные сигналы с фиксированным шагом децимации так, чтобы наложение всех децимированных сигналов на одну временную ось давала измерения электрической величины. Настраивают адаптивный фильтр на подавление одного из децимированных сигналов, формируют копии настроенного адаптивного фильтра по числу децимированных сигналов, определяют выходные сигналы копий фильтров при обработке своих децимированных сигналов и подают их на исполнительное реле. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области технологических устройств и может быть использовано в составе автоматизированной измерительной системы совместно с измерительными приборами при контроле цепей питания электротехнической системы изделия в процессе ее сборки на соответствие техническим требованиям. Данное изобретение позволяет увеличить производительность за счет уменьшения числа контрольных измерений, исключения влияния помех и ошибок подключения измерительного прибора на надежность собираемой электротехнической системы изделия, обеспечения объективности и достоверности контроля и выявление ошибок или дефектов в собираемой электротехнической системе изделия. Предложенное устройство содержит три входные цепи для подключения к шинам питания и к корпусу изделия и две выходные цепи для подключения измерительного прибора, две группы электромагнитных реле, диод и два низкоомных резистора R1 и R2, соответствующим образом соединенных между собой. При этом указанные резисторы могут быть выполнены с разными номиналами по сопротивлению и быть существенно меньше эквивалентного сопротивления нагрузки Rн на шины питания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электроники и может быть использовано в системах управления ракетоносителя, в системах управления разгонным блоком для контроля прохождения команд в коммутационных системах. Техническим результатом является повышение надежности работы коммутирующего устройства. Устройство содержит первый и второй КМДП-ключи, пороговый элемент, D-триггер, диод, токозадающий резистор, вторичный источник питания, развязывающий диод. 1 ил.

Изобретение относится к обнаружению короткого замыкания на землю в электрических сетях. Сущность: устройство содержит средство (70) для определения значения нейтральной полной проводимости в трехфазной электрической линии (30) и средство (70) для обнаружения короткого замыкания на землю в трехфазной электрической линии (30) на основе определенного значения нейтральной полной проводимости и значений одного или более заранее заданных параметров. Средство (70) содержит средство для преобразования определенного значения нейтральной полной проводимости из области нейтральной полной проводимости в область остаточного тока, средство для сравнения в области остаточного тока преобразованного значения нейтральной полной проводимости с одним или более значениями заранее заданных параметров и средство для обнаружения короткого замыкания на землю на основе сравнения. 2 н. и 14 з.п. ф-лы, 12 ил.

Изобретение относится к области измерения электрических величин и может быть использовано при диагностике возникновения дефектов электрической изоляции. Устройство для обнаружения частичных разрядов содержит высоковольтный источник питания постоянного тока, параллельно которому подключен высоковольтный конденсатор через одно из положений коммутационного ключа, через другое положение которого к конденсатору подключен испытуемый объект, к которому подключен датчик. Осциллограф через экранированный провод связан с датчиком. Источник питания постоянного тока, конденсатор и датчик соединены в общую точку и заземлены. Технический результат: устройство для обнаружения частичных разрядов позволяет диагностировать машины постоянного тока. Технический результат - возможность обнаружения сигналов частичных разрядов в изоляции электродвигателей постоянного тока. 1 ил.

Изобретение относится к области электротехники и может быть использовано в противоаварийной автоматике для автоматического ограничения повышения напряжения (АОПН) высоковольтного оборудования. Техническим результатом является повышение эффективности эксплуатации высоковольтного оборудования за счет более точной оценки остаточного ресурса изоляции высоковольтного оборудования и повышения гибкости осуществления технических мероприятий по ликвидации перенапряжения. В способе автоматического ограничения повышения напряжения высоковольтного оборудования измеряют электрическое напряжение, делят диапазон возможных перенапряжений на ступени и на каждой из них осуществляют соответствующие технические мероприятия, направленные на ликвидацию перенапряжения. Контролируют признак отказа технических мероприятий ступени и при его появлении приводят в действие технические мероприятия следующей ступени. Оценивают остаточный ресурс изоляции высоковольтного оборудования путем уменьшения его величины с интенсивностью расхода, соответствующей текущему уровню перенапряжения, и формируют упомянутый признак отказа при понижении остаточного ресурса изоляции до пороговой величины, равной произведению времени, отведенного для выполнения технических мероприятий следующих ступеней, и интенсивности расхода ресурса изоляции высоковольтного оборудования, соответствующей текущему уровню перенапряжения. 3 ил.
Наверх