Геотермальное устройство

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения производственных и жилых зданий. Геотермальное устройство включает теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне. Свободное пространство геотермальной скважины заполнено наполнителем с высокой дренирующей способностью, грунтовый теплообменник содержит, по меньшей мере, шесть подъемных труб, удаленных от опускной трубы на расстояние не меньше их диаметра, причем трубы грунтового теплообменника сообщены между собой посредством оголовка, при этом опускная труба выполнена с возможностью равномерного подвода к ее внешней поверхности дренирующей жидкости и наполнителя геотермальной скважины с возможностью его увлажнения. Система увлажнения наполнителя геотермальной скважины включает накопительную камеру, расположенную ниже оголовка. Технический результат выражается в повышении теплопроизводительности грунтового теплообменника и расширении области применения. 2 з.п. ф-лы, 3 ил.

 

Изобретение относится к области строительства, а именно к устройствам теплообмена, и может быть использовано в системах теплоснабжения производственных и жилых зданий.

Известен вертикальный грунтовый теплообменник, имеющий U-образную форму, представляющий собой две параллельные трубы, соединенные в нижней части (Васильев Г.П. Монография: Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев земли / Г.П. Васильев. ISBN: 5-94691-202-Х. - М.: Изд-во «Граница», 2006. - 173 с.).

Недостатком данного технического решения является высокая трудоемкость и материалоемкость из-за большой протяженности скважин в диапазоне 60-90 метров.

Известен также вертикальный грунтовый теплообменник коаксиального типа сложной конфигурации (Васильев Г.П. Монография: Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев земли / Г.П. Васильев. ISBN: 5-94691-202-Х. - М.: Изд-во «Граница», 2006. - 173 с.).

Недостаток данного технического решения состоит в низкой эффективности использования поверхности теплообмена скважины вследствие особенности ее конструкции, при которой в теплообмене участвует только половина поверхности внешнего контура, при этом центральный ствол исключен из процесса теплообмена.

В качестве ближайшего аналога принят тепловой аккумулятор, содержащий теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне (см. патент РФ №2359183, МПК F24J 3/08, дата публикации 20.06.2009).

Недостатками ближайшего аналога являются низкая эффективность теплообмена с грунтовым массивом вследствие малой поверхности теплообмена опускной трубы и негарантированного контакта с ним по глубине скважины, что непредсказуемо снижает подводимый тепловой поток, увеличивает процесс регенерации грунта во время эксплуатации, а также повышенная энергоемкость из-за необходимости непрерывной работы теплового насоса, кроме того, отсутствует возможность проведения эффективного процесса регенерации и температурного восстановления поля за счет бросовых низкопотенциальных теплоносителей (например, сточные воды системы горячего водоснабжения и т.д.).

Задача, на решение которой направлено заявляемое изобретение, состоит в разработке конструкции грунтового теплообменника с повышенной теплопроизводительностью.

Технический результат, достигаемый при решении поставленной задачи, выражается в повышении теплопроизводительности грунтового теплообменника вследствие следующих факторов:

- максимальное использование поверхности грунтового теплообменника за счет включения в процесс теплообмена опускной трубы и подъемных труб цилиндрического контура, а также увеличения количества и площади внешней поверхности подъемных труб;

- увлажнение наполнителя геотермальной скважины увеличивает его коэффициент теплопроводности и позволяет повысить эффективность отбора теплоты у грунта;

- возможность подвода увлажненного наполнителя к внешней поверхности труб обеспечивает интенсификацию процесса теплообмена в геотермальной скважине.

Также можно указать расширение области применения вследствие следующих факторов:

- возможность при необходимости более эффективного восстановления энергетического потенциала грунта за счет использования низкопотенциальных сбросных теплоносителей без включения в работу теплового насоса;

- повышение эффективности работы грунтовых теплообменников в условиях низкой естественной влажности глубинных грунтов и нарушении контактов теплообменных поверхностей геотермальной скважины с грунтом (вследствие деформаций, просадок и т.д.) благодаря возможности регулирования степени увлажнения наполнителя и его естественной деформации.

Поставленная задача решается тем, что в геотермальном устройстве, включающем теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне, свободное пространство геотермальной скважины заполнено наполнителем с высокой дренирующей способностью, например крупнозернистым песком, грунтовый теплообменник содержит, по меньшей мере, шесть подъемных труб, удаленных от опускной трубы на расстояние не меньше их диаметра, причем трубы грунтового теплообменника сообщены между собой посредством оголовка, при этом опускная труба выполнена с возможностью равномерного подвода к ее внешней поверхности дренирующей жидкости и наполнителя геотермальной скважины с возможностью его увлажнения по диаметру и глубине, причем система увлажнения наполнителя геотермальной скважины включает накопительную камеру, выполненную с возможностью сбора и удаления дренирующей жидкости и расположенную ниже оголовка, узел контроля уровня дренирующей жидкости в накопительной камере, а также средство доставки дренирующей жидкости в виде трубы, соединенной с источником дренирующей жидкости, кроме того, подъемные трубы образуют замкнутый цилиндрический контур в коаксиальном исполнении. Кроме того, внешняя поверхность опускной трубы снабжена насадкой в виде конического раструба, установленного с образованием кольцевого зазора, причем диаметр верхней кромки насадки превышает диаметр нижней кромки. Кроме того, подъемные трубы выполнены с возможностью плотного прилегания увлажненного наполнителя геотермальной скважины к их внешней поверхности.

Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов свидетельствует о его соответствии критерию «новизна».

При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.

Признаки «свободное пространство геотермальной скважины заполнено наполнителем с высокой дренирующей способностью, например крупнозернистым песком» и «система увлажнения наполнителя геотермальной скважины включает накопительную камеру, выполненную с возможностью сбора и удаления дренирующей жидкости и расположенную ниже оголовка, узел контроля количества дренирующей жидкости в накопительной камере, а также средство доставки дренирующей жидкости в виде трубы, соединенной с источником дренирующей жидкости» обеспечивают возможность увлажнения наполнителя геотермальной скважины.

Признаки «грунтовый теплообменник содержит, по меньшей мере, шесть подъемных труб, удаленных от опускной трубы на расстояние не меньше их диаметра, причем трубы грунтового теплообменника сообщены между собой посредством оголовка», «подъемные трубы образуют замкнутый цилиндрический контур в коаксиальном исполнении» и «подъемные трубы выполнены с возможностью подвода к их внешней поверхности увлажненного наполнителя геотермальной скважины» обеспечивают включение в процесс теплообмена полного периметра подъемных труб цилиндрического контура.

Признаки «опускная труба выполнена с возможностью равномерного подвода к ее внешней поверхности дренирующей жидкости и наполнителя геотермальной скважины с возможностью его увлажнения по диаметру и глубине» и «внешняя поверхность опускной трубы снабжена насадкой в виде конического раструба, установленного с образованием кольцевого зазора, причем диаметр верхней кромки насадки превышает диаметр нижней кромки» обеспечивают включение в процесс теплообмена опускной трубы.

На фиг.1 изображен вертикальный разрез геотермального устройства.

На фиг.2 изображен горизонтальный разрез геотермального устройства.

На фиг.3 изображен узел контроля количества дренирующей жидкости в накопительной камере.

На чертежах показаны геотермальная скважина 1, опускная 2 и подъемные 3 трубы, наполнитель 4 геотермальной скважины 1, оголовок 5, накопительная камера 6, узел контроля 7 количества дренирующей жидкости в накопительной камере 6, средство доставки 8 дренирующей жидкости, насадка 9 опускной трубы 2, сборный коллектор 10, коническая полость 11, сетки 12, выхлопная водяная 13 и воздушная 14 трубы накопительной камеры 6, трехходовой кран 15 воздушной трубы 14, а также сетки 16, стакан 17, запорный клапан 18, спускные окна 19, шток 20, поплавок 21, сборная камера 22 узла контроля 7.

Опускная труба 2 выполнена условным диаметром 32 мм.

Подъемные трубы 3 выполнены условным диаметром 15 мм.

В качестве наполнителя 4 геотермальной скважины 1 с высокой дренирующей способностью использован крупнозернистый песок.

Оголовок 5 выполнен условным диаметром 50 мм.

Накопительная камера 6 выполнена с возможностью сбора дренирующей жидкости с помощью конической полости 11 и сетки 12, а также с возможностью удаления дренирующей жидкости с помощью выхлопной водяной 13 и воздушной 14 труб.

Узел контроля 7 количества дренирующей жидкости в накопительной камере 6 включает сетки 16, стакан 17, запорный клапан 18, спускные окна 19, шток 20, поплавок 21, сборная камера 22.

Средство доставки 8 дренирующей жидкости выполнено в виде трубы.

Насадка 9 выполнена в виде конического раструба, установленного на опускной трубе 2 с образованием кольцевого зазора, причем диаметр верхней кромки насадки 9 превышает диаметр нижней кромки.

Воздушная труба 14 снабжена трехходовым краном 15.

Запорный клапан 18 имеет коническую форму и выполнен пустотелым, а также снабжен пустотелым поплавком 21, закрепленным на штоке 20.

При необходимости регенерирования температурного потенциала грунта по средству доставки 8 дренирующей жидкости может быть подан теплоноситель виде воды с повышенной температурой.

Заявляемое устройство работает следующим образом.

Рабочее тело в виде жидкости из теплового насоса (на чертежах не показан) проходит по опускной трубе 2, нагревается и поступает через оголовок 5 в подъемные трубы 3, после чего через сборный коллектор 10 попадает обратно в тепловой насос и далее в теплообменник (на чертежах не показан).

Нагрев рабочего тела в опускной трубе 2 происходит за счет теплоты грунта геотермальной скважины 1 при увлажненном наполнителе 4.

Для этого по средству доставки 8 от источника (на чертежах не показан) в насадку 9 подают дренирующую жидкость, которая через кольцевой зазор насадки 9 стекает по внешней поверхности опускной трубы 2, одновременно увлажняя наполнитель 4 геотермальной скважины 1 по диаметру и глубине.

Далее дренирующая жидкость через сетки 12 поступает в коническую полость 11 и при ее наполнении попадает через сетки 16 узла контроля 7 в корпус стакана 17, нижнее основание которого является посадочным местом для запорного клапана 18.

Нормальное положение запорного клапана 18 открытое, при этом его основание располагается ниже спускных окон 19. В накопительную камеру 6 дренирующая жидкость поступает из сборной камеры 22 узла контроля 7 через спускные окна 19.

В процессе заполнения накопительной камеры 6 уровень дренирующей жидкости достигает максимального при подъеме поплавка 21 и закрытии запорного клапана 18. После чего, открывая трехходовый кран 15, по воздушной трубе 14 подают сжатый воздух от компрессора (на чертежах не показан). В результате чего запорный клапан 18 поджимается давлением сжатого воздуха, и дренирующая жидкость удаляется из накопительной камеры 6 по водяной трубе 13. Далее подачу воздуха прекращают.

Процесс повторяется по мере увлажнения грунта геотермальной скважины 1 и дренирующей способности наполнителя 4 геотермальной скважины 1.

Заявляемое устройство позволяет повысить теплопроизводительность грунтового теплообменника расширить область его применения.

1. Геотермальное устройство, включающее теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне, отличающееся тем, что свободное пространство геотермальной скважины заполнено наполнителем с высокой дренирующей способностью, например крупнозернистым песком, грунтовый теплообменник содержит, по меньшей мере, шесть подъемных труб, удаленных от опускной трубы на расстояние не меньше их диаметра, причем трубы грунтового теплообменника сообщены между собой посредством оголовка, при этом опускная труба выполнена с возможностью равномерного подвода к ее внешней поверхности дренирующей жидкости и наполнителя геотермальной скважины с возможностью его увлажнения по диаметру и глубине, причем система увлажнения наполнителя геотермальной скважины включает накопительную камеру, выполненную с возможностью сбора и удаления дренирующей жидкости и расположенную ниже оголовка, узел контроля уровня дренирующей жидкости в накопительной камере, а также средство доставки дренирующей жидкости в виде трубы, соединенной с источником дренирующей жидкости, кроме того подъемные трубы образуют замкнутый цилиндрический контур в коаксиальном исполнении.

2. Геотермальное устройство по п.1, в котором внешняя поверхность опускной трубы снабжена насадкой в виде конического раструба, установленного с образованием кольцевого зазора, причем диаметр верхней кромки насадки превышает диаметр нижней кромки.

3. Геотермальное устройство по п.1, в котором подъемные трубы выполнены с возможностью плотного прилегания увлажненного наполнителя геотермальной скважины к их внешней поверхности.



 

Похожие патенты:

Изобретение относится к области энергетики, в частности к электростанциям, работающим на базе глубинного тепла Земли. Петротермальная электростанция содержит скважину, пробуренную до глубины с температурой забоя не менее 600°С, теплоотборную систему, расположенную в скважине, содержащую паровой котел, два присоединенных к нему трубопровода, каждый из которых состоит из отдельных частей, причем части трубопровода для нагнетания воды соединены с частями паропровода для отвода пара жесткими перемычками с образованием секций, при этом часть скважины в зоне расположения парового котла с захватом зоны его разогрева, заполнена водонепроницаемым материалом, остальная часть скважины заполнена породой, поднятой на поверхность при бурении скважины с соблюдением порядка ее расположения в земной коре в месте бурения.

Изобретение относится к энергетике и может быть использовано в системах тепло-холодоснабжения при использовании геотермального тепла с помощью пароэжекторного теплового насоса.

Изобретение относится к технологиям и средствам автономного отопления объектов различного назначения с комплексным использованием, на основе скважинных циркуляционных систем закрытого типа и тепловых насосов, низкопотенциальных возобновляемых тепловых источников из окружающей среды.

Изобретение относится к теплоэнергетике и может быть использовано в устройствах, охлаждающих жилые и иные сооружения в теплый период года и нагревающих эти сооружения в холодное время года.

Изобретение относится к области энергетики и может быть использовано для теплоснабжения и горячего водоснабжения децентрализованных объектов малой мощности с использованием возобновляемых источников энергии (ВИЭ).

Изобретение относится к теплоэнергетике. .

Изобретение относится к средствам извлечения геотермальной энергии массива горных пород и может использоваться для обогрева зданий и сооружений. .

Изобретение относится к теплотехнике и может быть использовано в системе использования низкотемпературной энергии, содержащей контур коллектора, заполненного первым рабочим раствором, теплопередающий контур, заполненный вторым рабочим раствором, теплообменник, выполненный с возможностью теплопереноса между рабочими растворами контура коллектора и теплопередающим контуром.

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса. Согласно способу избыточно выработанная электрическая энергия переводится в тепловую энергию и с избыточно выработанной тепловой энергией используется для хемотермического аккумулирования энергии в абсорбционном тепловом насосе. При этом для получения тепла аккумулированный в конденсаторе жидкий хладагент направляется в абсорбер. Технический результат - возможность аккумулирования как тепловой, так и электрической энергии при суточном маневрировании отпуска энергии потребителю. 1 ил.

Изобретение относится к технологиям добычи и применения глубокозалегающих подземных пластовых рассолов, обладающих, как правило, не только гидроминеральным потенциалом, в особенности промышленными концентрациями полезных компонентов для прямого использования или последующей переработки в товарные продукты, но и тепловым потенциалом, пригодным для использования по энергетическому назначению. Обеспечивает повышение эффективности способа. Сущность изобретения: по способу с помощью скважины вскрывают напорный рассолоносный пласт, поднимают из него по эксплуатационной обсадной колонне высокоминерализованный геотермальный рассол. После этого по кольцевому пространству между эксплуатационной и промежуточной обсадными колоннами, сообщенному через устьевую обвязку скважины с наземными емкостями и нагнетательным оборудованием, а также со сформированной до вскрытия рассолоносного пласта в интервале геологического разреза скважины ниже пачки регионального водоупора зоной поглощения. Рассол отводят в процессе вскрытия, освоения и дальнейшей эксплуатации пласта в зону поглощения и наземные емкости с возможностью использования гидроминерального потенциала рассола из емкостей. При этом защиту эксплуатационной колонны от оседания твердых образований на ее стенках из добываемого рассола в процессе его перемещения от пласта к устью скважины осуществляют путем термостатирования верхней части колонны в интервале вероятного температурного фазового перехода за счет непрерывной или периодической прокачки вдоль потока рассола в колонне с возможностью теплопереноса к нему теплоносителя с начальной температурой, превышающей ожидаемые без термостатирования температуры рассола в интервале вероятного температурного фазового перехода. Согласно изобретению прокачку теплоносителя ведут внутри поднимаемого по эксплуатационной колонне рассола посредством размещения в этой колонне замкнутого контура циркуляции с теплоносителем в виде технической воды. Этот контур выполнен в виде коаксиального теплообменника, протянутого в колонне до глубины не менее величины интервала фазового перехода. Он состоит из соосного колонне теплопроводящего вертикального цилиндрического корпуса, закрытого в основании и имеющего сверху отверстия для подачи воды в корпус. Внутри корпуса - центральный трубопровод с открытым недостающим до основания корпуса нижним концом и открытым для выпуска воды выше устья скважины верхним концом. При этом воду прокачивают сначала по образованному корпусом и трубопроводом кольцевому пространству теплообменника в направлении, противоположном направлению подъема рассола по эксплуатационной колонне, затем подают по центральному трубопроводу к выходу из теплообменника. Использование гидроминерального потенциала рассола проводят с отводом образующегося при использовании менее концентрированного флюида вместе с отводимыми излишками рассола из пласта и емкостей в зону поглощения. При этом перед подачей в общую отводную линию флюид фильтруют от механических примесей. 4 з.п. ф-лы, 3 ил.

Изобретение относится к трубопроводному транспорту и может быть использовано при транспортировке различных жидких и газообразных продуктов (пар, вода, углеводороды и др.) на предприятиях АПК, в коммунальном хозяйстве, нефтяной, химической и др. промышленности. Транспортный трубопровод содержит секции, запорную арматуру, наружный изоляционный слой и нагревательный элемент, подключенный к источнику теплоносителя. Нагревательный элемент выполнен по меньшей мере из двух нагревательных участков, каждый из которых состоит из змеевидно изогнутых трубок с жидкостью-теплоносителем внутри. В качестве источника тепла для теплоносителя использованы расположенные на глубине незамерзающего слоя земли геотермальный тепловой насос и тепловой аккумулятор. Тепловой насос состоит из соединенных последовательно компрессора, испарителя и дросселя. Тепловой аккумулятор содержит корпус с изоляцией, заполненный твердым теплоаккумулирующим материалом, внутри которого расположены подводящий и отводящий трубчатые змеевики, заполненные теплоносителем. Причем отводящий змеевик соединен своими концами через вентили с соответствующими входом и выходом нагревательных участков, а подводящий змеевик соединен одним входом с дросселем, а другим с компрессором теплового насоса. Изобретение обеспечивает повышение надежности его работы и экономию энергоресурсов. 1 ил.

Изобретение относится к трубопроводному транспорту. К наружной поверхности обогреваемого трубопровода плотно прилегает коллектор с теплоносителем. В качестве источника тепла для теплоносителя использован геотермальный тепловой насос. Тепловой насос содержит соединительные трубопроводы, дроссели, генератор пара, испаритель, три последовательно соединенных эжектора, три конденсатора, причем третий конденсатор имеет греющую трубу, три циркуляционных насоса, тепловой аккумулятор с коллектором. Каждый эжектор состоит из приемной камеры, сопла и диффузора. Коллектор теплового аккумулятора через первый циркуляционный насос соединен с генератором пара. Пар из генератора через дроссели поступает в сопла первого, второго и третьего эжекторов. Приемная камера первого эжектора через соединительный трубопровод соединена с выходом испарителя. Приемная камера второго эжектора через второй циркуляционный насос и первый конденсатор соединена с диффузором первого эжектора. Приемная камера третьего эжектора через третий циркуляционный насос и второй конденсатор соединена с диффузором второго эжектора. Выходы конденсаторов соединены с входом испарителя. Пар на выходе из эжекторов поступает в третий конденсатор и нагревает греющую трубу, соединенную с коллектором на обогреваемом трубопроводе. Повышает производительность перекачки. 1 ил.

Изобретение относится к энергетике и может быть использовано для передачи тепла. Теплопроводный цилиндр, предназначенный для установки в накопителе тепла, снабжен множеством U-образных трубопроводов и выполнен так, что теплоизоляция находится между концом для впуска текучей среды и концом для выпуска текучей среды каждого из множества U-образных трубопроводов, причем две или более радиально размещенные секции U-образного трубопровода установлены внутри теплопроводного цилиндра, и отделены друг от друга, и имеют внутренние проходы, которые не сообщаются друг с другом внутри теплопроводного цилиндра. Теплоизолирующее устройство образовано из теплоизолирующей структуры и включает тело, которое должно быть помещено между сегментами трубопровода возле первого конца для впуска и выпуска текучей среды каждого из U-образных трубопроводов, которые установлены рядом с аксиальным сердечником столбчатого трубопроводного тела и сегментами трубопровода возле второго конца для впуска и выпуска текучей среды каждого из U-образных трубопроводов, что значительного уменьшит потери тепловой энергии, вызванные теплопроводностью между соседними сегментами трубопровода. 3 н.п. ф-лы, 12 ил.

(57) Изобретение относится к теплоэнергетике и может быть использовано для создания системы низкотемпературной энергии в подземном контуре. Подземный контур используется, например, для передачи тепловой энергии, извлеченной из окружающей среды, к тепловому насосу или подобному устройству. Подземный контур содержит коллекторную систему труб, выполненную в виде витков змеевика с образованием по крайней мере двух кольцевых труб различного поперечного сечения, образованных полыми профилями, причем трубы расположены и смонтированы, по существу, концентрично таким образом, что соседние трубы образуют между собой отдельные объемы потока, а самая внутренняя их полость простирается по всей длине коллекторной системы труб. Благодаря большому количеству полых профилей, размещаемых по всей длине трубопровода, коллекторная система труб становится значительно короче, что упрощает её монтаж и эксплуатацию. 2 н. и 9 з.п. ф-лы, 16 ил.

В одном варианте выполнения изобретения предложен способ подачи электроэнергии при помощи источника возобновляемой энергии, включающий: обеспечение первого источника возобновляемой энергии, причем первый источник возобновляемой энергии является непостоянным или не обеспечивает достаточного количества энергии; подачу энергии от первого источника возобновляемой энергии на электролизер с целью формирования энергоносителя посредством электролиза; избирательное реверсирование электролизера, позволяющее использовать его в качестве топливного элемента; и подачу энергоносителя на электролизер для выработки энергии, причем первый источник возобновляемой энергии, электролизер или энергоноситель получает дополнительное тепло от первого источника тепла; и первый источник тепла выбран из группы, состоящей из геотермального и солнечного источника тепла. 5 н. и 36 з.п. ф-лы, 26 ил.

Изобретение относится к теплоэнергетике и может быть использовано в подземных аккумуляторах тепловой энергии. Подземный аккумулятор содержит колодец и по меньшей мере один туннель, соединенные друг с другом с обеспечением сообщения по текучей среде. Туннель имеет по меньшей мере три секции. Вторая секция туннеля расположена между первой и третьей секцией, соединена с ними и закупорена у конца, сопряженного с третьей секцией, которая, кроме того, присоединена к колодцу. Колодец, а также первая и третья секции туннеля выполнены с возможностью помещения в них текучей среды для аккумулирования тепла. Вторая секция туннеля выполнена с возможностью применения в качестве камеры расширения, в которую поступает объем текучей среды, превышающий объем колодца, первой и третьей секции туннеля. Аккумулятор дополнительно снабжен первым переносящим средством для временного перевода избыточного объема текучей среды из колодца и/или третьей секции туннеля в первую секцию туннеля. Кроме того, у аккумулятора имеется второе переносящее средство для перевода избыточного объема текучей среды из первой секции туннеля во вторую секцию туннеля. 3 н. и 5 з.п. ф-лы, 2 ил.

Предлагается устройство, содержащее теплонасосное оборудование и систему сбора низкопотенциальной теплоты грунта, состоящую из двух и более зон, параллельно подключенных к теплонасосному оборудованию, каждая из которых, в свою очередь, включает один и более вертикальных герметичных грунтовых теплообменников коаксиального типа с внутренней трубой, покрытой теплоизолирующим слоем пористого материала с замкнутыми порами. Каждая из зон грунтового теплообменника имеет гидравлически обособленный циркуляционный контур, соединенный с содержащим запас теплоносителя баком через питательный насос с обратным клапаном и байпасной линией, содержащей электроуправляемый сбросной вентиль. В каждой зоне питательный насос и сбросной клапан для автоматического управления подключены к контроллеру, соединенному с датчиком температуры на выходе из соответствующей зоны термоскважин. Кроме того, для повышения эффективности термоскважин эластичный материал с замкнутыми порами имеет профилированную наружную поверхность с кольцевыми или спиральными выступами. Использование изобретения позволяет повысить эффективность грунтового теплообменника. 1 з.п. ф-лы, 2 ил.

Изобретение относится к средствам извлечения геотермальной энергии из продукции нефтегазовых скважин и может использоваться в качестве альтернативных источников энергии. Технический результат заключается в повышении эффективности использования геотермальной энергии пластовых вод, сопутствующих добываемой нефти, а также в снижении энергозатрат. Способ извлечения геотермальной энергии из добытой продукции действующей нефтяной скважины включает подключение входа теплового насоса к трубопроводу, помещенному в ствол скважины, а выхода - к системе распределения тепла потребителю. Согласно способу также осуществляют разделение в скважине с помощью скважинного сепаратора продукции нефтяной скважины на нефть и воду, затем с помощью скважинного насоса очищенную воду направляют в продуктопровод, подключенный к тепловому насосу, при этом тепловой насос включает внутренний замкнутый контур, проходящий через испаритель с жидкостью низкотемпературного кипения, конденсатор, компрессор и редукционный клапан, к конденсатору которого подключают отвод теплопровода потребителя, а к испарителю с жидкостью низкотемпературного кипения подключают отвод продуктопровода с очищенной водой. 1 ил.

Изобретение относится к теплоэнергетике и может быть использовано в системах теплоснабжения производственных и жилых зданий. Геотермальное устройство включает теплообменник, сопряженный с тепловым насосом, грунтовый теплообменник, установленный в геотермальной скважине, трубопроводы, соединяющие теплообменники с образованием замкнутой системы, заполненной рабочим телом в виде жидкости, причем грунтовый теплообменник содержит опускную и подъемную трубы, сообщающиеся друг с другом в нижней зоне. Свободное пространство геотермальной скважины заполнено наполнителем с высокой дренирующей способностью, грунтовый теплообменник содержит, по меньшей мере, шесть подъемных труб, удаленных от опускной трубы на расстояние не меньше их диаметра, причем трубы грунтового теплообменника сообщены между собой посредством оголовка, при этом опускная труба выполнена с возможностью равномерного подвода к ее внешней поверхности дренирующей жидкости и наполнителя геотермальной скважины с возможностью его увлажнения. Система увлажнения наполнителя геотермальной скважины включает накопительную камеру, расположенную ниже оголовка. Технический результат выражается в повышении теплопроизводительности грунтового теплообменника и расширении области применения. 2 з.п. ф-лы, 3 ил.

Наверх