Гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации рабочего процесса

Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) содержит корпус, воздухозаборник с центральным телом, внутри которого установлена топливная форсунка в виде газоструйного резонатора с острой передней кромкой, соединенной пилонами с воздухозаборником, камеру сгорания, воспламенитель, сопло, систему управления и твердотопливный картридж для стартового разгона. Способ организации рабочего процесса в ГПВРД заключается в сжигании твердотопливного заряда картриджа, сжатии воздуха в воздухозаборнике, генерировании внутренних ударных волн в проточной части двигателя, подаче в камеру сгорания через топливную форсунку нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, организации пульсирующего режима горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц, расширении продуктов горения в сопле и регулировании режима горения. Изобретение направлено на повышение темпа набора скорости, улучшение полноты сгорания топлива и совершенствование массогабаритных характеристик летательного аппарата с ГПВРД. 2 н.п. ф-лы, 1 ил.

 

Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД), и может быть использовано при разработке ГПВРД с разгоняющим твердотопливным картриджем.

Выполненные расчетные и экспериментальные исследования показали, что успешная реализация гиперзвукового полета в атмосфере Земли возможна при комплексном решении таких проблем, как: снижение аэродинамического сопротивления и улучшение массогабаритных характеристик летательного аппарата, повышение полноты сгорания топлива и использование кислорода воздуха в качестве окислителя, а также решении проблем теплозащиты наиболее теплонапряженных элементов двигателя и летательного аппарата. Кроме этого следует иметь в виду, что ГПВРД не имеет стартовой тяги и ему необходим стартовый разгон.

Известен комбинированный ракетно-прямоточный двигатель (патент RU №2015390, МПК F02K 7/18, 1994), содержащий корпус, воздухозаборник, камеру сгорания, сопловой аппарат, топливную систему, воспламенитель, систему управления и установленный в камере сгорания на фиксаторах стартовый двигатель со своим корпусом и соплом.

Недостатком известного комбинированного ракетно-прямоточного двигателя является дополнительный вес корпуса стартового двигателя и его сопла.

Известен также способ формирования рабочего процесса ракетно-прямоточного двигателя и устройство для его осуществления (патент RU №1833790 A1, МПК F02K 7/18, 1993), включающий сжигание твердотопливного заряда, сжатие воздуха в воздухозаборнике, подачу топливе, смешение воздуха с топливом и продуктами неполного сгорания топлива, дожигание топливовоздушной смеси в сталкивающихся сверхзвуковых струях, расширение продуктов горения в сопле и регулирование режима горения. При этом устройство для осуществления способа формирования рабочего процесса комбинированного ракетно-прямоточного двигателя содержит корпус, воздухозаборник, камеру дожигания, выходное сопло, топливную систему с форсункой и ракетный двигатель твердого топлива с камерой сгорания, сообщенной с камерой дожигания газоводами, образованными сверхзвуковыми кососрезанными соплами, связанными с приводами их вращения.

Недостатком известного способа формирования рабочего процесса ракетно-прямоточного двигателя и устройства для его осуществления является сложная организация столкновения сверхзвуковых струй и дожигания продуктов неполного сгорания топлива, а также ненадежная система вращения кососрезанных сопл с резонатором в условиях высоких температур и ударных нагрузок.

Наиболее близким из известных технических решений к предлагаемому гиперзвуковому прямоточному воздушно-реактивному двигателю и способу организации рабочего процесса в нем является принятый за прототип гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения (патент RU №2262000, МПК F02K 7/10, 2005), включающий корпус двигателя, воздухозаборник с центральным телом, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, камеру сгорания, воспламенитель и сопло. При этом способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе включает сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания перед воздухозаборником в зону, образованную между топливной форсункой, пилонами и воздухозаборником, горение топливовоздушной смеси и последующее расширение продуктов горения в сопле.

Недостатком известного технического решения является протяженная зона подготовки и горения топливовоздушной смеси и низкая тяга двигателя без стартового разгона.

Задачей заявленного изобретения является создание ГПВРД с высокими уровнем тяги и топливной эффективностью в условиях стартового разгона.

Технический результат, получаемый при осуществлении изобретения, заключается в улучшении массогабаритных характеристик летательного аппарата с ГПВРД.

Решение поставленной задачи и технический результат достигаются тем, что в гиперзвуковом прямоточном воздушно-реактивном двигателе, содержащем корпус, воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, воспламенитель, сопло и систему управления, в прямоточной части двигателя установлен твердотопливный картридж с воздушными каналами, фиксатором положения и воспламенителем, соединенным с системой управления. Топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, внутренняя полость газоструйного резонатора соединена с топливной системой и его задняя и боковая стенки выполнены пористыми с управляемой скважностью.

Решение поставленной задачи и технический результат достигаются тем, что в способе организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе, включающем сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания, генерирование внутренних ударных волн в проточной части двигателя, горение топливовоздушной смеси в камере сгорания, расширение продуктов горения в сопле и регулирование режима горения в камере сгорания, сжигают твердотопливный заряд картриджа, подают в камеру сгорания через топливную форсунку нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки с задержкой по времени на величину 0,1-0,9 Тт, где Тт - время полного сгорания твердотопливного заряда картриджа, и создают пульсирующий режим горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц.

На фигуре 1 приведена схема заявленного гиперзвукового прямоточного воздушно-реактивного двигателя. Двигатель содержит корпус 1, воздухозаборник 2 с центральным телом 3, камеру сгорания 4, воспламенитель 5, сопло 6, топливную форсунку 7, соединенную пилонами 8 с воздухозаборником 2 и выполненную в виде газоструйного резонатора 9 с острой передней кромкой 10, вход которого совмещен с носовой частью центрального тела 3 и обращен навстречу набегающему потоку воздуха 11. Внутренняя полость 12 газоструйного резонатора 9 соединена с топливной системой двигателя 13. Стенки 14 газоструйного резонатора 9 выполнены пористыми с управляемой скважностью. В проточной части двигателя установлен твердотопливный картридж 15 с воздушными каналами 16, фиксатором положения 17 и воспламенителем 5, соединенным с системой управления 19.

Заявленный способ организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе осуществляют следующим образом. Воспламенитель 5 после команды системы управления 19 поджигает твердотопливный заряд картриджа 15. Двигатель выводят на уровень тяги стартового разгона, набегающий поток воздуха 11 сжимают в воздухозаборнике 2, направляют в зону горения по воздушным каналам 16 и интенсифицирует процесс горения. В зависимости от программы полета и заданного темпа набора скорости в камеру сгорания 4 подают нанодисперсное топливо 20, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора 9 навстречу набегающему потоку 11 воздуха и через его пористые стенки 14 с задержкой по времени на величину 0,1-0,9 от времени полного сгорания твердотопливного заряда картриджа Тт. С помощью газоструйного резонатора 9 формируют пульсирующий режим топливопитания камеры сгорания 4 в частотном диапазоне от 100 до 4000 герц с интенсивным процессом смешения и подготовки к горению топливовоздушной смеси. После полного выгорания твердотопливного заряда картриджа 15 и завершения стартового разгона в проточной части двигателя генерируют систему внутренних ударных волн 18, способствующей переходу на двухстадийный режим горения с пульсирующей детонацией и высокой полнотой сгорания топлива.

Таким образом, преимуществом заявленного гиперзвукового прямоточного воздушно-реактивного двигателя и способа организации рабочего процесса в нем является возможность обеспечить двухстадийный режим горения с пульсирующей детонацией, высокой полнотой сгорания топлива, повышенной топливной эффективностью и улучшить массогабаритные характеристики летательного аппарата с ГПВРД.

1. Гиперзвуковой прямоточный воздушно-реактивный двигатель, содержащий корпус, воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, соединенную пилонами с воздухозаборником, воспламенитель, сопло и систему управления, отличающийся тем, что в проточной части двигателя установлен твердотопливный картридж с воздушными каналами, фиксатором положения и воспламенителем, соединенным с системой управления, топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, внутренняя полость газоструйного резонатора соединена с топливной системой и его задняя и боковая стенки выполнены пористыми с управляемой скважностью.

2. Способ организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе, включающий сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания через топливную форсунку перед воздухозаборником, генерирование внутренних ударных волн в проточной части двигателя, горение топливовоздушной смеси в камере сгорания, расширение продуктов горения в сопле и регулирование режима горения, отличающийся тем, что сжигают твердотопливный заряд картриджа, в камеру сгорания через топливную форсунку перед воздухозаборником подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки с задержкой по времени на величину 0,1-0,9 от времени полного сгорания твердотопливного заряда картриджа и создают пульсирующий режим горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц.



 

Похожие патенты:

Аппарат для взаимодействия с воздухом или газом, способный выполнять функцию компрессора или детандера, содержит корпус, вал для передачи крутящего момента, ротор.

Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД). .

Изобретение относится к реактивным двигателям без газовых турбин. .

Изобретение относится к двигателестроению, а точнее к способу организации горения в гиперзвуковом прямоточном реактивном двигателе и гиперзвуковому прямоточному воздушно-реактивному двигателю с горением в наклонной детонационной волне.

Изобретение относится к двигателю, использующему воздух, движущийся со сверхзвуковыми скоростями для сжатия, сжигания и расширения. .

Изобретение относится к тепловым и ядерным силовым установкам, в частности к реактивным двигательным установкам, и может быть использовано для защиты от тепловых потоков высокой плотности деталей и узлов, в том числе датчиков замера параметров рабочего тела, линий коммуникаций, а также устройств распыла дополнительной среды, располагаемых в тракте высокотемпературного, высокоскоростного рабочего тела силовой установки.

Изобретение относится к устройствам, предназначенным для передачи механической энергии движения от теплового двигателя внутреннего сгорания к электрогенератору.

Изобретение относится к области машиностроения, а именно к конструированию турбореактивных двигателей, и может быть использовано в реактивном двигателе, преимущественно Черемушкина О.В.

Изобретение относится к прямоточно-эжекторным двигателям и может использоваться в области ракетно-тактического и ракетно-космического оружия, а также для вывода на околоземные орбиты различных полезных грузов.

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит сверхзвуковой воздухозаборник, сверхзвуковую камеру сгорания, выходное сверхзвуковое сопло, обечайку, регулятор давления подачи топлива, устройство подачи топлива в двигатель, источник лазерного излучения и оптическую систему. Воздухозаборник, камера сгорания и сопло образуют газовый тракт двигателя. Источник лазерного излучения выполнен с возможностью генерации излучения на заданной частоте, резонансно совпадающей с частотой линии поглощения молекулярного кислорода из основного электронного состояния в возбужденное метастабильное состояние. Устройство подачи топлива в двигатель сделано в виде вертикального набора пилонов и установлено поперечно в тракте двигателя. Оптическая система размещена в тракте после устройства подачи топлива и включает, по меньшей мере, одну пару противоположно расположенных поперечно тракту, отражателей излучения с образованием между отражателями зоны сканирования излучения. На одном из отражателей установлен питающий волновод источника лазерного излучения. Устройство подачи топлива установлено в тракте воздухозаборника. В каждом пилоне выполнены топливный канал, буферная топливная емкость и сопло инжектора, сопряженные гидравлически между собой. Регулятор давления подачи топлива соединен магистралями с топливными каналами каждого пилона. Пары отражателей излучения оптической системы расположены за соплами инжекторов одного или нескольких пилонов с возможностью образования отдельных зон сканирования. Нижняя граница каждой зоны сканирования расположена над верхней задней кромкой сопла инжектора соответствующего пилона и направлена от сопла инжектора к выходу камеры сгорания с площадью сканирования, определяемой в соответствии с выражением, защищаемым настоящим изобретением. Изобретение позволяет уменьшить время задержки и температуру воспламенения топливовоздушной смеси, повысить полноту сгорания топливовоздушной смеси. 5 з.п. ф-лы, 13 ил.

Изобретение может быть использовано в космической и оборонной отрасли. Способ воспламенения топливной смеси заключается в том, что в камеру сгорания двигателя подают высокоскоростной поток воздуха, обеспечивают торможение потока, образуют в камере сгорания топливную смесь и воспламеняют ее. Так же обеспечивают торможение потока топливной смеси. Торможение осуществляют до дозвуковых чисел Маха посредством сужения камеры сгорания. Воспламенение топливной смеси осуществляют за счет обеспечения времени пребывания топливной смеси в камере сгорания больше времени индукции в реакции окисления горючего. Время пребывания топливной смеси в камере сгорания задают согласно защищаемых изобретением соотношений. Сужение камеры сгорания обеспечивают постепенным или местным уменьшением площади ее поперечного сечения. Изобретение направлено на упрощение процесса воспламенения топливовоздушной смеси при одновременном повышении надежности воспламенения, увеличении полноты сгорания топлива. 2 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в космической и оборонной отрасли. Высокоскоростной прямоточный воздушно-реактивный двигатель (ПВРД) содержит последовательно расположенные воздухозаборное устройство, камеру сгорания (КС) и выходное сопло. В КС размещены форсунки подачи горючего с возможностью образования топливовоздушной смеси. Площадь входного сечения камеры сгорания выполнена больше площади ее выходного сечения, при этом площадь выходного сечения камеры сгорания определяется с учетом температуры воспламенения топливовоздушной смеси. Геометрические параметры КС определяются с учетом приведенных в тексте описания соотношений. Превышение площади входного сечения КС над площадью ее выходного сечения может быть обеспечено образованием местного сужения в зоне последнего или постепенным сужением КС по потоку. Технический результат заключается в повышении надежности и эффективности воспламенения, увеличении полноты и стабильности сгорания топлива, а также увеличении тяги и экономичности двигателя, надежности его запуска и снижении стоимости изготовления двигателя за счет кардинального упрощения конструкции и технологии изготовления. 5 з.п. ф-лы, 2 ил.

Способ организации воспламенения и горения топлива в гиперзвуковом прямоточном воздушно-реактивном двигателе высокоскоростного летательного аппарата, содержащего камеру сгорания, заключается в подаче горючего со сверхзвуковой скоростью через систему пилонов, обтекаемых кислородом, например, в составе воздуха. Затем воспламеняют топливовоздушную смесь, инициируя цепной механизм горения и энерговыделение в проточном тракте камеры. На границе раздела воздуха и горючего, по меньшей мере на выходе одного из пилонов, формируют струю холодной кислородной плазмы определенного поперечного размера, воздействуя на кислород электрическим разрядом с определенной величиной удельного энерговклада и приведенной напряженностью электрического поля. Изобретение направлено на снижение длины зоны воспламенения и зоны энерговыделения, увеличение тяги гиперзвукового прямоточного воздушно-реактивного двигателя, снижение затрат энергии на процесс инициирования горения. 3 з.п. ф-лы, 1 ил.

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло. Функционирование двигателя в режиме сверхзвукового горения включает неполное торможение воздушного потока в воздухозаборнике, газификацию твердого горючего в газогенераторе, разложение продуктов газификации в охлаждающем тракте, смешение воздуха и продуктов разложения, воспламенение и сжигание смеси в камере дожигания, расширение продуктов сгорания в сопле. Также представлен способ функционирования прямоточного воздушно-реактивного двигателя на твердом горючем. Изобретение позволяет улучшить массогабаритные характеристики, повысить энергоемкость при быстром и полном сгорании горючего, а также обеспечить надежную защиту и охлаждение стенок камеры дожигания. 2 н. и 16 з. п. ф-лы, 4 ил.

Изобретение относится к области авиационного двигателестроения и может быть использовано в камере сгорания гиперзвукового воздушно-реактивного двигателя. Генератор акустических колебаний для камеры сгорания гиперзвукового воздушно-реактивного двигателя содержит свечу зажигания, топливные сопла, профилированную геометрию проточной части, камеру смешения, вихревую камеру, выходной диффузор, лопаточное закручивающее устройство, сверхзвуковой диффузор. Изобретение направлено на снижение выбросов оксидов азота, повышение полноты сгорания горючего, как в объеме невозмущенного потока, так и в проточной части самого генератора акустических волн, отсутствие энергозатрат на создание необходимого давления. 1 ил.

Изобретение относится к гиперзвуковой авиации, а именно к гиперзвуковым летательным аппаратам с прямоточным воздушно-реактивным двигателем. В передней части гиперзвукового летательного аппарата сформировано углубление, объем которого заполняется горючим газом через отверстия, распределенные по поверхности углубления. В этом объеме формируется изобарическая область, на ее плоской границе с воздухом происходит формирование топливовоздушной смеси, которая поступает в камеру сгорания прямоточного воздушно-реактивного двигателя и зажигается в зоне стабилизации горения. В результате возможно существенное снижение аэродинамического сопротивления и нагрева гиперзвукового летательного аппарата, уменьшение размеров камеры сгорания, уменьшение стартовой массы гиперзвукового летательного аппарата. 6 з.п. ф-лы, 6 ил.

Изобретение относится к прямоточному воздушно-реактивному двигателю, включающему детонационную камеру, и к летательному аппарату, содержащему такой прямоточный реактивно-воздушный двигатель. Прямоточный воздушно-реактивный двигатель, который работает на взрывчатой топливно-воздушной смеси и содержит по меньшей мере одну детонационную камеру, которая оборудована на своем верхнем конце базой нагнетания воздуха и которая заканчивается на своем нижнем конце реактивным соплом, по меньшей мере один воздухозаборник, соединенный с указанной детонационной камерой для обеспечения возможности снабжения ее воздухом, и средства для впрыска топлива в детонационную камеру. Детонационная камера является кольцевой и незатухающего типа детонационной волны. Средства впрыска топлива выполнены для непрерывного впрыска топлива непосредственно в детонационную камеру ниже по потоку, непосредственно за базой нагнетания воздуха. Впрыск топлива и подача воздуха в детонационную камеру осуществляются непрерывно, отдельно друг от друга в процессе работы прямоточного воздушно-реактивного двигателя. Прямоточный воздушно-реактивный двигатель дополнительно содержит средства для локального управления потоком приточного воздуха, поступающего в указанную детонационную камеру. Средства впрыска топлива содержат по меньшей мере четыре устройства подачи, распределенные равномерно по окружности детонационной камеры, выполненные с возможностью создания соответствующих потоков топлива, являющихся либо одинаковыми, либо различными, либо изменяемыми во времени независимо друг от друга. Изобретение направлено на выполнение прямоточного воздушно-реактивного двигателя с улучшенными характеристиками и производительностью. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к ракетной технике и может быть использовано в гиперзвуковых крылатых ракетах с прямоточными воздушно-реактивными двигателями, предназначенных для полетов на больших высотах. В частности, изобретение относится к прямоточному воздушно-реактивному двигателю с газогенератором открытого типа и регулируемым расходом твердого топлива. Прямоточный воздушно-реактивный двигатель содержит воздухозаборник, систему подачи твердого топлива в камеру сгорания, газогенератор, камеру сгорания и установленный на выходе из камеры сгорания профилированный сопловой насадок. Газогенератор выполнен в виде барабана со сквозными продольными каналами, в которых размещены с возможностью перемещения в камеру сгорания заряды твердого топлива. При этом барабан соединен с кольцевой перфорированной решеткой, отверстия которой направляют воздушный поток на поверхность зарядов твердого топлива. Изобретение направлено на увеличение полноты сгорания твердого топлива в воздушном потоке. 6 з.п. ф-лы, 4 ил.

Изобретение относится к области ракетной техники, созданию прямоточных воздушно-реактивных двигателей (ПВРД) для крылатых ракет (КР) и управлению КР. В случаях неисправности датчиков командных давлений выдается команда для выполнения резервного алгоритма управления ПВРД. Достигается заранее заданная высота КР и поддерживается скорость КР, соответствующая высоте полета КР. При этом регулирование расхода топлива осуществляется по параметрам скорости и высоты КР, а высота и скорость движения КР измеряются с помощью аппаратуры спутниковой навигации. Техническим результатом решения является повышение надежности работы ПВРД и, как следствие, повышение живучести КР и безопасности полета КР. 1 з.п. ф-лы, 1 ил.
Наверх