Способ получения керамического волокна на основе zro2 и sio2

Изобретение относится к способам получения огнеупорных материалов и изделий из оксидов циркония и кремния и найдет применение при изготовлении высокотермостойких теплозащитных материалов, таких как нити, ткани, нетканые материалы, оплетки и шнуры, а также в качестве упрочнителей композиционных материалов в авиакосмической и других отраслях. Предложен способ получения керамического волокна на основе ZrO2 и SiO2, включающий приготовление волокнообразующего раствора, содержащего соединение Si(OR)4, где R - это алкил или арил, соединение циркония, кислоту и органический растворитель, концентрирование полученного раствора до требуемой вязкости, формование волокна из него и термообработку полученного волокна, в котором в качестве соединения циркония волокнообразующий раствор содержит водный раствор хлористого цирконила и дополнительно включает, по крайней мере, один прекурсор стабилизатора оксида циркония, а также водорастворимый полимер. В качестве прекурсора стабилизатора оксида циркония используют соли металла, выбранного из группы, включающей иттрий, церий, магний, кальций в количестве от 0,25 до 6 мол. % от содержания оксида циркония. В качестве водорастворимого полимера используют поливиниловый спирт, полиэтиленоксид, полиэтиленимин, поливинилпирролидон в количестве 2-10 вес. % от суммарного содержания основных компонентов волокнообразующего раствора. В качестве органического растворителя используют этанол, пропанол, ацетон, глицерин, этиленгликоль. Концентрирование волокнообразующего раствора проводят под вакуумом. Технической задачей данного изобретения является создание способа получения волокна на основе оксидов циркония и кремния, позволяющего получить керамическое волокно на основе ZrO2 и SiO2 с диаметром менее 20 мкм с требуемым фазовым составом и высокими прочностными характеристиками. 4 з.п. ф-лы, 1 табл.

 

Изобретение относится к способам получения огнеупорных материалов и изделий из оксидов циркония и кремния, в частности к способу получения огнеупорного керамического волокна на основе оксидов циркония и кремния.

Керамические волокна, содержащие оксиды циркония и кремния, особенно с высоким содержанием ZrO2, имеют высокую термостойкость и высокие механические свойства при температурах до 1800°C, что позволяет использовать их в качестве теплоизоляционных материалов и упрочнителей композиционных материалов.

Известен способ получения волокон оксида циркония, включающий смешивание кристаллических коллоидных частиц оксида циркония, хотя бы одного растворимого соединения оксида циркония и растворителя;

концентрирование упомянутой смеси; ее формование (экструдирование или раздув) для получения сырого волокна; нагрев сырого волокна до температуры 400-2000°C в кислородсодержащей среде для получения волокна, содержащего кристаллические коллоидные частицы оксида циркония (Патент США №4937212).

Недостатком данного способа является то, что при введении в состав волокна на основе оксида циркония оксида кремния в волокнообразующем растворе образуются агрегаты оксида циркония, что приводит к снижению однородности волокон и, соответственно, их прочности.

Известен способ получения волокон, содержащих ZrO2 и SiQ2, путем приготовления вязкого концентрата водного раствора кислородсодержащего соединения циркония, например диацетата циркония, и коллоидного оксида кремния, его концентрирования и формования волокна с последующим нагревом для удаления воды, летучих или разлагаемых органических материалов и углерода. В результате получают волокно из микрокристаллического оксида циркония и аморфного оксида кремния (Патент США №3793041).

Недостатком данного способа является неустойчивость процесса структурирования волокнообразующего раствора, связанная с высокой склонностью солей циркония к гелированию золей оксида кремния, и переход от вязкого золя к гелю происходит практически мгновенно. Затруднение установления момента достижения раствором требуемой вязкости приводит к увеличению брака и снижению производительности процесса получения волокон.

Наиболее близким к данному изобретению и выбранным за прототип является способ получения керамического волокна на основе ZrO2 и SiO2, включающий следующие стадии: приготовление волокнообразующего раствора, содержащего соединения Zr(OR)4 и Si(OR)4, где R - это алкил или арил, органический растворитель и кислоту; концентрирование полученного раствора при температуре от 0 до 100°C путем добавления пара в упомянутый раствор в количестве (0,001-0,5) весовых частей воды на единицу веса раствора в час, пока не будет достигнута вязкость, необходимая для формования; прядение волокна и его термообработку для кристаллизации ZrO2 и получения SiO2 в виде отдельной фазы (Патент США №5169809).

Недостатком данного способа является то, что гидролиз волокнообразующего раствора, содержащего соединение циркония в виде алкоксида, осуществляется дозированной подачей в него пара в течение значительного времени, что усложняет процесс приготовления раствора и затрудняет его использование в малосерийном производстве, а следовательно, увеличивает стоимость продукта. Кроме того, невысокая концентрация оксидов в волокнообразующем растворе и его низкие прядильные свойства позволяют получать волокна преимущественно диаметром от 50 до 100 мкм, обладающие низкой прочностью и гибкостью.

Технической задачей данного изобретения является создание способа получения волокна на основе оксидов циркония и кремния, исключающего недостатки прототипа и позволяющего получить керамическое волокно на основе ZrO2 и SiO2 с диаметром менее 20 мкм с требуемым фазовым составом и высокими прочностными характеристиками.

Для решения поставленной задачи предложен способ получения керамического волокна на основе ZrO2 и SiO2, включающий приготовление волокнообразующего раствора, содержащего соединение Si(OR)4, где R - это алкил или арил, соединение циркония, кислоту и органический растворитель, концентрирование полученного раствора до требуемой вязкости, формование волокна из него и термообработку полученного волокна, в котором в качестве соединения циркония волокнообразующий раствор содержит водный раствор хлористого цирконила и дополнительно включает, по крайней мере, один прекурсор стабилизатора оксида циркония, а также водорастворимый полимер.

В качестве прекурсора стабилизатора оксида циркония используют соли металла, выбранного из группы, включающей иттрий, церий, магний, кальций в количестве от 0,25 до 6 мол. % от содержания оксида циркония.

В качестве водорастворимого полимера используют поливиниловый спирт, полиэтиленоксид, полиэтиленимин, поливинилпирролидон в количестве 2-10 вес. % от суммарного содержания основных компонентов волокнообразующего раствора.

В качестве органического растворителя используют этанол, пропанол, ацетон, глицерин, этиленгликоль.

Концентрирование волокнообразующего раствора проводят под вакуумом.

Содержание ZrO2 в волокне составляет от 50 до 90%.

Введение соединения циркония в виде водорастворимой соли, а именно хлористого цирконила, позволяет обеспечить полимеризацию и созревание раствора в процессе его концентрирования и не требует дополнительного введения пара в раствор, увеличивающего длительность процесса гидролиза.

Введение в исходный волокнообразующий раствор данного изобретения прекурсора стабилизатора оксида циркония, например одной из солей иттрия, церия, магния или кальция, обеспечивает стабилизацию тетрагональной фазы оксида циркония в конечном продукте за счет образования оксидов этих металлов, которые, в свою очередь, образуют твердые растворы с оксидом циркония, что позволяет увеличить стабильность тонких волокон, получаемых предлагаемым способом.

Использование растворимых полимеров улучшает прядильные (формовочные) свойства растворов, что позволяет увеличить коэффициент фильерной вытяжки и стабильно получать волокно диаметром значительно менее 50 мкм (преимущественно 12-15 мкм).

В процессе концентрирования волокнообразующего раствора происходит частичный гидролиз и полимеризация его компонентов с образованием высоковязкого золя, обладающего хорошими прядильными свойствами, причем гидролиз происходит за счет взаимодействия компонентов с водой, имеющейся в растворе. Это упрощает технологический процесс, так как отсутствует необходимость регулирования количества вводимой воды во время гидролиза, а контроля требуют только два параметра - время и температура, и ведет к снижению затрат на проведение процесса изготовления волокна. Однако чрезмерная скорость гидролиза и полимеризации в водном растворе может привести к его преждевременному гелированию. Замедление этих процессов в данном случае достигается существенным (в два раза) снижением температуры концентрирования за счет использования вакуума.

Пример 1 Получение волокна фазового состава 59%ZrO2-40%SiO2-1%Y2O3

Для приготовления волокнообразующего раствора в качестве соединения Si(OR)4 брали 38,3 г тетраэтоксисилана (Si(OC2H5)4), а также 3 г муравьиной кислоты и 40 г этанола.

Отдельно готовили раствор из 52,4 г хлористого цирконила, 0,89 г хлорида иттрия в качестве прекурсора стабилизатора оксида циркония (что соответствует 0,9 мол. % Y2O3 от содержания ZrO2) и 68 г воды. Полученные растворы соединяли при интенсивном перемешивании. К полученной смеси добавили 20 г 10% водного раствора полиэтиленимина и упаривали (концентрировали) под вакуумом до вязкости 130 Па·с.

Формование волокна производили из стальной монофильеры с каналом диаметром 0,25 мм, скорость прядения подбирали исходя из необходимости достижения диаметра сырого волокна 12 мкм. Полученные волокна подвергали термообработке: сушили при температуре 80°C до постоянной массы и обжигали на воздухе при 700°C в течение 1 часа.

Фазовый состав полученного волокна определяли рентгенофазовым анализом на рентгеновском дифрактометре, диаметр волокна - на оптическом микроскопе, прочность волокна при растяжении - на разрывной машине «Инстрон». Полученные волокна имели среднюю прочность 1350 МПа и содержали тетрагональный диоксид циркония, распределенный в матрице из аморфного диоксида кремния. Данные испытаний приведены в таблице.

Пример 2 Получение волокна фазового состава 89,7%ZrO2-10%SiO2-0,3%CeO2

Готовили волокнообразующий раствор, содержащий 14,5 г тетраэтоксисилана, 2,0 г соляной кислоты и 30 г ацетона.

Отдельно готовили раствор 70,4 г хлористого цирконила и 0,27 г хлорида церия (что соответствует 0,25 мол. % CeO2 от содержания ZrO2) в 110 г воды. Полученные растворы подогревали до 60°C и объединяли при интенсивном перемешивании. К полученной смеси добавляли 40 г 20% водного раствора полиэтиленимина и упаривали под вакуумом до вязкости 150 Па·с.

Формование волокна производили из стальной монофильеры с каналом диаметром 0,25 мм, скорость прядения подбирали исходя из необходимости достижения диаметра сырого волокна 15 мкм. Полученные волокна сушили при температуре не более 80°C до постоянной массы и обжигали на воздухе при 700°C в течении 1 часа.

Полученные волокна испытывали аналогично примеру 1, данные приведены в таблице.

Пример 3 Получение волокна фазового состава 80%ZrO2-12%SiO2-8%Y2O3

Для приготовления волокнообразующего раствора брали 11,6 г тетраэтоксисилана 0,2 г соляной кислоты, 10 г ацетона.

Отдельно готовили раствор 65,0 г хлористого цирконила и 7,3 г хлорида иттрия (6 мол. % Y2O3 от содержания ZrO2) в 125 мл воды. Полученные растворы объединяли при интенсивном размешивании. К полученной смеси добавляли 40 г 10% водного раствора поливинилового спирта и концентрировали под вакуумом до вязкости 160 Па·с. Формование волокна производили из стальной монофильеры с каналом диаметром 0,25 мм, скорость прядения подбирали исходя из необходимости достижения диаметра сырого волокна 14 мкм. Полученные волокна сушили при температуре не более 80°C до постоянной массы и обжигали на воздухе при 1000°C в течении 1 часа. Данные испытаний волокна представлены в таблице.

Пример 4 (по прототипу)

Был приготовлен раствор: 2,3 г Si(OC2H5)4; 8,8 г Zr(OC3H7)4, 6 мл абсолютного этилового спирта; 6,4 мл концентрированной соляной кислоты; 1,6 мл ацетилацетона.

Гомогенизированный раствор, приготовленный при комнатной температуре, перемешивали и при 80°C в течение 3 часов. Затем раствор переместили в колбу 100 мл, где при перемешивании производили барботирование паром через трубу, соединенную с сосудом, содержащим H2O при температуре 85°C. Пар подавали в потоке азота (150 мл/мин) в течение 8 час, так что в раствор было введено 3,65 мл H2O.

Формование волокна проводили путем экструзии через фильеру с отверстиями 0,3 мм при давлении 2,5 атм. Полученные гелированные волокна затем гидролизовали в автоклаве паром при 120°C в течение 6 час.

Затем волокна сушили при 200°C в течение 2 час, нагрели до 600°C еще на 2 часа и затем нагрели до 1200°C со скоростью 40°C/мин. Полученный материал состоял из моноклинного ZrO2 в виде кристаллов, из ZrSiO4 в отдельной фазе и из аморфного оксида кремния.

Волокна испытали на прочность и исследовали фазовый состав аналогично примеру 1. Данные испытаний приведены в таблице.

Таблица
№ примера Фазовый состав волокна Прочность при растяжении, МПа Диаметр волокна, мкм
1 59%ZrO2-40%SiO2-1%Y2O3 1350 12
2 89,7%ZrO2-10%SiO2-0,3%CeO2 1400 15
3 80%ZrO2-12%SiO2-8%Y2O3 1500 14
4 (прототип) 70,9%ZrO2-29,1%SiO2 400 50

Из таблицы видно, что полученные предлагаемым способом волокна имеют в три с лишним раза меньший диаметр по сравнению с прототипом, что повышает их гибкость, а также имеют прочность в 3-4 раза выше при аналогичном фазовом составе.

Предлагаемый способ получения керамических волокон на основе оксидов циркония и кремния найдет применение при изготовлении высокотермостойких теплозащитных материалов, таких как нити, ткани, нетканые материалы, оплетки и шнуры, а также в качестве упрочнителей композиционных материалов в авиакосмической и других отраслях.

1. Способ получения керамического волокна на основе ZrO2 и SiO2, включающий приготовление волокнообразующего раствора, содержащего соединение Si(OR)4, где R - это алкил или арил, соединение циркония, кислоту и органический растворитель, концентрирование полученного раствора до требуемой вязкости, формование волокна из него и термообработку полученного волокна, отличающийся тем, что в качестве соединения циркония волокнообразующий раствор содержит водный раствор хлористого цирконила и дополнительно включает, по крайней мере, один прекурсор стабилизатора оксида циркония, а также водорастворимый полимер.

2. Способ по п.1, отличающийся тем, что в качестве прекурсора стабилизатора оксида циркония используют соли металла, выбранного из группы, включающей иттрий, церий, магний, кальций в количестве от 0,25 до 6 мол. % от содержания оксида циркония.

3. Способ по п.1, отличающийся тем, что в качестве водорастворимого полимера используют поливиниловый спирт, полиэтиленоксид, полиэтиленимин, поливинилпирролидон в количестве 2-10 вес. % от суммарного содержания основных компонентов волокнообразующего раствора.

4. Способ по п.1, отличающийся тем, что в качестве органического растворителя используют этанол, пропанол, ацетон, глицерин, этиленгликоль.

5. Способ по п.1, отличающийся тем, что концентрирование волокнообразующего раствора проводят под вакуумом.



 

Похожие патенты:
Настоящее изобретение относится к плавленым огнеупорным продуктам на основе оксида алюминия - оксида кремния - оксида циркония и может быть использовано в стеклоплавильных печах в контакте с расплавленным стеклом.
Изобретение относится к области технической керамики на основе диоксида циркония с трансформируемой тетрагональной (t') кристаллической фазой и может быть использовано для изготовления износостойких деталей в соединительных изделиях для волоконно-оптических линий связи, пар трения в насосах для перекачки абразивосодержащих и агрессивных жидкостей, деталей в условиях повышенных механических нагрузок.

Изобретение относится к области технологии производства прецизионных деталей компонентов волоконной оптики, а именно к технологии производства наконечников для волоконно-оптических соединителей.

Изобретение относится к порошковой металлургии и может быть использовано в производстве высокопрочных конструктивных и инструментальных материалов и изделий, например, волочильных инструментов.
Изобретение относится к плавленым и литым огнеупорным продуктам, имеющим высокую концентрацию оксида циркония, и может быть использовано в стекловаренных печах. Заявленный продукт содержит следующие компоненты на основе оксидов, мас.%: SiO2: от 3,5 до 6,0, Al2O3: от 0,7 до 1,5, Na2O+K2O: от 0,10 до 0,43, В2О3: от 0,05 до 0,80, CaO+SrO+MgO+ZnO: <0,4, P2O5: <0,05, Fe2O3+TiO2: <0,55, другие частицы: <1,5%, ZrO2+HfO2: дополнение до 100%.
Изобретение относится к изготовлению керамических изделий из материала на основе частично стабилизированного диоксида циркония: сверхострых и износостойких высокопрочных режущих инструментов для хирургии, травматологии, ортопедии и протезирования, безызносных пар трения для подшипников, мелющих тел, поршней тормозных дисков, фильер, вальцов, сопел, пружин и др.
Изобретение относится к химической промышленности, в частности к способам получения тонкодисперсных порошков на основе оксида циркония, который может быть использован для производства плотной износостойкой керамики, материалов для имплантологии, твердых электролитов.

Изобретение относится к области получения материалов на основе диоксида циркония, стабилизированного оксидом иттрия, и может быть использовано для изготовления композиционных керамических изделий, применяемых в электротехнике, машиностроении, химической, металлургической и других отраслях промышленности.
Изобретение относится к способу получения огнеупорного керамического материала на основе оксида гафния и может быть использовано в контакте с расплавленным материалом активной зоны ядерного реактора.

Изобретение относится к огнеупорному керамическому материалу и может быть использовано в качестве футеровки индукционной печи для исследования поведения расплава ядерного топлива.

Изобретение относится к производству огнеупорной смеси частиц на основе диоксида циркония, предназначенной для производства спеченных продуктов, используемых в установках металлургической промышленности, стекловаренных печах, нефтехимических реакторах и цементных печах. Смесь частиц, состоящая из более 92 мас.% частиц диоксида циркония, включает (по массе): (а1) более 60% частиц диоксида циркония, размер которых превышает 50 мкм, где по меньшей пере 90 мас.% указанных агрегированных частиц диоксида циркония содержат менее 50 мас.% диоксида циркония в моноклинной фазе; (а2) более 15% частиц диоксида циркония, имеющих размер менее 50 мкм, (б) 1-2% частиц диоксида кремния, имеющих размер менее 50 мкм; (в) 0,3-5% частиц, включающих один, два или три оксида, выбранных из группы: CaO, MgO, и Y2O3, где по меньшей мере 55 мас.% указанных частиц дополнительных оксидов обладают размером менее 50 мкм; (г) менее 1% частиц состоящих из «иных оксидов». В указанной смеси частиц содержится более 5% агрегированных частиц диоксида циркония, размером более 1 мм, и от 8 до 20% частиц матрицы из диоксида циркония размером менее 15 мкм включают более 95 мас.% диоксида циркония в моноклинной фазе. Технический результат изобретения - высокая механическая прочность продуктов из заявленной смеси частиц при высоких температурах и циклических температурных нагрузках. 4 н. и 12 з.п. ф-лы, 12 пр., 2 табл., 1 ил.

Способ получения керамики на основе диоксида циркония может быть использован в реставрационной стоматологии. Из исходных реагентов в виде водных растворов оксинитрата циркония (ZrO(NO3)2·2H2O), нитратов иттрия (Y(NO3)3·6H2O), алюминия (Al(NO3)3·9H2O) и водного раствора аммиака обеспечивают совместное осаждение гидроксидов циркония, иттрия и алюминия, гелеобразные осадки которых фильтруют и замораживают при температуре минус 20-25°С с образованием ксерогелей, которые подвергают процессу кристаллизации при температуре от 400°С до 500°С. Осуществляют формование полученных нанопорошков-прекурсоров методом двустороннего статического прессования при давлении 150 МПа без добавления связующего и обжиг в интервале температур 1100-1300°С с изотермической выдержкой в течение 2 ч, после чего керамические образцы удаляют из печи и подвергают быстрому охлаждению. Способ обеспечивает получение нанокристаллических порошков с требуемой размерной однородностью и химической чистотой состава, при этом снижается температура синтеза и спекания продукта, уменьшается продолжительность процесса фазообразования. Способ может быть осуществлен на типовом оборудовании и не требует дорогих реагентов. 2 ил., 2 табл.

Изобретение относится к способам изготовления керамических изделий из нанопорошков диоксида циркония и может быть использовано в машиностроении, химической промышленности и медицине для получения конструкционных и функциональных материалов. Способ изготовления керамических изделий включает механохимическую обработку нанопорошка диоксида циркония, полусухое одноосное холодное прессование с применением в качестве связующего водного раствора поливинилового спирта, сушку и спекание заготовки. Сушку сырой заготовки осуществляют в холодильной камере при температуре ниже 0°С. Предлагаемое изобретение позволяет повысить твердость и трещиностойкость керамических изделий. 2 пр.

Настоящее изобретение относится к монолитному керамическому телу с периферийной областью из смешанного оксида и металлической поверхностью и может быть использовано в качестве имплантата или защитного средства для людей, транспортных средств, зданий или космических аппаратов. Керамическое тело содержит оксид первого металла (I) (предпочтительно циркония или алюминия), периферийную область из смешанного оксида, которая содержит оксид первого металла (I) и второго металла (II), обладающего высоким сродством к кислороду (предпочтительно титана), и металлическую поверхность из металла (II) на периферийной области из смешанного оксида. Периферийная область из смешанного оксида содержит непрерывный концентрационный градиент первого металла (I), начиная от 100% в сердцевине и до 0% в переходной области к металлической поверхности керамического тела, и непрерывный концентрационный градиент второго металла (II) в обратном направлении, в пересчете на общее содержание металлов (I+II). Содержание кислорода в периферийной области из смешанного оксида остается постоянным, а монолитная структура керамического тела не содержит границ раздела фаз. Керамическое тело получают методом ионной имплантации металла (II) в керамическое тело, состоящее из оксида металла (I). Технический результат изобретения - увеличение срока службы и работоспособности изделий. 5 н. и 18 з.п. ф-лы, 10 ил.
Изобретение может быть использовано при изготовлении нейтронопоглощающих материалов для стержней регулирования систем управления и защиты ядерных реакторов. Способ получения керамических материалов на основе нанокристаллических порошков гафната диспрозия включает изготовление смешанного гидроксида диспрозия и гафния путем растворения в воде солей HfOCl2·8H2O и Dy(NO3)3·5H2O и добавления полученного раствора к раствору аммиака. Далее проводят фильтрацию и промывку полученного осадка, сушку с последующим прокаливанием до получения гафната диспрозия, его размол, прессование и отжиг полученных компактов. Стадию сушки и прокаливания смешанного гидроксида проводят под действием СВЧ-излучения с непрерывной мощностью 1,5-6,0 кВт. При этом ступенчато изменяют температуру в течение 1,0-1,5 час до получения нанокристаллического порошка гафната диспрозия. Изобретение позволяет сократить длительность сушки и прокаливания смешанного гидроксида диспрозия и гафния и получить керамические материалы с высокой плотностью. 4 пр.

Изобретение относится к композиционному материалу, состоящему из матрицы оксида алюминия и диспергированного в ней оксида циркония, и может быть использовано для изготовления искусственных протезов. Композиционный материал в качестве первой фазы содержит по меньшей мере 65 об.% оксида алюминия, в качестве второй фазы от 10 до 35 об.% оксида циркония, и дополнительную дисперсоидную фазу. Преимущественная часть оксида циркония, в пересчете на общее содержание оксида циркония, находится в виде тетрагональной фазы, при этом оксид циркония имеет средний размер частиц, составляющий от 0,1 до 0,5 мкм. Дисперсоидная фаза в качестве дисперсоидов содержит пластинки алюмината стронция, которые в связи с их кристаллической структурой способствуют деформациям сдвига на микроскопическом уровне. Доля химических стабилизаторов в указанном материале составляет для Y2O3≤1,5 мол.%, для CeO2≤3 мол.%, для MgO≤3 мол.% и для CaO≤3 мол.% в каждом случае в пересчете на содержание оксида циркония. Технический результат изобретения - уменьшение склонности материала к гидротермальному старению, повышение трещиностойкости и прочности. 2 н. и 17 з.п. ф-лы, 5 пр., 5 ил.

Изобретение относится к производству огнеупорных изделий. Технический результат изобретения заключается в повышении термоциклической устойчивости, прочности на изгиб, стойкости к коррозии и снижении коэффициента теплопроводности. Шихта содержит следующие компоненты, мол.%: Y2O3 - 5-10, Yb2O3 - 10-18, Nd2O3 -3-5, HfO2 - остальное. 3 пр., 2 табл.

Изобретение относится к области получения высокоплотной керамики на основе кубического диоксида циркония и может быть использовано в качестве износостойких изделий, а также в качестве твёрдого электролита. Керамический материал на основе кубического диоксида циркония, стабилизированного 8 мол.% оксида иттрия, содержит добавку силиката натрия в количестве 2-5 мас.%. Технический результат изобретения - получение материала повышенной прочности, спекающегося до плотного состояния при низкой температуре 1130-1150°C. Полученный материал характеризуется однородной структурой с открытой пористостью менее 1%, размером кристаллов 80-120 нм и высокими механическими характеристиками: прочностью при изгибе не менее 300 МПа и трещиностойкостью не менее 6,0 МПа∗м1/2. 1 пр., 1 табл.

Изобретение относится к области получения высокоплотной керамики на основе тетрагонального диоксида циркония. Разработанные материалы могут быть использованы для получения износостойких изделий, режущего инструмента, керамических подшипников, медицинских нерезорбируемых имплантатов. Керамический материал на основе диоксида циркония, стабилизированного 3 мол.% оксида иттрия, содержит добавку силиката натрия в количестве 2-5 мас.%. Технический результат изобретения - увеличение прочности материала, спекающегося до плотного состояния при низкой температуре 1130-1150°C. Полученный материал характеризуется нанокристаллической структурой, пористостью менее 0,01% и высокими механическими характеристиками: прочностью при изгибе не менее 350 МПа. 1 пр., 1 табл.

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Предложен способ получения пористого керамического биоматериала на основе диоксида циркония, включающий приготовление термопластичной смеси из дисперсного порошка диоксида циркония, стабилизированного 5 мас.% MgO, порообразователя и пластификатора с последующим формованием изделий и термообработкой. Термообработка включает предварительный обжиг с равномерным нагревом до температуры 250±5°C и выдержкой в течение 3 часов и окончательный обжиг с равномерным нагревом до температуры 1650±5°C и выдержкой в течение 1 часа. В качестве порообразователя используют порошки карбоната магния, гидроксида алюминия, в качестве пластификатора - парафин, воск при следующем соотношении компонентов, мас.%: MgCO3 10-12, Al(OH)3 5-10, парафин 10-20, воск 1-3, порошок ZrO2 (5 мас.% MgO) - остальное. Используемый порошок ZrO2 содержит фазу с тетрагональной кристаллической решеткой не менее 75%. Перед приготовлением термопластичной смеси стабилизированный порошок диоксида циркония активируют, получая порошок со средним размером частиц не более 0,5 мкм; максимальным размером частиц не более 1,0 мкм и формой, близкой к сферической. Техническим результатом является получение керамического биоматериала с улучшенными эксплуатационными характеристиками: пористостью не менее 40%, предел прочности при сжатии не менее 500 МПа и бимодальным распределением пористости, аналогичным природной кости. 5 з.п. ф-лы, 1 пр., 2 табл.
Наверх