Способ получения водородсодержащего газа

Изобретение относится к способу получения водорода, водород-метановой смеси, синтез-газа, содержащего в основном Н2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси. В способе в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы. Первый поток перед направлением на парциальное окисление смешивают с водяным паром и кислородсодержащим газом. После этого проводят каталитическую реакцию парциального окисления, продукты которой смешивают со вторым потоком и проводят каталитическую реакцию адиабатической конверсии с получением водородсодержащего газа. Проводят нагрев второго потока в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления первого потока. В качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления. Техническим результатом является снижение капитальных затрат, уменьшение содержания балластных газов в продукционном газе. 11 з.п. ф-лы, 1 ил., 4 табл., 1 пр.

 

Изобретение относится к способу получения водородсодержащего газа, водорода, водород-метановой смеси, синтез-газа, содержащего в основном H2 и СО, для производства водорода, спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша и может быть использовано в химической промышленности для переработки углеводородных газов, а также в технологиях применения водород-метановой смеси.

Известен способ получения синтез-газа, содержащего в основном H2 и СО, для производства спиртов, аммиака, диметилового эфира, этилена, для процессов Фишера-Тропша, описанный в патенте RU №2228901, дата публ. 2004.05.20, МПК С01В 3/38. Известный способ получения синтез-газа с заданным соотношением H2/СО в диапазоне от 1,0 до 2,0 включает две стадии: стадию А) парциального окисления и стадию Б) конверсии остаточного метана с продуктами стадии А) на катализаторе. Стадию А) парциального окисления проводят в две ступени: а) некаталитического парциального окисления природного газа кислородом с получением в продуктах реакции неравновесного содержания H2O и CH4 при мольном соотношении кислорода и метана, примерно равном 0,76-0,84, б) конверсии продуктов реакции ступени а) с корректирующими добавками CO2 и H2O или Н2О и СН4 с получением газовой смеси, которая проходит конверсию остаточного метана водяным паром на катализаторе. Способ позволяет производить синтез-газ с составом, который отвечает заданному соотношению СО/H2. Способ можно использовать для получения водорода, а также исходного сырья для дальнейших процессов синтеза спиртов, диметилового эфира, аммиака или других крупнотоннажных химических продуктов.

Однако описанный способ обладает рядом недостатков, к которым можно отнести функциональные и экономические ограничения применения способа, связанные с необходимостью подачи больших расходов кислорода (превышающих по массе расход конвертируемого природного газа), производство которого требует больших энергетических (до 1000 кВт·час/т) и капитальных затрат (до 1500 дол. США/кг·ч-1). Серьезной проблемой также является сажеобразование, резко снижающее активность катализаторов.

Известен способ получения водородсодержащего газа - аммиака из углеводородного сырья, водяных паров, воздуха, включает компримирование и очистку сырья от соединений серы, паровую и паровоздушную каталитическую конверсию метана, конверсию оксида углерода, очистку полученной азотоводородной смеси от кислородсодержащих соединений, компримирование, синтез аммиака в замкнутом цикле, использование неочищенного от соединений серы сырья в качестве топлива, утилизацию тепла дымовых газов и выделение их в окружающую среду и отличается тем, что часть сырья, равную 0,001-0,048 от количества углеводородного сырья, прошедшего очистку от соединений серы, сжигают в смеси с компримированным воздухом, а полученные дымовые газы в количестве 0,0146-1,685 от количества воздуха, направляемого на паровоздушную каталитическую конверсию метана, подают на паровоздушную каталитическую конверсию метана (патент RU2196733, дата публ. 20.01.2003 - аналог).

К недостаткам способа следует отнести низкую термодинамическую эффективность способа, связанную с затратами на компримирование воздуха, низкую степень конверсии метана и высокое содержание балластных газов (азот, аргон) в продуцируемом газе.

Известен способ получения водород-метановой смеси, описанный в заявке на изобретение RU №2012148149, дата подачи 18.10.2012, - прототип, в котором в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы, один из которых направляют на парциальное окисление, при этом первый поток направляют на парциальное окисление кислородсодержащим газом, а второй поток смешивают с водяным паром и пропускают через серию последовательных стадий, каждая из которых включает нагрев в нагревающем теплообменнике за счет отвода тепла от процесса парциального окисления первого потока, а затем через адиабатический реактор конверсии, заполненный насадкой катализатора. Недостатками данного решения являются высокие капитальные затраты и металлоемкость процесса, сниженная эффективность использования сырья.

Технический результат изобретения состоит в том, чтобы создать новый способ, позволяющий повысить эффективность конверсии низших алканов и термодинамическую эффективность способа, снизить капитальные затраты и металлоемкость, уменьшить содержание балластных газов (азот, аргон) в продуцируемом газе.

Поставленная задача решается тем, что:

В способе получения водородсодержащего газа, в котором в качестве источника сырья используют по крайней мере два параллельных потока, содержащих низшие алканы, один из которых направляют на парциальное окисление, первый поток направляют на смешение с водяным паром и кислородсодержащим газом, после чего проводят каталитическую реакцию парциального окисления, продукты которой смешивают со вторым потоком и проводят каталитическую реакцию адиабатической конверсии с получением водородсодержащего газа.

- проводят нагрев второго потока в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления первого потока;

- в качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления;

- проводят очистку потоков от соединений серы;

- проводят получение водяного пара за счет охлаждения водородсодержащего газа;

- в адиабатическом реакторе поддерживают температуру в диапазоне от 500°С до 700°С;

- низшие алканы содержат от одного до четырех атомов углерода, включая метан;

- давление потоков выбирают в диапазоне от 0.1 до 9.0 МПа;

- после выхода водородсодержащего газа из адиабатического реактора его подают на каталитическую конверсию моноксида углерода;

- парциальное окисление кислородсодержащим газом ведут в реакторе парциального окисления в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды такие, как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия;

- объемное содержание водяного пара перед первой стадией адиабатической конверсии второго потока поддерживают в диапазоне от 4 до 12 раз большем, чем объемное содержание алканов;

- насадка катализатора адиабатического реактора конверсии содержит в качестве активных компонентов металл, выбранный из группы родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. На фигуре дана схема реализации способа, где 1 - природный газ-метан, 2 - метан первого потока, 3 - метан второго потока, 4 - узел смешения первого потока, 5 - водяной пар, 6 - смеситель, 7 - кислородсодержащий газ, 8 - узел смешения окислителей, 9 - камера окисления, 10 - реактор парциального окисления, 11 - продукты окисления первого потока, 12 - узел смешения второго потока, 13 - адиабатический реактор, 14 - продуцируемый газ.

Примером реализации изобретения служит способ получения водородсодержащего газа, описанный ниже. В излагаемом примере осуществления изобретения в качестве низшего алкана применяется природный газ-метан, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам переработки природного и попутного газов.

Пример 1.

Общий поток природного газа 1 с давлением 3.0 МПа подвергают очистке от соединений серы (если они содержатся в виде примесей в природном газе) в пересчете на серу до массовой концентрации серы менее 0.5 мг/нм3, разделяют на два потока, первый поток 2 смешивают с перегретым потоком водяного пара высокого давления 5 в узле смешения 4 и полученную парогазовую смесь первого потока направляют в смеситель 6, в который подают также кислородсодержащий газ 7, предварительно смешанный с водяным паром 5 в узле смешения окислителей 8. В смеси с нагретым водяным паром из смесителя 6 полученная парогазовая смесь первого потока поступает в камеру окисления 9, где происходит реакция парциального окисления метана с нагревом парогазовой смеси первого потока, конвертируемой затем внутри зернистого слоя катализатора, размещаемого в реакторе парциального окисления 10. Из реактора 10 продукты окисления первого потока 11 подают в узел смешения второго потока 12, в котором происходит их смешение с метаном второго потока 3, после чего смесь газов подают в адиабатический реактор конверсии 13, в котором на катализаторе происходит конверсия парогазовой смеси второго потока с образованием продуцируемого газа 14, который потом могут направить на конверсию каталитическую конверсию монооксида углерода с последующим выводом из продуцируемого газа 14 диоксида углерода, используемого как товарный продукт или для захоронения в соответствии с Киотскими соглашениями. В последнем случае технология не имеет выброса парниковых газов.

В реакторе парциального окисления 10 реакцию ведут в зернистом слое в присутствии катализатора окисления, выбранного из ряда никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды такие, как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия. В качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления.

В адиабатическом реакторе 13, соответственно, поддерживают температуру в диапазоне ориентировочно от 500 до 700°С. Насадка катализатора адиабатического реактора конверсии 13 содержит в качестве активных компонентов металл, выбранный из группы родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения. В качестве катализатора адиабатического реактора конверсии 13 предпочтительно использовать никелевый катализатор типа ГИАП-16 или катализаторы марки KATALCO 25-4Q и KATALCO 57-4Q компании Johnson Matthey. Состав катализатора с изменением содержания платиноидов, а также металлов, влияющих на кинетику окисления оксида углерода водяным паром (реакция сдвига) позволит управлять содержанием водорода в конечном продукте.

В сырьевом газе 1, первом и втором потоках 2 и 3, соответственно, низшие алканы содержат от одного до четырех атомов углерода, включая метан, что позволяет использовать для получения продукта легкие углеводороды различного типа: попутные газы, газы коксования, газ угольных пластов, продукты ферментации сельскохозяйственных или муниципальных отходов и газообразные потоки нефтепереработки. В общем случае в первом и втором потоках 2 и 3, соответственно, состав газа может быть различным, что расширяет сферу применения предложенного способа.

Давление потоков выбирают в диапазоне ориентировочно от 0.1 до 9.0 МПа, что позволяет уменьшить размеры аппаратов, снизить газодинамические потери и затраты на компримирование.

Объемное содержание водяного пара перед реакцией адиабатической конверсии в реакторе 13 поддерживают в диапазоне ориентировочно от 2 до 8 раз большем, чем объемное содержание алканов. При снижении отношения пар/газ ниже 2 снижается эффективность процесса и растут капитальные затраты, что связано либо с необходимостью увеличить поток рециркуляции газов в связи с низкой степенью конверсии при указанной ниже температуре нагрева потока либо с необходимостью увеличить температуру нагрева потока свыше 1000-1200°С, что заставит использовать более дорогие материалы для теплообменника. Повышение отношения пар-газ свыше 8 также вызовет снижение эффективности процесса в связи с необходимостью производить избыточный водяной пар.

Из продуцируемого газа 14 в узле выделения водорода (на фигуре не показан) выделяют водород с помощью мембранной диффузии, короткоцикловой адсорбции или высокотемпературного электрохимического фильтра с протонной проводимостью. Задачи извлечения и концентрирования водорода в циклах нефте- и газоперерабатывающих производств успешно решаются с помощью мембранных и адсорбционных водородных установок. В частности, адсорбционные установки ГРАСИС, работающие на сверхкоротком цикле, предназначены для производства высокочистого водорода из газовых потоков и позволяют получать водород с чистотой до 99,9995% при минимальном падении давления в процессе разделения.

При электрохимическом выделении водорода особый интерес представляют протонные проводники: высокие концентрации протонов и высокая обратимость процессов позволяет рассматривать этот класс протонных проводников как одни из наиболее перспективных матриц для протонного транспорта. Размерный композитный эффект (значительное повышение проводимости в композитах типа «ионный проводник|инертный оксид») возможен в гидратированных высокотемпературных протонных проводниках со структурным разупорядочением.

Охлаждение продуцируемого газа 14 могут производить за счет нагрева входящих потоков, включая метан второго потока, за счет получения вторичного водяного пара или нагретой воды с последующей конденсацией воды в продуцируемом газе 14, что позволяет вернуть конденсат в процесс путем получения водяного пара 5.

В таблицах представлены расчеты процесса в первом потоке.

Составы и теплофизические характеристики конверсии первого потока при давлении 3.0 МПа.

Таблица 1
ПАРОГАЗОВАЯ СМЕСЬ 4 ПОСЛЕ СМЕШЕНИЯ В УЗЛЕ СМЕШЕНИЯ 4
пар:газ = 2.7400
температура = 500°С
вещество влажный газ, % сухой газ, %
CO2
N2
H2O
СН4
0.08021
0.22995
73.26203
26.42781
0.30000
0.86000
0.00000
98.84000
Таблица 2
ПАРОКИСЛОРОДНАЯ СМЕСЬ 1 НА ВЫХОДЕ ИЗ СМЕСИТЕЛЯ 8
пар:газ = 0.1000
температура = 450°С
вещество влажный газ, % сухой газ, %
O2
N2
H2O
AR
18.63636
71.81818
9.09091
0.45455
20.50000
79.00000
0.00000
0.50000
Таблица 3
ГАЗ ПЕРВОГО ПОТОКА НА ВХОДЕ В ЗЕРНИСТЫЙ СЛОЙ РЕАКТОРА 10
пар:газ = 1.157
температура = 1206°С
вещество влажный газ, % сухой газ, %
CO2
N2
H2O
AR
СН4
4.05829
31.05742
53.65376
0.19574
11.03480
8.75645
67.01173
0.00000
0.42234
23.80948
ГАЗ ПЕРВОГО ПОТОКА НА ВЫХОДЕ ИЗ ЗЕРНИСТОГО СЛОЯ РЕАКТОРА 10
пар:газ = 0.539
температура = 650°С
вещество влажный газ, % сухой газ, % м3
CO2 6.48068 9.97522 175.365
СО 4.48694 6.90640 121.415
Н2 25.59176 39.39144 692.502
N2 26.38658 40.61485 714.010
AR 0.16630 0.25597 4.500
H2O 32.52362 0.00000 1022.804
СН4 1.85556 2.85612 50.211
Таблица 4
ПРОДУЦИРУЕМЫЙ ГАЗ НА ВЫХОДЕ ИЗ РЕАКТОРА 13
Компонент влажн., % сух., % м3
CO2
СО
Н2
N2
AR
H2O
СН4
7.43059
2.58515
24.86273
23.08445
0.27236
30.29032
11.47439
10.65934
3.70845
35.66612
33.11513
0.39071
0.00000
16.46026
237.358
82.578
794.199
737.395
8.700
967.575
366.531
100.000 100.000 3194.336

Коррекцию температуры и состава газов в реакторе парциального окисления 10 могут проводить путем изменения расхода парогазовой смеси первого потока 2.

Таким образом, в предложенном изобретении удалось снизить капитальные затраты и металлоемкость производства водородсодержащего газа, повысить коэффициент конверсии низших алканов и термодинамическую эффективность способа, снизить содержание балластных газов (азот, аргон) в продуцируемом газе.

Полученные продукты - водородсодержащий газ и его производные (водород, метано-водородная смесь) могут затем использовать в химической промышленности и металлургии, для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

1. Способ получения водородсодержащего газа из сырья, содержащего низшие алканы, взятого, по крайней мере, в виде двух параллельных потоков, первый из которых направляют на парциальное окисление, характеризующийся тем, что перед парциальным окислением первый поток направляют на смешение с водяным паром и кислородсодержащим газом, после чего проводят каталитическую реакцию парциального окисления, продукты которой смешивают со вторым потоком и проводят каталитическую реакцию адиабатической конверсии в адиабатическом реакторе с получением водородсодержащего газа.

2. Способ по п.1, отличающийся тем, что проводят нагрев второго потока в нагревающем теплообменнике за счет отвода тепла от продуктов парциального окисления первого потока.

3. Способ по п.1 или 2, отличающийся тем, что в качестве кислородсодержащего газа используют сжатый воздух или выхлопные газы газовой турбины высокого давления.

4. Способ по п.1 или 2, отличающийся тем, что проводят очистку потоков от соединений серы.

5. Способ по п.1 или 2, отличающийся тем, что проводят получение водяного пара за счет охлаждения водородсодержащего газа.

6. Способ по п.1 или 2, отличающийся тем, что в адиабатическом реакторе поддерживают температуру в диапазоне от 500 до 700°С.

7. Способ по п.1 или 2, отличающийся тем, что низшие алканы содержат от одного до четырех атомов углерода, включая метан.

8. Способ по п.1 или 2, отличающийся тем, что давление потоков выбирают в диапазоне от 0.1 до 9.0 МПа.

9. Способ по п.1 или 2, отличающийся тем, что после выхода водородсодержащего газа из адиабатического реактора его подают на каталитическую конверсию моноксида углерода.

10. Способ по п.1 или 2, отличающийся тем, что парциальное окисление кислородсодержащим газом ведут в реакторе парциального окисления в присутствии катализатора окисления, выбранного из ряда: никель, рутений, родий, палладий, иридий, нанесенных на огнеупорные оксиды, такие как кордиерит, муллит, оксид хрома, титанат алюминия, шпинели, диоксид циркония и оксид алюминия.

11. Способ по п.1 или 2, отличающийся тем, что объемное содержание водяного пара перед стадией адиабатической конверсии поддерживают в диапазоне, большем в 4 ÷ 12 раз, чем объемное содержание алканов.

12. Способ по п.1 или 2, отличающийся тем, что насадка катализатора адиабатического реактора конверсии содержит в качестве активных компонентов металл, выбранный из группы: родий, никель, платина, иридий, палладий, железо, кобальт, рений, рутений, медь, цинк, железо, их смеси или соединения.



 

Похожие патенты:

Изобретение относится к способу и устройству для производства железа прямым восстановлением. Устройство содержит установку риформинга с внутренним нагревом для осуществления риформинга природного газа добавлением пара и кислорода к природному газу и частичным сжиганием природного газа для производства газа-восстановителя, содержащего водород и монооксид углерода, для производства железа прямым восстановлением, печь производства железа прямым восстановлением для производства железа прямым восстановлением из сырья, содержащего оксид железа, с использованием газа-восстановителя, устройство удаления диоксида углерода для удаления диоксида углерода из отходящего газа, получаемого в печи производства железа прямым восстановлением с получением газа, из которого удален диоксид углерода, рециркуляционную линию отходящего газа для рециркуляции газа, из которого удален диоксид углерода, в печь производства железа прямым восстановлением в качестве газа-восстановителя, теплообменник для увеличения температуры газа, из которого удален диоксид углерода, до диапазона от 400 до 700 ºС отходящим газом, получаемым в печи производства железа прямым восстановлением, перед рециркуляцией газа, из которого удален диоксид углерода, в качестве газа-восстановителя для производства железа прямым восстановлением.

Изобретение относится к технологии переработки углеводородов, к способам и устройствам для переработки углеводородного газа в стабильные жидкие синтетические нефтепродукты.

Изобретение может быть использовано в химической промышленности и энергетике. Устройство (1) для получения водорода, установленное в энергоблоке, включает увлажнитель (2), который снабжен технологической средой, содержащей окись углерода, предназначенный для смешивания технологической среды с паром.

Изобретение относится к химической, нефтехимической, газовой промышленности, в частности к технологиям производства синтетического жидкого топлива. Изобретение относится к способу получения моторного топлива путем его каталитического синтеза из продуктов пиролиза углеводородов, содержащих низшие алканы.
Изобретение относится к способу утилизации газов доменного процесса и производства кокса. Способ включает разделение коксового газа от коксования угля на водород и содержащий углеводороды поток остаточного газа.
Изобретение относится к способам каталитической конверсии метана и может быть использовано в топливной, химической и металлургической промышленности. Способ конверсии метана включает взаимодействие метана с водяным паром на никельсодержащем катализаторе.

Изобретение может быть использовано в химической промышленности. Способ одновременного получения потока водорода А, подходящего для получения продукта А; обогащенного водородом потока синтез-газа Б, подходящего для получения продукта Б; обедненного водородом потока синтез-газа В, подходящего для получения продукта В; и, необязательно, потока монооксида углерода Г, подходящего для получения продукта Г, из единого потока синтез-газа X, характеризуется тем, что единый поток синтез-газа Х имеет оптимизированное для производства продукта В молярное отношение синтез-газа, определяемое как отношение Н2/CO.

Изобретение относится к области химии, а более точно к способу получения водорода. Способ получения водорода путем взаимодействия алюминия и воды представляет собой псевдоожижижение алюминия в виде нанопорошока потоком сжатого инертного газа и приведение в контакт полученного реагента с водяным паром в реакционной зоне, в результате чего флюидизированный нанопорошок алюминия самовоспламеняется и горит в водяном паре в объеме реакционной зоны, с получением высоких температур для газификации наночастиц алюминия и образованием газофазной реакционной среды с протеканием в ней высокотемпературного синтеза и получением молекулярного водорода, который непрерывно отделяют с помощью мембраны, селективно проницаемой для водорода, в качестве целевого продукта от побочных продуктов выхлопа реактора, таких как остатки паров воды, инертного газа и дополнительных продуктов, полученных при синтезе, например, дисперсных частиц кристаллического корунда.

Изобретение относится к области химии. Устройство для получения синтез-газа из жидких или газообразных углеводородов состоит из секционного корпуса 1 с двухслойными металлическими охлаждаемыми стенками 2, внутренней полости 3, форсуночной головки 4 для подачи сырья и кислорода, расположенной в верхней части корпуса 1.

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода.

Изобретение может быть использовано при утилизации перфторуглеродных текучих сред и холодильных агентов. Способ обработки и/или разложения текучих сред органических галоидов включает осуществление в первом реакторе реакции одного или нескольких органических галоидов, безводного водорода и безводного диоксида углерода для получения моноксида углерода и одного или нескольких безводных галоидов водорода. Затем осуществляют сбор по меньшей мере части безводных галоидов водорода и подачу моноксида углерода потоком во второй реактор. Во втором реакторе проводят реакцию моноксида углерода с водой для получения водорода и диоксида углерода. Далее из водорода и диоксида углерода удаляют воду для получения безводного водорода и безводного диоксида углерода и возвращают водород и диоксид углерода в первый реактор. Изобретение позволяет уменьшить количество вредных для окружающей среды выбросов при снижении температуры переработки органических галоидов. 2 н. и 17 з.п. ф-лы, 2 ил., 6 табл., 6 пр.
Изобретение относится к способу эксплуатации электростанции IGCC с интегрированным устройством для отделения CO2. При этом способе технологический газ с содержанием Н2 и СO2 разделяют посредством адсорбции с переменным давлением (PSA) на технически чистый водород и фракцию с высоким содержанием CO2, причем фракция с высоким содержанием СО2 выделяется в результате снижения давления в виде отходящего газа установки PSA. Образующийся водород сжигается в по меньшей мере одной газовой турбине, предназначенной для генерации тока. Отработавший газ газовой турбины используется в котле-утилизаторе для производства водяного пара, расширяющегося в паровой турбине, также предназначенной для генерации тока. Отходящий газ установки PSA сжигается в отдельном котле с использованием технически чистого кислорода, причем образуется дымовой газ с температурой свыше 1000°С. Дымовой газ используется для перегрева подаваемого в паротурбинный процесс пара и/или для производства пара с большим давлением для паротурбинного процесса. При использовании отходящего тепла газовой турбины и отходящего тепла дымового газа получают перегретый пар с давлением свыше 120 бар и температурой более 520°С для паротурбинного процесса. Изобретение позволяет повысить общий КПД электростанции IGCC с интегрированным устройством отделения СО2. 12 з.п. ф-лы.

Изобретение относится к химической и автомобильной промышленности и может быть использовано при получении топлива для топливных ячеек и транспортных средств. Сначала получают гидрогенизированное ароматическое соединение в присутствии катализатора гидрогенизации; затем отделяют полученное соединение от реакционной смеси и очищают его. Очищенное соединение используют в качестве носителя водорода для его хранения и/или транспортировки. Для производства водорода проводят дегидрогенизацию гидрогенизированного ароматического соединения в присутствии катализатора дегидрогенизации. При гидрогенизации ароматического соединения используют реакционный газ, полученный посредством реакции риформинга и реакции конверсии, содержащий от 30 до 70 об.% водорода. В качестве ароматического соединения может быть использован толуол, а в качестве гидрогенизированного ароматического соединения - метилциклогексан. Одновременно с реакцией гидрогенизации ароматического соединения проводят реакцию метанизации остающегося в реакционном газе монооксида углерода. Изобретение позволяет эффективно получить органический гидрид в промышленных масштабах при низких затратах. 4 з.п. ф-лы, 2 табл., 2 ил., 2 пр.

Изобретение относится к способу и устройству для конверсии моноксида углерода и воды в диоксид углерода и водород, для промышленного использования. Способ выполнения реакции сдвига моноксида углерода с проведением реакции в жидкой фазе и удалением получаемого газа, диоксида углерода и/или водорода, характеризуется тем, что в качестве первого растворителя используют сухой метанол для поглощения моноксида углерода с одновременным образованием метилформиата и в качестве второго растворителя используют воду в области высвобождения получаемого газа, чтобы избежать потерь водорода с потоком диоксида углерода. Изобретение обеспечивает высокую конверсию при связывании моноксида углерода. 3 н. и 10 з.п. ф-лы, 1 ил.
Изобретение относится к катализаторам, используемым для получения водорода или синтез-газа для химического производства в процессах парциального окисления, парового реформинга и автотермического реформинга углеводородного сырья. А именно изобретение относится к катализатору окислительной конверсии углеводородных газов с получением оксида углерода и водорода, содержащему металлы платиновой группы и оксидную композицию, при этом металлы платиновой группы включают Pt, Pd и Rh, а оксидную композицию получают из смеси золя гидроксидов Al, Si и Zr с частицами оксидов Ni, Mg и/или Ce размером 5-30 нм, полученными методом спрей-пиролиза раствора солей Ni, Mg и/или Ce. Технический результат заключается в получении каталитической системы с высокой дисперсностью активных компонентов, стабилизированных на поверхности носителя и имеющих низкую скорость коалесценции активных частиц. 2 з.п. ф-лы, 3 табл., 3 пр.
Изобретение относится к способу эксплуатации коксовой печи. Согласно способу возникающий в процессе коксования коксовый газ в виде полезного газа подается на материальную переработку, при этом от коксового газа отделяют водород, а для создания части необходимой для процесса коксования тепловой энергии в качестве горючего газа подается синтез-газ, который получают из ископаемого топлива посредством процесса газификации, при этом в качестве горючего газа используют первую долю полученного синтез-газа, при этом дополнительную долю полученного синтез-газа используют для дальнейшего синтеза с отделенным от коксового газа водородом. Изобретение обеспечивает эффективное использование возникающего коксового газа при эксплуатации коксовой печи. 24 з.п. ф-лы.

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности центры гидратации диметоксиметана и паровой конверсии метанола/формальдегида. При этом в качестве активного компонента паровой конверсии метанола используются медьсодержащие системы на основе оксида меди, нанесенные на оксид алюминия - активный компонент гидратации диметоксиметана. Предлагаемый катализатор обладает высокой каталитической активностью, селективностью и стабильностью в отношении паровой конверсии диметоксиметана. Изобретение также относится к способу получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды с использованием данного катализатора. 2 н. и 6 з.п. ф-лы, 4 табл., 12 пр.

Изобретение относится к области нефтехимии и может быть использовано для синтеза метанола, диметилового эфира, углеводородов по методу Фишера-Тропша. Метансодержащее сырьё подвергают окислительной конверсии при температуре 650-1100°C в лифт-реакторе. В качестве окислителя используют микросферический или дроблёный катализатор на основе оксидов металлов, способных к многократным окислительно-восстановительным переходам. Восстановленный катализатор регенерируют путем его окисления в регенераторе и снова направляют в реактор снизу вверх в потоке метансодержащего сырья, который работает в режиме сквозного потока и времени пребывания сырья в зоне реакции 0,1-10 с. Выходящий из реактора восстановленный катализатор отделяют от продукта - синтез-газа - и направляют в регенератор. Регенерацию катализатора проводят в псевдоожиженном, или форсированном псевдоожиженном, или полусквозном потоке путем окисления кислородсодержащим агентом. Полученный синтез-газ имеет отношение Н2/СО в пределах 7,5-2,5. Повышается удельный съём продукта, обеспечивается возможность использования углеводородного сырья, содержащего диоксид углерода, при снижении опасности взрыва и возгорания, низких энергозатратах. 4 з.п. ф-лы, 3 табл., 13 пр.

Изобретение может быть использовано в химической промышленности и в энергетике. На стадии 12 получают синтез-газ 50, содержащий по меньшей мере CO и H2 и имеющий первую температуру по меньшей мере 900 °C, посредством реакции углеводородного сырья с кислородом. На этапе разделения воздуха 16 в ионитовом мембранном блоке 16.1 получают поток пермеата 42, состоящий преимущественно из кислорода, и поток обедненного кислородом воздуха 44, имеющего вторую температуру, которая ниже первой и равна по меньшей мере 600 °C. Поток 44 косвенно нагревают 24 до по меньшей мере 900 °C синтез-газом 50 и частично расширяют в турбине 28 для производства электроэнергии с получением частично расширившегося отводимого потока обедненного кислородом воздуха 54. Охлажденный синтез-газ 58 подают для дополнительного охлаждения в котел-утилизатор 26, а затем на этап синтеза углеводородов 30. В компрессоре 22 повышают давление потока пермеата 42 и подают его на стадию 12 получения синтез-газа. Поток сжатого воздуха 38 нагревают 20 до температуры не ниже 700 °C посредством передачи тепла с этапа ядерной реакции. Изобретение обеспечивает утилизацию тепла ядерной реакции и получение потоков с высоким энергосодержанием при отсутствии вредных выбросов. 10 з.п. ф-лы, 4 ил.

Изобретение может быть использовано в химической промышленности. Способ совместного производства метанола и аммиака из исходного углеводородного сырья осуществляют посредством следующих этапов. Сначала получают синтез-газ производства метанола, содержащий водород, оксиды углерода и азот, посредством парового риформинга исходного углеводородного сырья на первичной стадии риформинга и затем на вторичной стадии риформинга с воздушным дутьем. После этого проводят каталитическую конверсию оксидов углерода и водорода синтез-газа на однопроходной стадии синтеза метанола и отведение выходящего продукта, содержащего метанол, и отходящего газового потока, содержащего азот, водород и неконвертированные оксиды углерода. Неконвертированные оксиды углерода газового потока с предыдущего этапа удаляют путем гидрогенизации до метана на стадии каталитической метанации с образованием синтез-газа, имеющего молярное отношение H2:N2, равное 3:1. Синтезируют аммиак каталитической конверсией азота и водорода и отводят продукт, содержащий аммиак, и отходящий газовый поток, содержащий водород, азот и метан. Предложенное изобретение обеспечивает создание простого и дешевого способа совместного производства метанола и аммиака. 6 з.п. ф-лы, 1 ил., 1 табл.
Наверх