Способ синтеза полых наночастиц γ-al2o3

Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3. Способ синтеза полых наночастиц γ-Al2O3 реализуют в две стадии, причем на первой проводят плазменно-дуговой синтез алюминий-углеродного материала, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между графитовым электродом и металл-углеродным композитным электродом и распыление композитного электрода, выполненого в виде графитового стержня с полостью, в которой установлена алюминиевая проволока при весовом соотношении C:Al 15:1, а на второй - отжиг синтезированного материала, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа. Технический результат - получение при синтезе 100% пригодного для использования в каталитических приложениях и материаловедении нанодисперсного порошка оксида алюминия γ-Al2O3, частицы которого представляют собой полые сферы диаметром 6-14 нм. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к области нанотехнологий. Изобретение относится к плазменно-дуговой технологии синтеза наноструктурированных композиционных материалов, в частности полых наночастиц γ-Al2O3.

В современной промышленности широко используется керамика на основе Al2O3 в качестве конструкционного материала, обладающего рядом уникальных свойств, таких как высокая механическая прочность и твердость, термостойкость, химическая инертность, изоляционные свойства. Другим важным приложением материалов на основе Al2O3 является создание различных каталитически активных комплексов для нефтепромышленности и очистки индустриальных выбросов в атмосферу.

Известен способ формирования полых наноструктур, основанный на эффекте Киркендалла [Hong Jin Fan, Ulrich G9sele, and Margit Zacharias. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small 2007, 3, No. 10, 1660 - 1671]. На его основе был развит синтез полых наночастиц Co3S4, CoO, CoSe, CoSe2, CoTe, Cu2O, ZnS, PbS, FexOy, AuPt, Ni2P, Co2P, AlN, AlN, SiO2 и др. Данный способ позволяет синтезировать полые частицы Al2O3 размером не более 8 нм [R. Nakamura, D. Tokozakura, H. Nakajima, J.-G. Lee, and H. Mori Hollow oxide formation by oxidation of Al and Cu nanoparticles. J. Appl. Phys. 101, 074303 (2007)].

Ограничения связаны с замедлением диффузии кислорода через оксидную пленку на внешней поверхности частицы.

Синтез полых наночастиц микронного масштаба различных соединений реализуют аэрозольными способами [Roth С., Koebrich R. Production of hollow spheres // J. Aerosol. Sci. 1988. V.19. N 7. P.939], включая различные фазы оксида алюминия [Nadler J.H., Sanders Т. H., Cochran J.K. Aluminium hollow sphere processing // Mater. Sci Forum (Pt. 1. Aluminium Alloys: Their Physical and Mechanical Properties). P. 495; Kato A., Hirata Y. Sintering behaviour of beta-type alumina powders prepared by spray-pyrolysis technique and electrical conductivity of sintered body // Kyushu UniV. 1985. V. 45. N4. P. 251]. Также можно отметить способы на основе электрохимического разделения [Sung Jong Bae, Sung Jong Yoo, Yuntaek Lim, Sojeong Kirn, Yirang Lim, Junghun Choi, Kee Suk Nahm, Seung Jun Hwang, Tae-Hoon Lim, Soo-Kil Kirn and Pil Kim. Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance.]. Mater. Chem., 2012, 22, 8820].

Минимальные размеры получаемых полых наночастиц, включая наночастицы γ-Al2O3, в указанных способах лежат в микронном диапазоне, 10 мкм и более.

Образование полых или сплошных частиц в известных и широко применяемых способах зависит от концентрации и химической природы реагентов, и на настоящий момент невозможно точно прогнозировать условия, при которых получатся полые частицы.

В заявляемом изобретении для синтеза полых наночастиц оксида алюминия используют электрическую дугу постоянного тока в среде инертного газа при пониженном давлении.

Из области техники известны способы синтеза наноструктурированных материалов различного состава с применением метода газофазного разряда с распылением исходных материалов и их последующей термической прокалкой в различных средах [John Henry J. Scott and Sara A. Majetich. Morphology, structure, and growth of nanoparticles produced in a carbon arc // 1995. -. Phys. Rew. B. - Vol.52. - No 17. - Pp.12564-12571; Мальцев В.А., Новопашин С.А., Нерушев О.А., Сахапов С.З., Смовж Д.В. Синтез металлических наночастиц на углеродной матрице // Российские нанотехнологии. - 2007, Том 2, Вып.5-6. Стр. 85-89]. Для синтеза металл-углеродных наночастиц используют композитный металл-углеродный анод, представляющий собой графитовый стержень с просверленной по центру полостью, наполненной металлическим материалом. В дуге постоянного тока происходит эффективная эрозия анода, которая приводит к образованию в высокотемпературной области атомарных компонент, входящих в состав анода. Варьируя электрические параметры разряда, состав распыляемого электрода, вид и давление буферного газа, удается управлять морфологией и составом синтезируемого материала, в частности удается синтезировать наночастицы размерами 1-100 нм.

Методика доступна для металлов, у которых при температурах, реализуемых в дуге (3000-3500 К), происходит интенсивное испарение. Большинство металлов может быть распылено данным способом.

Известные из области техники плазменно-дуговые способы синтеза наночастиц металлов направлены на получение покрытых аморфным углеродом наночастиц металлов. В частности изобретения [US 5783263, 21.07.1998, B22F 1/00, B22F 1/02, B22F 9/14, B22F 9/20, C01B 31/30, H01F 1/00, H01F 1/055, B22F 9/02, B22F 9/16, C01B 31/00, H01F 1/032; US 5549973, 1996-08-27, C01B 31/02, B22F 1/00, B22F 1/02, B22F 9/14, B22F 9/20, C01B 31/30, C22C 45/08, D06M 11/00, H01F 1/00, B22F 9/02, B22F 9/16], в которых используют совместную конденсацию углерода и металла в дуговом разряде и получают углеродную сажу с покрытыми аморфным углеродом наночастицами ферро- и парамагнетиков. Для отделения наночастиц металлов от немагнитных частиц в саже используют градиент магнитного поля.

В изобретении [RU 2433888, 21.05.2010, B82B 3/00, B22F1/00, B22F1/02, B22F 9/14, B22F 9/20, B22F 9/02, B22F 9/16, C01B 31/30, C01B 31/00, C01B 31/34] реализован плазменно-дуговой синтез наночастиц карбида вольфрама. Способ включает откачивание вакуумной камеры, наполнение инертным газом, зажигание электрической дуги между графитовым и композитным электродами, поддержание условий горения дуги путем варьирования межэлектродным расстоянием, распыление композитного электрода, представляющего собой графитовый стержень, заполненный соединением вольфрама: WO3, W(CO)6, осаждение наноструктурированного материала на охлаждаемый экран.

Указанный способ близок к заявленному до совокупности существенных признаков, но предназначен для получения другого наноструктурированного материала, представляющего собой углеродную матрицу с наночастицами карбида вольфрама.

Задачей, на решение которой направлено настоящее изобретение, является разработка способа получения нового продукта, пригодного для использования в каталитических приложениях и материаловедении - нанодисперсного порошка оксида алюминия γ-Al2O3, частицы которого представляют собой полые сферы нанометровых размеров.

Также задачей, на решение которой направлено настоящее изобретение, является разработка способа, позволяющего синтезировать до 100% полых наночастиц оксида алюминия в полученном материале.

Поставленная задача решается путем сочетания известных способов, а именно плазменно-дугового синтеза металл-углеродного материала и отжига материала в кислородсодержащей атмосфере, приводящего к достижению нового результата - получению нового материала, представляющего собой практически на 100% полые наночастицы γ-Al2O3 с характерными размерами 6-14 нм и толщиной стенки 2-3 нм. Новый материал может найти применение в каталитических приложениях и материаловедении.

Способ синтеза полых наночастиц γ-Al2O3 согласно изобретению реализован в две стадии, осуществляемые последовательно: первая - плазменно-дуговой синтез металл-углеродного материала; вторая - отжиг материала в кислородсодержащей атмосфере.

Плазменно-дуговой синтез алюминий-углеродного материала включает откачивание вакуумной камеры, наполнение ее инертным газом, выбираемым из группы: He, Ne, Ar, Kr, Xe, зажигание электрической дуги постоянного тока между подвижным графитовым электродом и неподвижным композитным (металл-углеродным) электродом, представляющим собой графитовый стержень с просверленной по центру полостью, в которой установлена алюминиевая проволока так, что весовое соотношение C:Al составляет 15:1, поддержание условий горения дуги путем варьирования межэлектродным расстоянием, распыление в электрической дуге композитного электрода. Осаждение наноструктурированного материала происходит на охлаждаемый съемный экран. На стадии плазменного синтеза происходит атомарное распыление алюминия и последующая совместная конденсация углерода и алюминия. Синтезированный материал представляет собой углеродные агломераты размером 10-30 нм, имеющие структуру аморфной углеродной матрицы с внедренным в нее высокой степени дисперсности алюминием, находящимся частично или полностью в карбидном соединении.

Отжиг позволяет удалить углеродную матрицу и синтезировать полые наночастицы оксида алюминия. Отжиг синтезированного материала включает помещение синтезированного алюминий-углеродного материала в печь, нагрев его в кислородсодержащей среде при атмосферном давлении до температуры 400-950°C, выдержка в течение одного часа и медленное охлаждение. Одного часа выдержки достаточно для равномерного прогрева материала до заданных температур и для завершения всех структурных (фазовых) превращений. При отжиге в кислородсодержащей атмосфере происходит окисление углерода с поверхности агломератов, что приводит к уменьшению их размера и увеличению концентрации алюминия в поверхностных слоях частицы. Одновременно идет процесс окисления алюминия, и при температурах 650-700°C протекает реакция превращения карбида алюминия в оксид. Данный процесс происходит до тех пор, пока не образуется плотный каркас из оксида алюминия, а последующий процесс окисления углерода идет за счет диффузии кислорода внутрь частицы и вывода продуктов окисления наружу. В процессе отжига материала происходит постепенное структурирование материала, и при температуре 950°C существенная доля (более 95%) материала представляет собой полые оболочки. Форма структур в материале с увеличением температуры отжига становится более сферической, и характерный масштаб структур изменяется от 10-30 нм в исходном материале до 6-14 нм после отжига.

Первую стадию процесса осуществляют в плазмодуговом реакторе, включающем герметичную вакуумную камеру из нержавеющей стали с неподвижным расходуемым композитным электродом и подвижным графитовым электродом, съемный экран для осаждения синтезируемого материала, систему вакуумной откачки, источник электропитания постоянного тока, систему водяного охлаждения, систему подачи и сброса газа, измерительные системы для контроля давления, электрических параметров разряда, температуры, расхода газовой фазы.

Вторую стадию процесса реализуют в печи, выполненной в виде установленной под углом трубы, в которую помещают салазки с обрабатываемым материалом. Температуру контролируют системой датчиков.

Оценка элементного состава синтезированного материала показала, что количество алюминия при его исходной весовой концентрации 6,7% в углеродном агломерате материала размером 30 нм эквивалентно количеству оксида алюминия в сферической полой частице диаметром 10 нм и толщиной стенки 2,5 нм.

Практическая реализация.

Эксперименты проведены в электрической дуге постоянного тока, при давлении буферного газа (гелий) 25 тор, при токе дуги 100 А. Распыляемый электрод (анод) представлял собой металл-углеродный композитный стержень длиной 70 мм и диаметром 7 мм с весовым соотношением C:Al-15:1. Распыленный материал осаждался на охлаждаемом экране. Затем синтезированный композиционный материал отжигался в воздухе при температурах 400-950°C.

Анализ синтезированного материала проводился методами просвечивающей электронной микроскопии (ТЕМ); термогравиметрии (TGA); рентгенофазового анализа (XRS) в диапазоне углов 10-75° с шагом по 2θ=0,05° и временем накопления 3 секунды в каждой точке, использовалось монохроматическое CuKα-излучение (λ=1.5418 А).

На фиг.1 приведены спектры XRS графита (1), чистого углеродного материала (2), и алюминий-углеродного материала (3), полученных при распылении композитного электрода, на которых отмечены линии соответственно графита (C), фуллереновых фаз углерода (F) и карбида алюминия (Al4C3). Из фиг.1 видно, что синтезированный материал представляет собой углеродную аморфную матрицу, в которую внедрен высокой степени дисперсности алюминий, частично или полностью в карбидном соединении.

Термогравиметрический анализ (TGA) алюминий-углеродного образца показан на фиг.2. TGA проведен на воздухе при линейном возрастании температуры до 1200°C в течение двух часов. Фиг.2 показывает, что основная потеря массы идет в диапазоне температур 300-950°C. Этот диапазон включает в себя температуры окисления всех углеродных форм, а также реакцию карбида алюминия с кислородом при температурах 650-700°C: Al4C3+6O2=2Al2O3+3CO2. Масса оставшегося материала составляет 10-13% от исходной массы и соответствует массовой доле алюминия в исходном образце с учетом его окисления.

Распределение частиц по размеру, измеренное путем обработки ТЕМ изображений приведено на фиг.3 (на вкладке - распределение по размеру толщин оболочек). При элементном анализе материла после отжига углерода в образце не обнаружено.

Рентгенофазный анализ показал, что синтезированные полые оболочки представляют собой J-фазу оксида алюминия. На фиг.4 приведено сопоставление XRS табличных данных γ-Al2O3 (кривая 1) и синтезированного материала (кривая 2).

Морфология материала, отожженного при температуре 950°C, приведена на фиг.5. Видно, что практически все частицы представляют собой полые оболочки.

Таким образом, плазменно-дуговой синтез алюминий-графитового материала с последующим отжигом в кислород содержащей атмосфере позволил синтезировать полые наночастицы γ-Al2O3 с характерными размерами 6-14 нм и толщиной стенки 2-3 нм, причем синтезированный материал состоял практически на 100% из полых наночастиц.

1. Способ синтеза полых наночастиц γ-Al2O3 в плазме электрического разряда, включающий откачивание вакуумной камеры, наполнение ее инертным газом, зажигание электрической дуги постоянного тока между подвижным графитовым электродом и неподвижным композитным металл-углеродным электродом и распыление композитного электрода, отличающийся тем, что в плазме электрического разряда в атмосфере инертного газа распыляют металл-углеродный композитный электрод, состоящий из графитового стержня с просверленной по центру полостью, в которой размещена проволока из алюминия, весовое соотношением C:Al в котором составляет 15:1, затем проводят отжиг синтезированного в плазме электрического разряда композиционного материала, представляющего собой углеродную аморфную матрицу, в которую внедрен высокой степени дисперсности алюминий, частично или полностью в карбидном соединении, в кислородсодержащей среде при атмосферном давлении и температуре 400-950°C в течение одного часа.

2. Способ по п.1, отличающийся тем, что инертный газ выбирают из группы, включающей He, Ne, Ar, Kr, Xe.



 

Похожие патенты:

Изобретение относится к биотехнологии. Заявлен иммуноадъювант, представляющий собой наночастицы гидроксиапатита с адсорбированным синтетическим пептидом - лигандом CXCR 1 и 2 рецепторов.

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами.

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер.

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч.

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором.

Изобретение относится к способу получения насыщенных карбоновых кислот, в частности к новому способу гидрирования непредельных карбоновых кислот, и позволяет получать насыщенные карбоновые кислоты, которые находят применение в качестве полупродуктов в органическом синтезе.
Изобретение может быть использовано в химической промышленности для тонкой очистки водородсодержащих газовых смесей от оксидов углерода путем их гидрирования до метана.
Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10, проводимую одновременно с механической обработкой.

Изобретение относится к нанотехнологии, а именно к материалу и способу получения сферических конгломератов, содержащих наноразмерные частицы (НРЧ) металла, в частности меди, в оболочке из другого вещества или органического полимера.

Изобретение относится к композиции матриксного носителя для применения в фармацевтической системе доставки для перорального введения, которая является суспензией состоящего из частиц материала в непрерывной масляной фазе.

Изобретение относится к металлургии. Устройство для извлечения элементов из оксидных руд в виде порошка содержит плазмотрон, подающий канал, реакционный канал, фильтр и емкость для сбора порошка.
Изобретение относится области порошковой металлургии, в частности к шихте электродного материала для электроискрового легирования деталей машин. Шихта содержит порошок карбида вольфрама и карбид титана.
Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения.

Изобретение относится к порошковой металлургии, в частности к получению монодисперсных наноразмерных порошков с заданными структурами и составом. Может использоваться в фармацевтической, пищевой, текстильной промышленности и других областях науки.

Изобретение относится к плазменной технике и технологии. .

Изобретение относится к области нанотехнологий и может быть использовано при нанесении высокоэффективных каталитических нанопокрытий. .

Изобретение относится к порошковой металлургии, а именно к способам получения металлических гранул. .

Изобретение относится к порошковой металлургии, в частности к производству металлических порошков. .

Изобретение относится к порошковой металлургии, в частности к получению порошковых материалов с частицами менее 0,2 мкм, в частности, используемых в качестве материалов для синтеза люминофоров.

Изобретение относится к способам получения наночастиц в вакуумном дуговом разряде. .

Изобретение относится к получению металлических порошков. Устройство содержит водоохлаждаемую рабочую камеру с контролируемой атмосферой, установленный в верхней части рабочей камеры плазмотрон для формирования плазменного потока, одно или несколько устройств для подачи пруткового материала в плазменный поток и сборник порошка, установленный в нижней части рабочей камеры. Рабочая камера выполнена с параллельно ей установленной рабочей ветвью, соединенной с ней при помощи верхнего и нижнего перепускных патрубков, с возможностью обеспечения циркуляции газового потока навстречу движению потока частиц порошка за счет установки вентилятора в нижнем перепускном патрубке. Верхний перепускной патрубок расположен ниже точки пересечения плазменного потока с прутковым материалом. Параллельная рабочая ветвь имеет расположенный в нижней её части дополнительный сборник порошка. Обеспечивается получение порошков сферической формы при отсутствии слипания частиц. 2 ил., 1 пр.
Наверх