Способ получения нанокристаллического порошка

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из магнитомягких сплавов подвергают термической обработке при температуре (0,35-0,37)Tликвидуса в течение 30-90 мин с последующим охлаждением на воздухе. Термообработанную ленту измельчают в высокоскоростном дезинтеграторе до получения порошка нанокристаллической структуры с размером фракции 15-35 мкм. Обеспечивается повышение эффективности получения порошка при сохранении высокой магнитной проницаемости.

 

Изобретение относится к области порошковой металлургии, в частности к способам получения нанокристаллических порошковых материалов для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов (РПМ).

Кристаллизация аморфных сплавов особенно активно изучается в связи с возможностью создания нанокристаллических ферромагнитных сплавов систем Fe-Cu-M-Si-B (M-Nb, Ta, W, Mo, Zr), имеющих очень низкую коэрцитивную силу и высокую магнитную проницаемость, т.е. мягких магнитных материалов.

Известен способ получения порошковых магнитных материалов (патент РФ №2348997 от 20.12.2006 г.) на основе карбонильного железа, включающий механохимический размол порошка карбонильного железа в жидкой среде в высокоэнергетическом размольном устройстве, где совместно проводят размол частиц карбонильного железа и частиц электролитического кобальта с регулируемым содержанием кобальта до получения порошка с удельной поверхностью материала от 0,2 до 3,5 м2/г и величиной тангенса магнитных потерь более 1,0 в диапазоне частот более 1,5 ГГц при содержании магнитного порошкового материала не более 35 об.% для всех видов устройств ВЧ и СВЧ-техники.

Также известен способ получения аморфных магнитомягких сплавов (патент РФ №2044352 от 29.10.1993 г.), в котором для достижения линейной петли гистерезиса (Кп<0,2) и повышенных полей выхода в насыщение (На до 90Э) предлагается в аморфный сплав системы Fe-Si-B дополнительно ввести Zn и/или Al в следующем соотношении компонентов, ат.%: B - 11-16; Si - 4-8; Zn и/или Al - 0,5-5,0; Fe - ост. Достигается снижение трудоемкости термообработки за счет исключения применения магнитного поля при отжиге.

Наиболее близким к заявляемому и взятому нами за прототип является способ получения нанокристаллического магнитного порошка (патент РФ №2427451), включающий предварительную термическую обработку отобранного исходного материала в виде аморфной ленты из магнитомягких сплавов на основе системы Fe-Co-Ni при температуре, равной (0,25-0,29)·Тликвидуса, в течение 30-90 мин с охлаждением на воздухе, предварительное измельчение термообработанной ленты до фракции 3-5 мм, последующее измельчение в высокоскоростном дезинтеграторе до получения порошка аморфной структуры с размером фракции 20-60 мкм. Заключительную термическую обработку полученного аморфного порошка проводят при температуре, равной (0,3-0,4)·Тликвидуса, в течение 30-90 мин с охлаждением на воздухе.

Существенным недостатком данного способа является необходимость проведения дополнительного этапа термообработки после измельчения ленты, что усложняет процесс получения нанокристаллического порошка и делает его более длительным.

Техническим результатом изобретения является повышение эффективности способа получения нанокристаллического магнитного порошка при сохранении высокой магнитной проницаемости получаемого продукта.

Технический результат достигается за счет того, что в способе получения нанокристаллического магнитного порошка для создания широкополосных радиопоглощающих материалов, включающем термическую обработку исходного материала в виде аморфной ленты из магнитомягких сплавов, измельчение термообработанной ленты до фракции 3-5 мм с последующим измельчением в высокоскоростном дезинтеграторе за счет соударения частиц для получения порошка аморфной структуры с размером фракции 15-35 мкм, в соответствии с изобретением термическую обработку исходного материала ведут до образования в нем наноструктуры.

Согласно изобретению отбирают исходный материал в виде аморфной ленты (или технологических отходов ее производства), полученной методом спиннингования расплава, из магнитомягких сплавов на основе базовой системы Fe-Co-Ni (например, из магнитомягкого сплава системы Fe-Ni-Co-Si-B или системы Co-Fe-Ni-Cu-Nb-Si-B).

Проводят термическую обработку аморфной ленты из магнитомягкого сплава в электропечи при температуре, равной (0,35-0,37)·Тликвидуса, в течение 30-90 минут с охлаждением на воздухе, что обеспечивает ее охрупчивание, а также создание наноструктуры, формирование и выделение в аморфной матрице нанокристаллов, например, соединения α-(Fe, Si) или ε-Co. Установлено, что при увеличении температуры выше 0,37·Тликвидуса и увеличении изотермической выдержки более 90 минут резко возрастает размер кристаллитов, находящихся в аморфной матрице. Это приводит к уменьшению магнитной проницаемости (µ).

Термообработанную ленту подвергают поэтапному измельчению с целью получения магнитного порошка с требуемой структурой. Для этого сначала ленту измельчают до частиц с размером фракции 3-5 мм в молотковой дробилке или аналогичном устройстве. Указанный размер фракции необходим для дальнейшего измельчения материала в высокоскоростном универсальном дезинтеграторе. Увеличение размера фракции материала более 5 мм может привести к выходу из строя рабочих органов дезинтеграторов. Затем полученный материал измельчают в высокоскоростном универсальном дезинтеграторе-активаторе (УДА - обработка). В процессе УДА обработки происходит измельчение материала из магнитомягкого сплава до порошка с размером фракции 15-35 мкм.

Указанный размер фракции получаемого аморфного порошка 15-35 мкм является оптимальным для дисперсного магнитомягкого наполнителя, используемого при получении композита на основе полимерной матрицы для создания широкополосных радиопоглощающих материалов, при этом обеспечивается наибольшее рассеяние электромагнитных волн.

В качестве исходного материала для получения нанокристаллического магнитного порошка отбирали аморфную ленту из магнитомягкого сплава системы Fe-Cu-Nb-Si-B. Ширина аморфной ленты 20 мм, толщина 20 мкм. Проводили термическую обработку аморфной ленты в электропечи марки СНОЛ при температуре, равной (0,35 Тликвидуса)°C, в течение 60 мин с последующим охлаждением на воздухе с целью создания наноструктуры, формирования и выделения в аморфной матрице нанокристаллов. Термообработанную ленту подвергли поэтапному измельчению. Сначала в молотковой дробилке ДМ3.2 до частиц с размером фракции 3-5 мм, необходимой для дальнейшего передела ленты. Затем полученный материал измельчали в высокоскоростном дезинтеграторе марки В-15, позволяющем обрабатывать порошковый материал в воздушной среде и в среде инертного газа аргона или азота, при сверхзвуковых скоростях соударения 350 g. Получили порошок с размером фракции 15-35 мкм.

Методом просвечивающей электронной микроскопии было проведено исследование микроструктуры полученного нанокристаллического магнитного порошка, фазовый состав определяли рентгеновским методом на дифрактометре ДРОН-4М. Исследования показали, что объемная доля нанокристаллитов соединения α-(Fe, Si) составила 40-60%, среднее значение размеров кристаллических зерен (Dcp) составило 7-18 нм. Потери в диапазоне частот 3-18 ГГц композита, изготовленного на основе нанокристаллического порошка из магнитомягкого сплава системы Fe-Cu-Nb-Si-B, составили 10 dB.

Способ получения нанокристаллического магнитомягкого порошка для создания широкополосных радиопоглощающих материалов, включающий термическую обработку исходного материала в виде аморфной ленты из магнитомягких сплавов в течение 30-90 мин с охлаждением на воздухе, измельчение термообработанной ленты до фракции 3-5 мм с последующим измельчением в высокоскоростном дезинтеграторе, отличающийся тем, что термическую обработку исходного материала осуществляют при температуре (0,35-0,37) Tликвидуса до образования в нем наноструктуры, а измельчение в высокоскоростном дезинтеграторе ведут до получения порошка с размером фракции 15-35 мкм.



 

Похожие патенты:
Изобретение относится к порошковой металлургии. Способ получения железного порошка включает подготовку железоуглеродистого расплава с содержанием углерода 3,9-4,3 мас.%, распыление его сжатым воздухом в воду, обезвоживание, сушку с получением порошка-сырца с отношением концентрации кислорода к углероду, равным 1,1-2,0, и измельчение до крупности частиц не более 0,250 мм.

Изобретение относится к композиции матриксного носителя для применения в фармацевтической системе доставки для перорального введения, которая является суспензией состоящего из частиц материала в непрерывной масляной фазе.

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом продукта термообработки.

Изобретение относится к химической промышленности и может быть использовано для получения композитов, которые применяются в фотокаталитических процессах, в качестве катализаторов олигомеризации олефинов и полимеризации этилена.

Светоизлучающий прибор согласно изобретению содержит связанные друг с другом светоизлучающий элемент и элемент, преобразующий длину волны, при этом светоизлучающий элемент содержит со стороны элемента, преобразующего длину волны, первую область и вторую область, а элемент, преобразующий длину волны, содержит со стороны светоизлучающего элемента третью область и четвертую область, причем первая область имеет нерегулярное расположение атомов по сравнению со второй областью, а третья область имеет нерегулярное расположение атомов по сравнению с четвертой областью, при этом первая область и третья область связаны напрямую.

Изобретение относится к литейному и металлургическому производству, в частности к получению модификатора для алюминиевых сплавов. Способ включает смешивание порошка носителя с ультрадисперсным модифицирующим порошком в планетарной мельнице и прессование полученной композиции.

Изобретение относится к области машиностроения, в частности к металлообработке. Режущая пластина содержит основу из твердого сплава и нанесенный на нее износостойкий слой из наноструктурного карбида вольфрама и наноструктурного карбида ниобия с размером зерен 20-50 нм, при их следующем соотношении, мас.%: наноструктурный карбид вольфрама 90, наноструктурный карбид ниобия остальное.

Изобретение относится к области получения термоэлектрических материалов, применяемых для изготовления термостатирующих и охлаждающих устройств, систем кондиционирования и в других областях техники.

Изобретение относится к газовому анализу и может быть использовано для контроля токсичных и взрывоопасных газов и в тех областях науки и техники, где необходим анализ газовых сред.

Изобретение относится к области химии, биологии и молекулярной медицины, а именно к способу получения наноразмерной системы доставки нуклеозидтрифосфатов. Способ включает модификацию носителя, в качестве которого используют аминосодержащие наночастицы диоксида кремния размером до 24 нм, путем обработки последних N-гидроксисукцинимидным эфиром алифатической азидокислоты, далее получение модифицированного нуклеозидтрифосфата (pppN) путем обработки последнего смесью трифенилфосфин/дитиодипиридин с последующим инкубированием образующегося активного производного pppN с 3-пропинилоксипропиламином и последующую иммобилизацию модифицированного pppN на полученных азидомодифицированных наночастицах в течение 2-4 ч.

Изобретение относится к получению суспензии металлических порошков и может быть использовано для дезагрегации в жидкой среде наноразмерных порошков металлов и их соединений.

Изобретение относится к порошковой металлургии, в частности к получению пористого порошка никелида титана. Может использоваться в медицине для изготовления стоматологических имплантов.

Изобретение относится к способу получения неорганических полупроводниковых наночастиц из сыпучего материала. Способ заключается в том, что подготавливают неорганический сыпучий полупроводниковый материал 14, который перемалывают при температуре от 100°С до 200°С в присутствии выбранного восстанавливающего агента.

Изобретение относится к нанотехнологии, а именно к измельчению частиц различных веществ. Устройство содержит корпус с приемной камерой, снабженной периферийным патрубком подвода измельчаемых частиц и соосно соединенными сверхзвуковым соплом и патрубком подачи рабочего газа, камеру смешения, диффузор, сепарирующий элемент, расположенное соосно в сопле непосредственно за критическим сечением сверхзвукового сопла регулировочное тело, выполненное в виде конуса или иглы, при этом внутренняя поверхность сопла имеет шероховатости, высота которых составляет 0,1-0,6 от диаметра узкой части сопла.
Изобретение относится к порошковой металлургии, в частности к получению алюминиевой гранулированной пудры. .

Изобретение относится к порошковой металлургии, а именно к получению порошка на основе железа, содержащего небольшое количество углерода. .

Изобретение относится к порошковой металлургии, а именно к обработке металлических порошков, предназначенных для изготовления композитных изделий и покрытий, работающих в высокочастотных (ВЧ) и сверхвысокочастотных (СВЧ) диапазонах.

Изобретение относится к металлургии, в частности к получению исходного материала для спеченного магнита. .

Изобретение относится к порошковой металлургии, в частности к получению композиционных порошковых материалов с металлической матрицей, армированной тугоплавкими наполнителями методом сверхскоростного механосинтеза.

Изобретение относится к порошковой металлургии, в частности к способу получения порошковой композиции на основе карбосилицида титана для ионно-плазменных покрытий.

Изобретение относится к металлургии. Кальциевую стружку с толщиной не более среднего размера частиц основной фракции получаемых гранул кальция измельчают последовательно в двух дробилках с вращающимся ротором и удаляют продукты дробления из зоны дробления через отверстия охватывающего ротор сита. В качестве второй дробилки используют дробилку с меньшим размером отверстий сита, чем у первой дробилки, в зону дробления добавляют пожаротушащие порошки, после измельчения осуществляют скатывание частиц с получением гранул кальция, полученные гранулы кальция направляют в циклон для отделения их от пожаротушащих порошков. В качестве пожаротушащих порошков могут быть использованы порошки фтористого кальция или хлористого калия. Обеспечивается снижение эффекта налипания за счет последовательного измельчения стружки в двух дробилках, а также снижение пожаровзрывоопасности процесса. 1 з.п. ф-лы, 1 ил., 1 табл. 1 пр.

Изобретение относится к порошковой металлургии, в частности к получению нанокристаллических магнитомягких порошковых материалов. Может использоваться для создания эффективных систем электромагнитной защиты на основе радиопоглощающих материалов. Исходный материал в виде аморфной ленты из магнитомягких сплавов подвергают термической обработке при температуре Tликвидуса в течение 30-90 мин с последующим охлаждением на воздухе. Термообработанную ленту измельчают в высокоскоростном дезинтеграторе до получения порошка нанокристаллической структуры с размером фракции 15-35 мкм. Обеспечивается повышение эффективности получения порошка при сохранении высокой магнитной проницаемости.

Наверх