Высокопрочная сталь с повышенной деформируемостью после закалки

Изобретение относится к области металлургии, а именно к конструкционным комплекснолегированным высокопрочным сталям, закаливающимся на воздухе, и может быть использовано при производстве осесимметричных деталей, работающих под давлением. Сталь содержит, в мас.%: углерод от 0,18 до менее 0,2, марганец 1,00-1,3, кремний 0,20-0,40, сера не более 0,010, фосфор не более 0,015, хром 2,90-3,20, медь не более 0,25, никель 2,20-2,50, молибден 0,70-0,90, ванадий от 0,15 до менее 0,20, железо и неизбежные примеси остальное. После закалки на воздухе и термомеханической обработки временное сопротивление разрыву σВ составляет не менее 170 кгс/мм2, а относительное удлинение δ5 составляет не менее 6%. 1 ил., 5 табл., 1 пр.

 

Предлагаемое изобретение относится к области металлургии, а именно к конструкционным комплекснолегированным сталям, закаливающимся на воздухе, и может быть использовано при производстве осесимметричных деталей, работающих под давлением.

Высокопрочная сталь с повышенной деформируемостью после закалки может применяться для осуществления термомеханической обработки на прочность 170-180 кгс/мм2 путем деформации после закалки и отпуска.

Известна комплекснолегированная сталь марки 28Х3СНМ1ФА ТУ АД И 543-2002, содержащая, мас.%: углерод 0,26-0,31; марганец 0,50-0,80; кремний 0,90-1,20; сера не более 0,010; фосфор не более 0,015; хром 2,80-3,20; никель 0,90-1,20; молибден 0,75-0,85; ванадий 0,05-0,15; медь не более 0,15.

Данная композиция не обеспечивает требуемые параметры деформируемости после закалки, так как даже после отпуска 700°С характеристика пластичности ее по относительному удлинению δ5 не превышает 12% (см. фиг.1). Поэтому она не может использоваться для изготовления деталей термомеханическим упрочнением как с точки зрения пластичности, так и с точки зрения накопления при холодной деформации внутренних напряжений, которые могут приводить материал к разрушению непосредственно при деформации.

Известна также сталь 18Х2Н4МА ГОСТ 4543-71, имеющая химический состав, мас.%: углерод 0,14-0,20; марганец 0,25-0,55; кремний 0,17-0,37; хром 1,35-1,65; никель 4,00-4,40; молибден 0,30-0,40; сера не более 0,025; фосфор не более 0,025; медь не более 0,030.

Указанная сталь применяется для изготовления ответственных деталей, к которым предъявляются требования высокой вязкости и износостойкости однако относительное удлинение δ5 в диапазоне отпуска при температурах 200-500°С не поднимается выше 12%, при отпуске 600°С - выше 19%, но при этом временное сопротивление разрыву σв становится равным 94 кгс/мм2, что не позволяет обеспечить требуемую прочность после деформации на уровне 170 кгс/мм2.

Наиболее близкой по характеристикам является сталь марки 12Х3ГНМФБА по патенту РФ №2104325, С22С 38/48, опубл. 10.02.1998 г.), принятая авторами за прототип, имеющая следующий химический состав, мас.%: углерод 0,12-0,24; марганец 0,80-1,20; кремний 0,20-0,50; хром 2,90-3,40; никель 0,9-2,0; молибден 0,25-0,90; ванадий 0,03-0,15; ниобий 0,02-0,05; кальций 0,005-0,030; железо - остальное.

Указанный состав высокопрочной стали обеспечивает при всех температурах отпуска высокое относительное удлинение δ5=16…20% и свидетельствует о высокой ее деформируемости после закалки и отпуска.

Недостатком данной стали является уменьшенное значение временного сопротивления разрыву при пониженном содержании легирующих элементов в рамках широкого интервала значений.

Общими признаками с предлагаемой авторами сталью являются содержание в ней углерода, кремния, хрома, марганца, никеля, молибдена, ванадия, остальное - железо.

В отличие от прототипа предлагаемая авторами высокопрочная сталь с повышенной деформируемостью после закалки содержит следующие компоненты, мас.%: углерод 0,18-0,24; марганец 1,00-1,30; кремний 0,20-0,40; сера не более 0,010; фосфор не более 0,015; хром 2,90-3,20; медь не более 0,25; никель 2,20-2,50; молибден 0,70-0,90; ванадий 0,15-0,20, при этом остаток составляет железо и неизбежные примеси.

Именно это позволяет сделать вывод о наличии причинно-следственной связи между совокупностью существенных признаков заявляемого технического решения и достигаемым техническим результатом.

Указанные признаки, отличительные от прототипа и на которые распространяется испрашиваемый объем правовой охраны во всех случаях, достаточны.

Задачей предлагаемого изобретения является разработка высокопрочной стали с повышенной деформируемостью после закалки, закаливаемой на воздухе с последующей термомеханической обработкой и получением готовой детали с временным сопротивлением разрыву σв не ниже 170 кгс/мм2 при сохранении δ5 не ниже 6%.

Новая совокупность признаков изобретения позволяет получить сталь с повышенной деформируемостью после закалки и термомеханической обработки при температуре 450-600°C с улучшенной структурой и повышенной способностью к деформируемости.

Составы, режимы термической обработки, свойства стали после термической обработки и различных степеней деформации ротационной вытяжкой представлены в табл.1, 2, 3.

Таблица 1
Химический состав исследуемых плавок и прототипа
№ плавки Содержание элементов, масс.%
С Si Mn S P Cr Ni Mo V Nb Ca Fe
1 (прототип) 0,15 0,30 0,70 2,70 1,40 0,40 0,02 0,04 0,001 ост.
2 0,22 0,33 1,05 0,006 0,006 3,30 2,30 0,81 0,19 ост.
3 0,20 0,38 1,16 0,005 0,007 2,98 2,29 0,78 0,19 ост.
Таблица 2
Механические свойства прототипа и сталей после закалки и различных температур отпуска
№ плавки Температура отпуска, °С σв, кгс/см2 δ5, % ψ, % KCU+20, кгсм/см2 KCU-50, кгсм/см2
1 (прототип) 200 130 16,0 63,0 17,6 12,0
300 128 16,0 62,5 17,6 13,3
400 127 16,5 62,0 16,0 13,0
500 129 17,0 64,0 15,0 12,3
600 105 17,0 70,0 18,0 13,8
2 200 149 13,8 58,0 6,8 5,3
300 148 13,6 57,4 7,0 5,4
400 147 13,8 57,0 7,3 5,9
500 150 13,8 57,0 8,4 5,7
600 122 14,6 60,0 8,8 6,4
3 200 147 12,1 53,0 7,0 5,0
300 148 12,2 53,5 7,2 5,2
400 148 12,5 55,0 7,2 5,5
500 150 13,0 55,0 8,2 5,7
600 125 14,5 59,0 8,6 6,2
Таблица 3
Механические свойства прототипа и стали 22Х3ГН2М1ФА в зависимости от степени деформации ротационной вытяжкой
Температура отпуска, °С Временное сопротивление разрыву σв, кгс/мм2 Относительное удлинение δ5, %
Степень деформации ε, % Степень деформации ε, %
0 40 60 80 0 40 60 80
Прототип сталь 12Х3ГНМФБА
600 93,0 99,0 102,0 105,0 12,0 17,0 18,0 20,0
550 124,0 150,0 157,5 165,0 13,0 9,6 9,0 13,0
500 129,0 154,0 166,5 190,0 14,0 9,0 5,8 5,5
450 129,3 160,0 170,0 203,5 15,0 9,0 5,0 4,5
Сталь 22Х3ГН2М1ФА
600 128,0 136,0 144,0 153,0 14,0 12,5 12,0 11,0
550 142,0 162,0 173,0 184,0 13,0 10,6 10,2 7,2
500 158,0 185,0 195,0 202,0 13,0 12,5 10,0 5,0
450 155,0 169,0 196,0 разр. при деформ. 13,0 3,0 7,1 разр. при деформ.

Как видно из табл.3, в результате термомеханической обработки известного технического решения (прототип) при исходной прочности стали 129 кгс/мм2 (температура отпуска 450-500°С, степень деформации 60-80%) достигается прочность выше 170 кгс/мм2, однако, при этом относительное удлинение δ5 не превышает 6%, что приводит к охрупчиванию материала и разрушению детали с фрагментацией, что является не допустимым.

В предлагаемом техническом решении (сталь 22Х3ГН2М1ФА) при исходной прочности 142 кгс/мм2 (температура отпуска 550°С) требуемую прочность достигают при степени деформации 60% и пластичности δ5 на уровне 10,2%.

Таким образом, вышеуказанные признаки, отличающие предлагаемое техническое решение от прототипа, не выявлены в других технических решениях и не известны из уровня техники в процессе проведения патентных исследований, что позволяет сделать вывод о соответствии изобретения критерию «новизны».

Пример.

Заявляемую сталь 22Х3ГН2М1ФА производили на металлургическом заводе в 12-тонной дуговой электропечи, при этом было выплавлено 2 плавки с химическим составом 2 и 3, указанными в табл.1.

Сталь разливали в изложницы для получения слитка массой 13,5 т. Далее слитки выдерживали в изложницах и направляли в кузнечный цех.

Перед ковкой слиток нагревали в печи. Ковку слитка проводили на гидравлическом прессе в 3 этапа с подогревом поковки после каждого этапа.

Заготовки охлаждали на воздухе, затем подвергали высокому отпуску 720-740°С.

Оценка качества трубной заготовки по механическим свойствам показала на образцах, подвергнутых термической обработке (закалка с температуры 880°С, отпуск 400-550°С), значения, указанные в табл.4.

Таблица 4
Механические свойства стали 22Х3ГН2М1ФА в трубной заготовке
Температура отпуска, °С Временное сопротивление разрыву σв, кгс/см2 Условный предел текучести σ0,2, кгс/см2 Относительное удлинение δ5, % Относительное сужение ψ, % Ударная вязкость KCU+20, кгсм/см2
400 147 127 12,2 53 7,3
148 126 12,5 55 6,8
450 149 130 12,0 45 8,4
149 129 12,1 48 8,6
500 150 125 13,0 55 8,4
148 123 12,6 49 7,8
550 143 121 12,9 55 8,4
148 122 13,1 43 8,4

Из результатов табл.4 видно, что временное сопротивление разрыву σв соответствует 143-150 кгс/мм2 при получении относительного удлинения δ5, равного 12,0-13,1%, при хорошем запасе ресурса деформируемости стали после закалки, исходя из соотношения σ02в, равного 0,83-0,87.

Затем трубную заготовку из стали 22Х3ГН2М1ФА диаметром 440 мм и длиной 5810 мм отправили для изготовления тонкостенной трубы на трубопрокатный агрегат ТПА "159-426" Волжского трубного завода.

Результаты контроля качества полученных труб по механическим свойствам после закалки и отпуска при 550°С представлены в табл.5.

Таблица 5
№ плавки Временное сопротивление разрыву σв, кгс/мм2 Относительное удлинение δ5, % Ударная вязкость KCU кгсм/см2
2 154,0 18,0 6,1
150,0 16,0 7,6
153,6 18,5 6,7
151,0 15,1 7,3
3 153,2 13,4 6,4
154,9 12,7 7,5
150,6 16,2 6,3
151,6 13,0 6,4

Из полученной трубы методом ротационной вытяжки изготовили осесимметричные тонкостенные детали. Термомеханическую обработку вели по схеме: калибровка, предварительная механическая обработка, закалка + отпуск, механическая обработка под ротационную вытяжку, I ротационная вытяжка + II ротационная вытяжка + отжиг, уменьшающий напряжения. Партию деталей испытали на прочность до разрушения, при этом давление разрушения составило 316-331,4 кгс/см2, вместо 270 кгс/см2 (см. фиг.1). Проведенный контроль механических свойств показал, что временное сопротивление разрыву σв составило 175-185 кгс/мм2, а относительное удлинение δ5 - 8-10%.

Таким образом, полученные данные по изготовлению опытной партии осесимметричных деталей подтверждают возможность их изготовления из заявленной стали с повышенной деформируемостью после закалки термомеханическими методами обработки.

Высокопрочная сталь для изготовления осесимметричных деталей, содержащая углерод, кремний, марганец, хром, никель, молибден, ванадий, медь, серу, фосфор, железо и неизбежные примеси, отличающаяся тем, что она содержит компоненты при следующем соотношении, мас.%:

Углерод от 0,18 до менее 0,2
Марганец 1,00 - 1,3
Кремний 0,20 - 0,40
Сера не более 0,010
Фосфор не более 0,015
Хром 2,90 - 3,20
Медь не более 0,25
Никель 2,20 - 2,50
Молибден 0,70 - 0,90
Ванадий от 0,15 до менее 0,2
Железо и неизбежные примеси Остальное,

при этом после закалки на воздухе и термомеханической обработки временное сопротивление разрыву σВ составляет не менее 170 кгс/мм2, а относительное удлинение δ5 составляет не менее 6%.



 

Похожие патенты:
Изобретение относится к области металлургии, а именно к высокопрочным конструкционным сталям, закаливающимся преимущественно на воздухе, используемым для изготовления осесимметричных корпусных деталей.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения свариваемых штрипсов категории прочности X100 по стандарту API 5L-04, используемых при строительстве магистральных нефтегазопроводов высокого давления.

Изобретение относится к области металлургии, а именно к стали, используемой для изготовления деталей режущих инструментов. Сталь содержит, в мас.%: от 0,28 до 0,5 С, от 0,10 до 1,5 Si, от 1,0 до 2,0 Mn, максимум 0,2 S, от 1,5 до 4 Cr, от 3,0 до 5 Ni, от 0,7 до 1,0 Mo, от 0,6 до 1,0 V, от следовых количеств до общего максимального содержания 0,4% мас.
Изобретение относится к области металлургии, а именно к производству крупного горячекатаного сортового и фасонного проката из низкоуглеродистой низколегированной стали.

Изобретение относится к области металлургии и может быть использовано при изготовлении сварных конструкций из двухслойного проката, длительно эксплуатирующихся при отрицательных температурах в условиях интенсивного механического, коррозионно-эрозионного воздействия мощных ледовых полей и морской воды, в частности корпусов атомных ледоколов, судов ледового плавания, морских ледостойких стационарных и плавучих платформ для добычи углеводородов на арктическом шельфе.

Изобретение относится к области металлургии, преимущественно для получения штрипсов, используемых при строительстве магистральных нефтегазопроводов в районах Крайнего Севера.

Изобретение относится к области металлургии, а именно к получению бейнитной стали, используемой для изготовления, в частности, брони. .
Изобретение относится к области черной металлургии, в частности к стали, используемой для изготовления железнодорожных рельсов, а также рельсов для метрополитена. .
Изобретение относится к области черной металлургии, а именно к производству стали, используемой для изготовления железнодорожных рельсов. .

Изобретение относится к области металлургии, а именно к конструкционным литейным сталям, применяемым в различных отраслях промышленности, в том числе в автомобилестроении при изготовлении крупногабаритных отливок для карьерных самосвалов особо большой грузоподъемности, работающих при повышенных ударных нагрузках и в экстремальных климатических условиях.

Высокопрочный с высоким отношением предела текучести к пределу прочности стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности холоднокатаный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности оцинкованный погружением стальной лист, высокопрочный с высоким отношением предела текучести к пределу прочности отожженный оцинкованный погружением стальной лист, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности холоднокатаного стального листа, способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности оцинкованного погружением стального листа и способ изготовления высокопрочного с высоким отношением предела текучести к пределу прочности отожженного оцинкованного погружением стального листа // 2531216
Изобретение относится к области металлургии, а именно к высокопрочному стальному листу, имеющему отношение предела текучести к пределу прочности 0,6 или более. Лист выполнен из стали следующего состава, в мас.%: 0,03-0,20% С, 1,0% или менее Si, от более 1,5 до 3,0% Mn, 0,10% или меньше Р, 0,05% или менее S, 0,10% или менее Аl, 0,010% или менее N, один или несколько видов элементов, выбранных из Ti, Nb и V, общее содержание которых составляет 0,010-1,000%, 0,001-0,01 Ta, остальное Fe и неизбежные примеси. Структура листа включает феррит и вторичную фазу, включающую мартенсит. Доля площади феррита составляет 50% или более, и средний размер кристаллического зерна 18 мкм или менее. Доля площади мартенсита во вторичной фазе составляет от 1 до менее 7%. Обеспечиваются требуемые прочность и формуемость при снижении веса листа. 12 н. и 8 з.п. ф-лы, 6 табл., 1 пр.
Сталь // 2532662
Изобретение относится к области металлургии, а именно к высококачественным легированным конструкционным сталям, применяемым для изготовления силовых деталей, шестерен и валов, поверхности которых упрочняют азотированием. Сталь содержит, в мас.%: углерод 0,33-0,40, марганец 0,25-0,50, кремний 0,17-0,25, хром 1,20-1,50, никель 3,20-3,50, молибден 0,35-0,45, ванадий 0,10-0,15, церий 0,007-0,009, лантан 0,001-0,005, алюминий 0,02-0,05, кальций 0,002-0,005, медь ≤0,20, серу ≤0,005, фосфор ≤0,005, железо остальное. Отношение содержания кальция к содержанию алюминия составляет 0,13-0,15. Снижается склонность стали к образованию трещин при ковке, повышается ее прокаливаемость, увеличивается твердость азотированного слоя при увеличении его толщины и при снижении хрупкости. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C. Износостойкая сталь содержит, в мас.%: углерод 0,25-1,2, кремний 0,2-1,8, марганец 0,3-2,0, фосфор не более 0,025, сера не более 0,025, хром 0,3-6,5, никель 0,03-2,0, один или несколько элементов из группы: молибден 0,2-1,5, вольфрам 0,5-1,5, медь 0,05-0,4, ниобий 0,01-0,1 и ванадий 0,02-0,7, железо и неизбежные примеси - остальное. Свариваемая сталь содержит, в мас.%: углерод 0,002-0,3, кремний 0,10-0,6, марганец 0,4-1,8, фосфор не более 0,02, сера не более 0,01, хром 0,01-0,4, никель 0,01-0,5, один или несколько элементов из группы: медь 0,01-0,4, молибден 0,01-0,1, ниобий 0,01-0,1 и ванадий 0,02-0,1, железо и неизбежные примеси - остальное. Углеродный эквивалент свариваемой стали составляет не более 0,45, толщина слоя износостойкой стали составляет 10-40% или 60-90% от общей толщины проката, а прочность сцепления слоев составляет не менее 450 Н/мм2. После термической обработки изделия из проката при оптимальном расходе легирующих элементов обладают высокой износостойкостью, твердостью не менее 500 HBW, высокой прочностью слоя из свариваемой стали с пределом текучести не менее 500 МПа, в сочетании с хорошей свариваемостью и ударной вязкостью на остром надрезе при температуре до -40°C не менее 30 Дж/см2. 2 н.п. ф-лы, 2 табл.

Изобретение относится к области черной металлургии, а именно к горячедеформированным насосно-компрессорным трубам и муфтам к ним, изготавливаемым из конструкционных сталей. Сталь содержит углерод, марганец, кремний, хром, медь, никель, ванадий, железо и неизбежные примеси при следующем содержании компонентов, мас.%: углерод 0,37-0,41, марганец 1,00-1,30, кремний 0,40-0,70, медь 0,10-0,30, никель 0,05-0,30, хром 0,05-0,30, ванадий 0,04-0,08, железо и неизбежные примеси - остальное. Обеспечиваются требуемые механические свойства труб после горячей деформации, а именно: временное сопротивление не менее 700 Н/мм2, предел текучести не менее 500 Н/мм2, относительное удлинение не менее 17% и ударная вязкость KCU+20°C не менее 100 Дж/мм2. 1 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии и может быть использовано при производстве толстолистового проката из стали высокой прочности, хладостойкости и улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,07-0,11, кремний 0,15-0,40, марганец 0,30-0,60, хром 0,30-0,70, никель 1,80-2,20, медь 0,40-0,70, молибден 0,25-0,35, ванадий 0,03-0,06, алюминий 0,01-0,05, кальций 0,001-0,005, сера 0,001-0,005, фосфор 0,001-0,010, мышьяк 0,001-0,006, олово 0,001-0,010, свинец 0,001-0,004, цинк 0,001-0,012, железо - остальное. Суммарное содержание мышьяка, олова, свинца и цинка составляет не более 0,020 мас.%, а величина коэффициента трещиностойкости при сварке Pсм не превышает 0,27%. Сталь обладает высокой прочностью с гарантированной величиной предела текучести 590 МПа и имеет высокую хладостойкость при температурах до минус 80°C. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к изготовлению труб для добычи нефти и газа, которые могут эксплуатироваться как в обычных условиях, так и в условиях коррозионного воздействия со стороны добываемого флюида в присутствии сероводорода (H2S) и углекислого газа (CO2). Труба изготовлена из стали, содержащей, мас.%: углерод 0,21-0,28, кремний 0,15-0,45, марганец 0,50-0,95, хром 0,80-1,30, молибден 0,25-0,45, никель не более 0,50, медь не более 0,30, алюминий 0,015-0,050, сера не более 0,010, фосфор не более 0,015, азот не более 0,012, ванадий 0,03-0,08 или бор 0,001-0,004 и титан не более 0,045, железо и неизбежные примеси остальное. Достигается требуемая коррозионная стойкость труб в средах, содержащих сероводород и углекислый газ, при обеспечении предела прочности не менее 655 МПа и предела текучести от 552 до 826 МПа. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к высокопрочным коррозионностойким сталям переходного класса, используемым для изготовления высоконагруженных деталей и конструкций в машиностроении и судостроении, работающих в условиях воздействия коррозионной среды. Сталь содержит в мас.%: углерод 0,12-0,35, азот 0,11-0,21, хром 14,0-15,0, никель 2,5-3,5, марганец 0,5-1,5, молибден 1,2-1,7, кремний 0,2-0,6, медь 1,5-2,0, ванадий 0,05-0,10, кальций 0,005-0,050, церий 0,005-0,030, иттрий 0,005-0,030, лантан 0,005-0,030, барий 0,005-0,020, железо - остальное. Обеспечивается высокий уровень механических и коррозионных свойств. 3 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к составу конструкционной стали повышенной прочности и трещиностойкости, используемой для изготовления высоконагруженных бандажей колес тягового подвижного состава железных дорог. Сталь содержит следующие компоненты, мас.%: углерод 0,35-0,50, кремний 0,23-0,47, марганец 0,65-0,95, хром 0,63-0,87, никель 1,85-2,15, молибден 0,14-0,27, ванадий 0,06-0,20, железо остальное. Повышаются временное сопротивление разрыву, твердость, ударная вязкость и трещиностойкость, а также износостойкость и контактно-усталостная выносливость стали. 2 табл.

Изобретение относится к области металлургии, а именно к составам высокопрочных коррозионно-стойких сталей, используемых для изготовления высоконагруженных деталей и конструкций в машиностроении, судостроении, авиации и железнодорожном транспорте. Сталь содержит, мас.%: углерод 0,01-0,04, кремний 0,10-0,80, марганец 0,50-1,50, хром 14,0-16,0, никель 3,0-5,0, азот 0,1-0,2, медь от более 0,5 до 2,5, ванадий 0,02-0,20, кальций от более 0,005 до 0,030, железо и примеси - остальное. Отношение содержания углерода к содержанию азота составляет 0,2 или менее. Сталь обладает высокими пределом текучести и пределом прочности при сохранении высокой пластичности и ударной вязкости. 2 табл.

Изобретение относится к области металлургии, а именно к коррозионно-стойким сталям, используемым для производства бесшовных горячекатаных насосно-компрессорных и обсадных труб, работающих в условиях высокой концентрации углекислого газа и сероводорода в составе перекачиваемой углеводородной среды на месторождениях, расположенных в арктических районах. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,14-0,23, кремний 0,17-0,4, марганец 0,4-0,7, хром от более 1,0 до 5,1, молибден 0,15-0,5, ванадий 0,04-0,06, никель 0,1-0,7, медь 0,15-0,5, алюминий 0,02-0,05, сера не более 0,007, фосфор не более 0,015, азот не более 0,014, железо - остальное. Коэффициент эксплуатационной надежности стали, определяемый по выражению R=0,8×[Cr]+3,5×[Mo]+2,5×[Cu], составляет 2,0÷5,5, а содержание серы должно составлять не более Smax=0,01-0,01×[Cu], мас.%. Обеспечивается повышенная эксплуатационная надежность труб за счет увеличения стойкости к углекислотной коррозии при сохранении стойкости к сульфидной коррозии, высокая хладостойкость и предотвращение явления красноломкости при горячем прокате труб. 2 н. и 1 з.п. ф-лы, 4 табл.
Наверх