Фракционирующий абсорбер


 


Владельцы патента RU 2530133:

Курочкин Андрей Владиславович (RU)

Изобретение относится к абсорбционной очистке газа, а именно к устройству абсорбционных аппаратов, и может быть использовано при очистке газов в химической, нефтехимической и других отраслях промышленности. Предложен фракционирующий абсорбер, состоящий из вертикального корпуса, абсорбционной и отпарной массообменных секций, зоны питания с патрубком ввода очищаемого газа, размещенной между ними, верхней сепарационной зоны с патрубками ввода абсорбента и вывода очищенного газа и нижней сепарационной зоны с патрубком вывода абсорбата. Массообменные секции разделены на две подсекции, каждая из которых содержит по меньшей мере один тепломассообменный блок, оснащенный патрубками ввода и вывода теплоносителя или хладоагента, выполненный из тепломассообменных элементов спирально-радиального типа, образующих внутреннее пространство для прохода теплоносителя или хладоагента и наружное пространство для противоточного массообмена между газом и падающей пленкой жидкости. Патрубок вывода абсорбата и нижний патрубок отпарной подсекции, примыкающей к зоне питания, а также патрубок вывода очищенного газа и верхний патрубок абсорбционной подсекции, примыкающей к зоне питания, попарно соединены трубопроводами. Наружное пространство тепломассообменных блоков абсорбционной секции целесообразно заполнить массообменной насадкой. Изобретение позволяет уменьшить энергозатраты и снизить металлоемкости. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к абсорбционной очистке газа, а именно к устройству абсорбционных аппаратов, и может быть использовано при очистке газов в химической, нефтехимической, нефтеперерабатывающей, нефтегазовой и других отраслях промышленности.

Известен и широко используется абсорбер для очистки газа [Бекиров Т.М., Ланчаков Г.А. Технология обработки газа и конденсата. М.: ООО "Недра-Бизнесцентр", 1999. 344 с.], в котором расположены абсорбционная секция, верхняя и нижняя сепарационные зоны, а также патрубки ввода абсорбента и вывода очищенного газа, расположенные в верхней сепарационной зоне, патрубки ввода очищаемого газа и вывода абсорбата, расположенные в нижней сепарационной зоне.

Недостатком известного абсорбера является его неэффективность при очистке газов с высоким содержанием удаляемых (абсорбируемых) компонентов, что приводит к инверсии температур в абсорбере (возрастанию температуры снизу вверх) из-за выделения тепла абсорбции и снижает эффективность абсорбции, требует увеличения кратности циркуляции абсорбента, роста энергозатрат и металлоемкости оборудования. Кроме того, при использовании известного абсорбера, получаемый абсорбат содержит высокие концентрации целевых компонентов газа, что приводит к повышенным потерям очищаемого газа, особенно при высоком давлении абсорбции.

Наиболее близок по технической сущности к заявляемому изобретению фракционирующий абсорбер (абсорбционно-отпарная колонна), повсеместно используемый, например, при комплектовании установок АГФУ для переработки нефтезаводских газов, позволяющий снизить потери целевых компонентов очищаемого газа с абсорбатом [Альбом технологических схем процессов переработки нефти и газа. Под ред. Б.И. Бондаренко, М.: Изд-во РГУ, 2003 г. с.93], в котором расположены абсорбционная и отпарная массообменные секции, зона питания, размещенная между ними, верхняя и нижняя сепарационные зоны, а также патрубки вывода и ввода потоков циркуляционного орошения, расположенные в абсорбционной секции, патрубки ввода абсорбента и вывода очищенного газа, расположенные в верхней сепарационной зоне, патрубок ввода очищаемого газа, расположенный в зоне питания, патрубки ввода парового орошения и вывода абсорбата, расположенные в нижней сепарационной зоне. В некоторых случаях, при абсорбционной переработке нефтезаводского углеводородного газа, отпарную секцию фракционирующего абсорбера дополнительно оснащают патрубками ввода нестабильного бензина с целью его попутной стабилизации.

Недостатками известного фракционирующего абсорбера являются большие энергозатраты, в том числе затраты тепла для создания парового орошения отпарной секции, холода для охлаждения абсорбента и отвода теплоты абсорбции, а также электроэнергии для обеспечения циркуляции потоков циркуляционного и парового орошения. Из-за выделения тепла абсорбции на верху аппарата (выше точки ввода циркуляционного орошения) наблюдается инверсия температур из-за растворения легких компонентов очищаемого газа в регенерированном абсорбенте, что снижает эффективность разделения, требует увеличения количества ступеней контакта и металлоемкость аппарата.

Задача изобретения - снижение энергозатрат и уменьшение металлоемкости фракционирующего абсорбера.

Технический результат, который может быть получен при использовании предлагаемого фракционирующего абсорбера:

- снижение энергозатрат за счет снижения потребления тепла для нагрева низа фракционирующего абсорбера, холода для охлаждения верха фракционирующего абсорбера, а также электроэнергии для циркуляции орошения путем осуществления внутриаппаратной рекуперации тепла и холода,

- уменьшение металлоемкости оборудования за счет снижения необходимого числа теоретических ступеней разделения путем устранения инверсии температур в верхней части абсорбера.

Указанный технический результат достигается тем, что в известном фракционирующем абсорбере, в котором расположены абсорбционная и отпарная массообменные секции, зона питания с патрубком ввода очищаемого газа, размещенная между ними, верхняя сепарационная зона с патрубками ввода абсорбента и вывода очищенного газа и нижняя сепарационная зона с патрубком вывода абсорбата, особенностью является то, что массообменные секции разделены на две подсекции, каждая из которых содержит по меньшей мере один тепломассообменный блок, оснащенный патрубками ввода и вывода теплоносителя или хладоагента, выполненный из тепломассообменных элементов, например, спирально-радиального типа, образующих внутреннее пространство для прохода теплоносителя или хладоагента и наружное пространство для противоточного массообмена между газом и падающей пленкой жидкой фазы, при этом патрубок вывода абсорбата и нижний патрубок отпарной подсекции, примыкающей к зоне питания, а также патрубок вывода очищенного газа и верхний патрубок абсорбционной подсекции, примыкающей к зоне питания, попарно соединены трубопроводами.

При низких коэффициентах массопередачи и/или низкой теплоте абсорбции целесообразно наружное пространство тепломассообменных блоков абсорбционной секции заполнять массообменной насадкой.

Выполнение массообменных секций из тепломассообменных блоков, оснащенных патрубками ввода и вывода теплоносителя или хладоагента, состоящих из тепломассообменных элементов, например, спирально-радиального типа, образующих внутреннее пространство для прохода теплоносителя или хладоагента и наружное пространство для противоточного массообмена между газом и падающей пленкой жидкой фазы, позволяет осуществить внутриаппаратную рекуперацию тепла, а также устранить инверсию температуры в абсорбционной секции, повысить эффективность массообмена, снизить высоту, эквивалентную одной теоретической тарелке, за счет чего уменьшить высоту и металлоемкость фракционирующего абсорбера. В качестве особенности предлагаемого аппарата можно отметить также широкий рабочий интервал удельных нагрузок по жидкости и газу, характерный для массообменных аппаратов с падающей пленкой.

Разделение каждой массообменной секции на две подсекции и соединение трубопроводом патрубка вывода абсорбата из нижней сепарационной зоны и патрубка верхней отпарной массообменной подсекции, примыкающей к зоне питания, позволяет использовать тепло нагретого абсорбата для отпаривания легких компонентов газа.

Соединение трубопроводом патрубка вывода очищенного газа из верхней сепарационной зоны и верхнего патрубка абсорбционной подсекции, примыкающей к зоне питания, позволяет использовать холодный поток очищенного газа для отвода теплоты абсорбции тяжелых компонентов газа, устранения инверсии температур в абсорбционной секции и повышения эффективности массообмена.

Фракционирующий абсорбер состоит из цилиндрического вертикального корпуса 1, абсорбционной 2 и отпарной 3 массообменных секций, состоящих каждая из верхней и нижней подсекций (4, 5 и 6, 7, соответственно), состоящих из тепломассообменных блоков, оснащенных патрубками ввода и вывода теплоносителя или хладоагента, и образующих верхнюю 8 и нижнюю 9 сепарационные зоны и зону питания 10. Патрубок вывода очищенного газа, расположенный на верху корпуса 1, соединен трубопроводом 11 с верхним патрубком абсорбционной подсекции 5, примыкающей к зоне питания 10. Патрубок вывода абсорбата, расположенный в низу корпуса 1, соединен трубопроводом 12 с нижним патрубком отпарной подсекции 6, примыкающей к зоне питания 10. При необходимости абсорбционные подсекции могут заполняться насадкой, как условно показано на схеме. Патрубки и запорно-регулирующая аппаратура на схеме не показаны.

Предлагаемый фракционирующий абсорбер работает следующим образом. Очищаемый газ (I) подают в зону питания 10, регенерированный абсорбент (II) подают в верхнюю зону сепарации 8. Верхнюю абсорбционную подсекцию 4 охлаждают хладоагентом (III), подаваемым в верхний патрубок тепломассообменного блока для отвода тепла абсорбции легких компонентов очищаемого газа (I). Нижнюю абсорбционную подсекцию 5 охлаждают очищенным газом (IV), подаваемым в верхний патрубок тепломассообменного блока для отвода тепла абсорбции тяжелых компонентов очищаемого газа (I). Подогретый очищенный газ (IV) выводят из нижнего патрубка тепломассообменного блока.

Нижнюю отпарную подсекцию 7 нагревают теплоносителем (V), подаваемым в нижний патрубок тепломассообменного блока для подвода тепла с целью отпаривания легких компонентов очищаемого газа (I) из абсорбата. Верхнюю отпарную подсекцию 6 нагревают абсорбатом (VI), подаваемым в нижний патрубок тепломассообменного блока. Охлажденный абсорбат (VI) выводят из верхнего патрубка тепломассообменного блока.

Таким образом, предлагаемый фракционирующий абсорбер позволяет осуществлять очистку газа при уменьшении энергозатрат и снижении металлоемкости и может найти применение в химической, нефтехимической, нефтеперерабатывающей, нефтегазовой и других отраслях промышленности.

1. Фракционирующий абсорбер, в котором расположены абсорбционная и отпарная массообменные секции, зона питания с патрубком ввода очищаемого газа, размещенная между ними, верхняя сепарационная зона с патрубками ввода абсорбента и вывода очищенного газа и нижняя сепарационная зона с патрубком вывода абсорбата, отличающийся тем, что массообменные секции разделены на две подсекции, каждая из которых содержит по меньшей мере один тепломассообменный блок, оснащенный патрубками ввода и вывода теплоносителя или хладоагента, выполненный из тепломассообменных элементов, например, спирально-радиального типа, образующих внутреннее пространство для прохода теплоносителя или хладоагента и наружное пространство для противоточного массообмена между газом и падающей пленкой жидкости, при этом патрубок вывода абсорбата и нижний патрубок отпарной подсекции, примыкающей к зоне питания, а также патрубок вывода очищенного газа и верхний патрубок абсорбционной подсекции, примыкающей к зоне питания, попарно соединены трубопроводами.

2. Фракционирующий абсорбер по п.1, отличающийся тем, что наружное пространство тепломассообменных блоков абсорбционной секции заполнено массообменной насадкой.



 

Похожие патенты:

Изобретение относится к восстановительно-окислительному способу обработки газа, содержащего сероводород, с применением окислительного аппарата в сочетании с абсорбером.

Изобретение может быть использовано в химической промышленности. Очистку газа от сероводорода проводят в двух абсорберах.

Изобретение относится к способу удаления серосодержащих газов из неочищенных газов. При этом удаленные серосодержащие газы обрабатываются при высоком давлении регенерации.

Изобретение относится к химической промышленности. Устройство содержит сушилку (1) с псевдоожиженным слоем, отапливаемый высушенным бурым углем паровой котел, паровую турбину.
Изобретение относится к области абсорбционной очистки углеводородных газов от сернистых соединений жидкими абсорбентами. Способ очистки природного газа от серы и сероводорода, включающий его контактирование с поглотителем и последующей регенерацией отработанного поглотителя продувкой кислородом воздуха, при этом в качестве поглотителя используют расплав черновой меди при температурах 1225-1350°C и времени контактирования 2-2,5 мин.

Заявлены способ и установка для нейтрализации кислотности газовой смеси. Способ и установка включают в себя осуществление контакта газовой смеси с абсорбентом в абсорбере.

Изобретение относится к способу очистки газовых смесей, в частности природного газа, содержащих меркаптаны и другие кислые газы, а также к поглащающему указанные загрязнители раствору.

Изобретение относится к области очистки газов пиролиза углеводородного сырья от сероводорода и двуокиси углерода, конкретнее к способам очистки сернисто-щелочных водных стоков, образовавшихся при щелочной очистке газов.

Изобретение относится к области очистки газов от сероводорода и диоксида углерода. Абсорбент содержит метилдиэтаноламин, фракцию вакуумной перегонки технического полиэтиленполиамина с интервалом кипения 50÷200°С, водорастворимый физический растворитель и воду.

Изобретение относится к способу отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки. Сначала в процессе сжигания сжигается ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3).

В заявке описан абсорбент для извлечения кислых газов из жидкостного потока, включающий водный раствор а) по меньшей мере одной соли металла с аминокарбоновой кислотой и b) по меньшей мере одного кислого промотора, причем молярное отношение компонента b) к компоненту а) составляет от 0,0005 до 1. Кислый промотор выбран из группы, включающей минеральные кислоты, карбоновые кислоты, сульфокислоты, органические фосфоновые кислоты и их неполные сложные эфиры. В отличие от известных абсорбентов на основе солей аминокислот регенерация указанного абсорбента требует использования меньшей энергии без существенного снижения абсорбционной емкости раствора (способности поглощать кислые газы). При осуществлении способа извлечения кислых газов из жидкостного потока реализуют контакт жидкостного потока с указанным абсорбентом. Изобретение позволяет уменьшить необходимую для регенерации используемого абсорбента энергию. 2 н. и 9 з.п. ф-лы, 1 ил., 2 табл.
Изобретение относится к способу окисления углеводородов, в частности, насыщенных углеводородов, для получения пероксидов, спиртов, кетонов, альдегидов и/или дикислот. В частности, предложен способ окисления насыщенного углеводорода молекулярным кислородом, включающий обработку выходящих газообразных продуктов указанным способом окисления. Причем указанная обработка включает этап соединения выходящих газовых потоков, которые требуется обработать, с маслом в жидком состоянии, чтобы абсорбировать насыщенный углеводород, содержащийся в этих потоках, и второй этап обработки масла, наполненного углеводородами, путем отпарки (отгонки) водяным паром для экстракции углеводорода, конденсации собранного пара и отделения углеводорода декантацией. Способ позволяет экономично и селективно извлечь насыщенный углеводород, присутствующий в отходящих газах, чтобы можно было вернуть его в процесс окисления. 6 з.п. ф-лы, 3 пр.

Изобретение относится к способу проведения реакций дегидрирования с последующей абсорбционной очисткой газов, при этом за абсорбционной очисткой газов следует стадия снятия давления в резервуаре мгновенного испарения при высоком давлении, который снабжен массообменными элементами, причем эту стадию проводят при использовании горючего газа, протекающего через массообменные элементы навстречу направлению силы тяжести, который проходит через резервуар мгновенного испарения при высоком давлении противотоком по отношению к растворителю, подвергнутому снятию давления, так что абсорбированные углеводороды поглощаются горючим газом. При этом горючим газом является топливный газ, который используют для нагревания реактора дегидрирования и который, например, является природным газом. Для повышения эффективности процесса отделенный от кислотообразующих газов поток углеводородов можно возвращать обратно в канал технологического газа перед абсорбционной очисткой газов. Настоящий способ обеспечивает возможность улучшенного отделения диоксида углерода и углеводородов при удалении кислотообразующих газов. 12 з.п. ф-лы, 2 табл., 1 ил.

Изобретение относится к аппаратам для подготовки газа, а именно, к конструкции сепарационных устройств. Фракционирующий холодильник-конденсатор состоит из дефлегматора и сепарационной секции, примыкающей к нему снизу. Дефлегматор и сепарационная секция заключают между собой зону питания, оснащенную линией ввода сырьевого газа. Между зоной питания и дефлегматором размещено газораспределительное устройство. Дефлегматор оснащен линией ввода охлажденного товарного газа и линиями вывода газа сепарации и товарного газа. Дефлегматор оборудован блоком тепломассообменных элементов. Линия ввода охлажденного товарного газа расположена в верхней части, а линия вывода товарного газа расположена в нижней части блока тепломассообменных элементов. Сепарационная секция оснащена линиями вывода нестабильного конденсата и водного раствора ингибитора гидратообразования. Обеспечивается снижение потерь тяжелых компонентов и снижение металлоемкости. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для абсорбционной очистки газов и жидкостей и может быть использовано в нефтегазовой, нефтеперерабатывающей, химической и нефтехимической промышленности для очистки от кислых примесей многокомпонентных природных и технологических газов, содержащих относительно малолетучие компоненты, и их конденсата. Предлагаемое устройство состоит из компрессора с линией для подачи компрессата в смеситель, которой оснащен линией подачи аминового абсорбента, и линией подачи полученной смеси в холодильник, оснащенный линией для подачи охлажденного компрессата в сепаратор, оборудованный линиями вывода очищенного сжатого газа, углеводородного конденсата и насыщенного аминового абсорбента. Холодильник может быть выполнен по меньшей мере из двух секций, а смеситель может быть размещен между его секциями. Изобретение позволяет очистить углеводородный конденсат от кислых компонентов и повысить степень очистки газа от кислых компонентов. 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу добавления кислорода к жидкому абсорбенту, содержащему по меньшей мере одно соединение, способное вступать в реакцию с кислородом, в устройстве (1) для очистки газа. При этом используют устройство (1), содержащее устройство (16) для циркуляции абсорбента, выполненное с возможностью переноса абсорбента из первого места в устройстве (1) во второе место в устройстве (1), добавляют кислород путем добавления воздуха к абсорбенту в первой точке в устройстве (16) для циркуляции абсорбента и используют разделительное устройство (16е), выполненное с возможностью отделения газа, содержащегося в абсорбенте, от абсорбента во второй точке, расположенной выше первой точки, до возвращения абсорбента во второе место в устройстве (1), и часть кислорода, содержащегося в воздухе, вводят в реакцию с соединением до его поступления в разделительное устройство (16е). Конструкция, предложенная для осуществления способа, обеспечивает возможность добавления достаточного количества кислорода к абсорбенту и препятствует прохождению азота, остальной части кислорода и других газов, содержащихся в добавленном воздухе, которые являются вредными примесями, в устройство 1 и смешиванию их там с очищенным газом. 7 з.п. ф-лы, 2 ил.

Изобретение относится к восстановительно-окислительному способу обработки газа, не подвергшегося сероочистке, с применением окислительного аппарата высокого давления в сочетании с абсорбером. Способ очистки от серы включает непрерывную подачу потока кислого газообразного углеводорода, содержащего сероводород в абсорбер, работающий при давлении Р1, превышающем 100 ф/дюйм2, контактирование кислого газа с водным раствором катализатора в абсорбере для превращения сероводорода в элементарную серу в твердом виде и получения отработанного раствора катализатора, содержащего серу в твердом виде, удаление потока газа из абсорбера, закачивание раствора отработанного катализатора, содержащего серу в твердом виде в окислитель, работающий при давлении Р2, где Р2≥Р1+5 ф/дюйм2, регулирование давления в окислителе путем мониторинга давления в абсорбере и изменения давления регулятором давления на вытяжной линии окислителя, окисление раствора отработанного катализатора при помощи сжатого воздуха в окислителе с образованием раствора регенерированного катализатора, отделение и удаление твердой серы из раствора регенерированного катализатора из окислителя и удаление раствора регенерированного катализатора из окислителя. Изобретение обеспечивает эффективное удаление серы из газовых потоков восстановительно-окислительным способом при высоком давлении. 5 з.п. ф-лы, 1 ил.

В изобретении описан комплексный способ улавливания CO2, выделяемого, по меньшей мере, частью дымовых газов, покидающих зону регенерации установки каталитического крекинга, предполагающей использование установки, работающей с использованием аминосодержащих продуктов, в котором установка каталитического крекинга оборудована внешним теплообменником, в котором в качестве горячего теплоносителя используется часть катализатора, отбираемого в зоне регенерации, а энергия, необходимая для работы установки, работающей с использованием аминосодержащих продуктов, поставляются полностью установкой каталитического крекинга за счет использования пара, вырабатываемого указанным выше внешним теплообменником. Изобретение позволяет обеспечить тепловой контакт между установкой каталитического крекинга и установкой по обработке дымовых газов аминосодержащими продуктами. 6 з.п. ф-лы, 2 ил., 5 табл.
Изобретение относится к химической промышленности. Газовую смесь для сепарации высокосернистых компонентов газа подвергают процессу разделения, при котором образуется высокосернистый газ, содержащий диоксид углерода и соединения серы. Высокосернистый газ для выделения элементарной серы подводят к установке Клауса. В качестве реакционного газа в установку Клауса подводят технически чистый кислород. Остаточный газ, выходящий из установки Клауса и содержащий диоксид углерода и компоненты серы, подвергают каталитическому дожиганию с технически чистым кислородом, а водяной пар извлекают с помощью конденсации. Остаточный газ, состоящий в основном из диоксида углерода, имеет чистоту, которая делает возможным непосредственное хранение или техническое использование. Изобретение позволяет использовать диоксид углерода, содержащийся в высокосернистом газе. 23 з.п. ф-лы.

Изобретение относится к области нефтехимии. Реагент-поглотитель включает замещенное производное триазина, а именно 1,3,5-три-(гидроксиметил)-гексагидро-S-триазин, или 1,3,5-три-(2-гидроксиэтил)-гексагидро-S-триазин, или их смесь, четвертичное аммонийное соединение, и алкилфосфиты N-алкиламмония хлорида - Амфикор. Изобретение позволяет создать коммерчески доступный реагент-поглотитель сероводорода и легких меркаптанов, расширить ассортимент известных поглотителей. 3 н. и 6 з.п. ф-лы, 30 пр.
Наверх