Способ получения блочного термостойкого пеностекла

Изобретение относится к области получения блочного термостойкого пеностекла. Технический результат изобретения заключается в повышении термостойкости, прочности конечного продукта, снижении энергозатрат и сокращении времени отжига. Пенообразующую смесь помещают в металлические формы, которые нагревают в печи со скоростью 3,7°C/мин до 820°C с выдержкой 40 мин с последующим резким охлаждением до 600°С со скоростью 2,0°C/мин и отжигом 12 часов. 4 табл.

 

Изобретение относится к области получения блочного термостойкого пеностекла и может быть использовано в атомной технике и промышленности строительных материалов.

В настоящее время существует ряд способов получения блочного пеностекла. Так, по патенту США 3151966, Кл. 65-22 от 06.10.64 [1] блочное пеностекло в виде плит получают путем продувки воздуха или другого газа через расплав стекломассы, причем расплав охлаждают таким образом, что пузырьки воздуха или газа сохранились в конечном продукте.

Недостатком данного способа является неоднородность пор по размерам и неравномерность распределения их по объему пеностекла.

Наиболее близким техническим решением является способ получения блочного пеностекла, включающий нагрев предварительно подготовленной и уложенной в формы пенообразующей смеси со скоростью 3,3°C/мин, вспенивание в течение 1 часа, резкое охлаждение со скоростью 1,65°C/мин в течение 2-х часов и отжиг в течение 14 часов 44 минут со скоростями охлаждения 0,4°C/мин (до 400°C) и 0,7°C/мин (до 50°) [Минько Н.И., Пучка О.В., Бессмертный B.C. и др. Пеностекло. Научные основы и технология. - Воронеж: Научная книга - с.83 раздел 4.3.1, второй абзац].

Недостатками данного способа является длительность технологического процесса, высокая энергоемкость и низкая термостойкость конечного продукта.

Целью предлагаемого способа является повышение качества конечного продукта, снижение энергозатрат и сокращение времени вспенивания шихты.

Поставленная цель достигается тем, что в предлагаемом способе используют пенообразующую смесь на основе боя стекла, нагрев пенообразующей смеси производят со скоростью 3,7°C/мин с выдержкой при максимальной температуре 820°C в течение 40 мин с последующим резким охлаждением до 600°C со скоростью 2,0°C/мин и отжигом в течение 12 часов.

Отличительными признаком предлагаемого способа является сокращение времени вспенивания пенообразующей смеси при повышенных скоростях нагрева с последующим резким охлаждением, что способствует микрозакаливанию конечного продукта и в конечном итоге обеспечивает повышение качества продукта, в частности термостойкости блочного пеностекла.

Изобретательский уровень подтверждается тем, что предлагаемый способ получения блочного термостойкого пеностекла позволяет не только получить высококачественный продукт, но и сократить время вспенивания, а также снизить энергозатраты.

Проведенный анализ известных способов получения блочного пеностекла позволяет сделать заключение о соответствии заявляемого изобретения критерию «новизна».

За качественный показатель термостойкого блочного пеностекла была принята величина термостойкости, которая формировалась на стадиях охлаждения и отжига.

Термостойкое блочное пеностекло является конструкционным материалом атомных и гидроэлектростанций, а также используется теплоизоляционный материал в различных теплотехнических агрегатах, печах и др.

На величину термостойкости стекол, в частности блочного пеностекла, при прочих усредненных показателях по химическому составу и термическому коэффициенту линейного расширения определяющее значение играют такие технологические параметры, как скорость подъема температуры пенообразующей смеси, время выдержки при максимальной температуре вспенивания, скорость охлаждения до оптимальной температуры отжига, время отжига.

На первом этапе нами определены оптимальные технологические параметры вспенивания: скорость нагрева и время выдержки при максимальной температуре (табл.1).

Таблица 1
Оптимальные технологические параметры вспенивания
Скорость нагрева, °C/мин Температура вспенивания, °C Время вспенивания, мин Размер пор, мм Прочность, МПа
1 2 3 4 5
800 30 0,1-0,6 1,42
800 40 0,1-0,8 1,39
800 50 0,1-0,9 1,35
3,3 820 30 0,1-0,9 1,68
820 40 0,1-1,0 1,62
820 50 0,1-1,1 1,59
840 30 0,1-0,9 1,52
840 40 0,1-1,1 1,49
840 50 0,1-1,2 1,32
800 30 0,2-1,0 1,92
800 40 0,3-1,2 1,90
800 50 0,4-1,3 1,87
3,7* 820 30 0,4-1,4 1,85
820* 40* 0,4-1,5 2,0*
820 50 0,4-1,6 1,91
840 30 0,2-1,5 1,89
840 40 0,3-1,6 1,95
840 50 0,4-1,8 1,91
800 30 0,1-0,6 1,61
800 40 0,1-0,8 1,59
800 50 0,1-0,9 1,55
3,9 820 30 0,6-2,0 1,72
820 40 0,7-2,3 1,70
820 50 0,8-2,5 1,62
840 30 0,8-2,7 1,63
840 40 0,9-2,8 1,61
840 50 1,0-3,0 1,57
* - оптимальный режим

На втором этапе определены такие технологические параметры, как скорость охлаждения и время отжига при оптимальной температуре (табл.2).

Таблица 2
Оптимальные параметры отжига
Температура охлаждения, °C Скорость охлаждения, °C/мин Время отжига, час Термостойкость, ΔТ, °C
1,8 14 190
12 205
10 195
2,0 14 210
590 12 220
10 215
2,2 14 180
12 200
10 185
1,8 14 205
600* 12 220
10 215
2,0* 14 240
12 260
10 250
2,2 14 200
12 210
10 205
1,8 14 170
610 12 175
10 170
2,0 14 195
12 210
10 205
2,2 14 175
12 185
10 180

Сопоставительный анализ известного и предлагаемого способов представлен в таблице 3. Как видно из таблицы 3, разработанный способ получения блочного термостойкого стекла позволяет получить высококачественный продукт с сокращением энергозатрат и времени производства.

Таблица 3
Технологические параметры и свойства пеностекла
№ п/п Наименование Ед. измерений Известный способ [2] Предлагаемый способ
1 Состав мас.% тарное стекло 3Т-1 тарное стекло 3Т-1: медицинское стекло АБ=50:50
2 Температура вспенивания °C 850 820
3 Скорость подъема температуры °C/мин 3,3 3,7
4 Время вспенивания мин 60 40
5 Резкое охлаждение °C 600 600
6 Скорость охлаждения °C/мин 1,65 2,0
7 Отжиг Час (мин) 14 час 44 мин 12 час
8 Термостойкость ΔТ, °C 160* 250
9 Прочность при сжатии МПа 1,5-1,8* 2,0
10 Плотность кг/м 200-210* 20614
11 Теплопроводность Вт/м к 0,061* 0,057
12 Водопоглощение % 2,8* 2,2
* - по собственным исследованиям

Пример

В качестве исходных компонентов брали медицинское стекло марки АБ и тарное стекло марки 3Т-1 в соотношении 50:50 мас.% (1:1). Химический состав стекол представлен в таблице 4.

Таблица 4
Химический состав стекол
№ п/п Наименование стекол Содержание компонентов, мас.%
SiO2 Al2O3 CaO+MgO Na2O SO3 K2O
1 Медицинское стекло марки АБ 73,0 3,0 9,5 13,5 - 1,0
2 Гарное стекло марки 3Т-1 71,0 3,5 11,0 14,0 0,5 -

Пенообразующую смесь готовили в шаровой фарфоровой мельнице объемом 10 л с уралитовыми шарами с одновременным помолом и перемешиванием стекольного порошка и пенообразователя в течение 6 часов.

Пенообразователем служила сажа в количестве 1 мас.%. В конечном итоге пенообразующая смесь имела следующий состав (мас.%):

медицинское стекло марки АБ - 49,5

тарное стекло марки 3Т-1 - 49,5

сажа - 1,0

После помола пенообразующую смесь извлекали из шаровой мельницы. Затем металлические формы заполняли на одну треть пенообразующей смесью и уплотняли пуансоном. Металлические формы с пенообразующей смесью помещали в муфельную печь.

Температурный режим печи с ранее определенными оптимальными параметрами был следующий:

- скорость нагрева до температуры вспенивания - 3,7°C/мин;

- выдержка при 820°C в течение 40 мин;

- резкое охлаждение до 600°C со скоростью 2,0°C/мин;

- отжиг в течение 12 часов с самопроизвольным остыванием печи до 50°C.

После остывания муфельной печи из нее извлекали формы с блочным термостойким пеностеклом. Пеностекло извлекали из форм и проводили контроль качества конечного продукта.

Контроль качества конечного продукта.

Водопоглощение блоков термостойкого пеностекла определяли по ГОСТ 2409-80 методом насыщения их водой с последующим гидростатическим взвешиванием. Водопоглощение В определяли по формуле:

B=(m1·m)·100/m,

где m - масса сухого образца при взвешивании, г,

m1 - масса образца, насыщенного водой.

Величину водопоглощения определяли как среднее трех измерений:

B = ( 2,75 + 2,80 + 2,85 ) 3 = 2,8 %

Плотность блоков термостойкого стекла определяли на кубиках размером 30×30×30 мм статистическим методом с использованием штангенциркуля (точность измерения 0,01 мм) и электронных весов фирмы «Adveturer» с точностью измерения 0,01 г.

Плотность термостойкого блочного пеностекла с доверительным интервалом составляла:

206±4 кг/м3

Теплопроводность измеряли с помощью электронного измерителя ИТП-МТ-4 по ГОСТ 7076-99. Для определения теплопроводности готовили образцы в виде пластин размером 100×100×20 мм. Измерения показали, что теплопроводность блочного термостойкого пеностекла составляла 0,0057 Вт/мк.

Прочность на сжатие проводили по ГОСТ 17177-94 на гидравлическом прессе ПСУ-10 на образцах кубической формы размером 30×30×30 мм.

За результат испытаний принимали среднее арифметическое пять определений прочности при сжатии образцов:

δ = 1,95 + 1 ,90 + 2 ,00 + 2 ,05 + 2 ,10 3 = 2,0 М П а

Термостойкость блоков определяли размером 50×50×50 мм путем поперечного нагрева в печи с интервалом нагрева 10°C и последующим остыванием на воздухе до 20°C до появления трещин и сколов. Образцы блоков оптимального состава выдерживали нагрев без видимых следов разрушения до 270°C.

Термостойкость определяли как разность температур в печи и нормальными условиями:

ΔТ=270-20=250°C

Таким образом, предлагаемый способ позволяет получить высококачественное термостойкое блочное пеностекло.

Способ получения блочного термостойкого пеностекла, включающий совместный помол компонентов с пенообразователем, нагревание и вспенивание в металлических формах, стабилизацию, замедленное и быстрое охлаждение, отличающийся тем, что нагрев пенообразующей смеси производят со скоростью 3,7°C/мин с выдержкой при максимальной температуре 820°C в течение 40 мин с последующим резким охлаждением до 600°C со скоростью 2,0°C/мин и отжигом в течение 12 часов.



 

Похожие патенты:
Изобретение относится к теплоизоляционным материалам. Технический результат изобретения заключается в снижении ресурсоемкости технологии получения гранулированного пеношлакостекла и температуры вспенивания гранулированного пеношлакостекла до 800-850 С°.
Изобретение относится к производству гранулированного пеностекла. Технический результат изобретения заключается в расширении сырьевой базы, упрощении способа производства гранулированного пеностекла при сохранении высокой щелочностойкости получаемого гранулированного пеностекла.

Способ и устройство для изготовления пористого остеклованного блока могут найти применение в строительстве для изготовления крупноблочных теплоизоляционных и стеновых конструкций и в качестве наполнителей легких бетонов.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении технологии изготовления пеностекла.

Изобретение относится к производству теплоизоляционных строительных материалов. Технический результат изобретения заключается в упрощении технологии получения вспененного материала, снижении температуры вспенивания шихты, снижении термических напряжений в изделии.
Изобретение относится к гранулированному пеношлакостеклу. Технический результат изобретения заключается в расширении сырьевой базы, снижении себестоимости, утилизации золошлаковых отходов ТЭС, снижении температуры вспенивания до 850-870°С.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении способа получения цветного пеностекла.
Изобретение относится к составу шихты, используемой для изготовления стеклогранулята для производства гранулированного пеностекла. Технический результат изобретения заключается в повышении щелочестойкости стекла, снижении себестоимости шихты и уменьшении расходов энергоресурсов на варку стекла.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в получении пеностекла из техногенных отходов.
Изобретение относится к строительным теплоизоляционным материалам. Технический результат изобретения заключается в расширении сырьевой базы, снижении температуры вспенивания до 900-950°C, себестоимости, утилизации золошлаковых отходов ТЭС и упрощении технологии получения пеношлакостекла.
Изобретение относится к производству теплоизоляционных материалов, а именно к производству блочного пеностекла. Технический результат заключается в получении экологически безопасного конечного изделия, упрощение способа производства, сохранение повышенной трещиностойкости получаемого блочного пеностекла, позволяющей увеличить выход целых пеностекольных блоков.
Изобретение относится к производству гранулированного пеностекла. Технический результат изобретения заключается в расширении сырьевой базы, упрощении способа производства гранулированного пеностекла при сохранении высокой щелочностойкости получаемого гранулированного пеностекла.

Способ и устройство для изготовления пористого остеклованного блока могут найти применение в строительстве для изготовления крупноблочных теплоизоляционных и стеновых конструкций и в качестве наполнителей легких бетонов.
Изобретение относится к производству строительных материалов, в частности к способу изготовления пористых строительных материалов типа пеностекла. Технический результат изобретения заключается в изготовлении блочного пористого строительного материала без использования жаростойких форм.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении технологии изготовления пеностекла.

Изобретение относится к производству теплоизоляционных строительных материалов. Технический результат изобретения заключается в упрощении технологии получения вспененного материала, снижении температуры вспенивания шихты, снижении термических напряжений в изделии.
Настоящее изобретение касается способа изготовления пеностеклянного гранулята. Техническим результатом изобретения является снижение водопоглощения изделий.
Изобретение относится к производству пеностекла. Технический результат изобретения заключается в упрощении способа получения цветного пеностекла.
Изобретение относится к способу получения теплоизоляционных вспененных материалов. Технический результат изобретения заключается в получении вспененного стекла низкой теплопроводности, в пузырьках которого находится разреженный гелий.
Изобретение относится к производству теплоизоляционных строительных материалов с закрытой пористостью. Технический результат изобретения заключается в упрощении технологии производства теплоизоляционных материалов, снижении стоимости продукции.

Изобретение относится к комплексной переработке железистых редкометальных руд с получением пористого стекломатериала. Технический результат изобретения заключается в расширении сырьевой базы для получения стекломатериала. Шихту состава на основе руды, мас. %: SiO2 - 5,1; CaO - 0,9; Al2O3 - 5,2; MgO - 0,3; Fe2O3 - 54, MnO - 13,1; ZnO - 0,9; SrO - 0,4; P2O5 - 5,1; SO3 - 0,7; TiO2 - 0,9; Y2O3 - 0,3; ZrO2 - 0,06; BaO - 2,6; Nb2O5 - 0,9; La2O3 - 2,0; CeO2 - 3,1; Pr2O3 - 0,32; Nd2O3 - 0,97; ThO2 - 0,1, при содержании углерода до 0,5 мас.% сверх 100% плавят в слабо восстановительной среде при температуре 1300°C и при соотношении SiO2/CaO=5,6. Содержание Na2O в руде доводят до 3 мас.%. Происходит разделение расплава и удаление металлической высокофосфористой части расплава на основе железа. В оставшемся расплаве доводят содержание углерода до 15 мас.% сверх 100% углем для создания сильно восстановительной среды. Соотношение SiO2/CaO доводят до 0,9 известняком, повышают температуру до 1600°C, плавят до образования карбида кремния. Осуществляют разделение расплава на металлическую и силикатную части. Удаляют низкофосфористый чугун и охлаждают силикатную часть расплава термоударом для получения пористого химически активного стекломатериала, обогащенного окислами редкоземельных металлов, эффективного для дальнейшей переработки. 2 пр.
Наверх