Способ калибровки ультразвуковой антенной решетки, установленной на призму



Способ калибровки ультразвуковой антенной решетки, установленной на призму
Способ калибровки ультразвуковой антенной решетки, установленной на призму
Способ калибровки ультразвуковой антенной решетки, установленной на призму

 

G01N29/30 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2530181:

Общество с ограниченной ответственностью "Научно-производственный центр неразрушающего контроля "ЭХО+" (RU)

Использование: для калибровки ультразвуковой антенной решетки, установленной на призму. Сущность изобретения заключается в том, что излучают ультразвуковые сигналы с помощью множества элементов антенной решетки в образец известной толщины и принимают ультразвуковые сигналы, отраженные от отверстия бокового сверления известного диаметра на заданной глубине, регистрируют множество ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, рассчитывают параметры эхосигналов в зависимости от скорости звука в призме и ее геометрических параметров, сравнивают между собой измеренные и рассчитанные эхосигналы и производят поиск такого значения скорости продольной ультразвуковой волны в призме и ее геометрические параметры, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки, при этом в результате калибровки ультразвуковой антенной решетки определяется также время пробега в протекторе антенной решетки. Технический результат: обеспечение возможности определения реальных координат центров пьезоэлементов с точностью одной восьмой длины волны. 3 ил.

 

Изобретение относится к области ультразвукового неразрушающего контроля.

Известен способ калибровки ультразвуковой антенной решетки, установленной на призму, осуществляемый за счет измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, реализованный в ультразвуковом дефектоскопе «OmniScan MX2» (См. официальный сайт фирмы OLYMPUS - http://www.olympus-ims.com/ru/omniscan-mx2/).

Недостатком способа является многоэтапное выполнение процедур измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, использование трех образцов, один из которых имеет сложную конструкцию, а также невозможность определения следующих параметров ультразвуковой антенной решетки, установленной на призму: стрела призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки.

Наиболее близким, принятым за прототип, является способ калибровки ультразвуковой антенной решетки, установленной на призму, осуществляемый за счет измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, реализованный в ультразвуковом дефектоскопе «OmniScan MX2» (См. официальный сайт фирмы OLYMPUS - http://www.olympus-ims.com/ru/omniscan-mx2/).

Известный способ не позволяет определять следующие параметры ультразвуковой антенной решетки, установленной на призму: стрела призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки.

Предложен способ калибровки ультразвуковой антенной решетки, установленной на призму, заключающийся в излучении ультразвуковых сигналов с помощью множества элементов антенной решетки в образец известной толщины и прием ультразвуковых сигналов, отраженных от отверстия бокового сверления известного диаметра на заданной глубине, регистрации множества ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, расчета оценки эхосигналов, зависящей от скорости звука в призме и ее геометрических параметров, сравнении между собой измеренных и рассчитанных эхосигналов, и поиска таких значений скорости звука в призме и ее геометрических параметров, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки, отличающийся тем, что в результате калибровки ультразвуковой антенной решетки определяются значения скорости продольной волны в призме, ее геометрические параметры и время пробега в протекторе антенной решетки.

Предлагаемый способ позволяет одновременно определять следующие параметры ультразвуковой антенной решетки, установленной на призму: скорость продольной волны в призме, стрелу призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки. Определяемые параметры необходимы для расчета реальных координат центров пьезоэлементов с точностью одной восьмой длины волны с целью их дальнейшего введения в алгоритмы восстановления изображения и минимизации смещения координат восстановленного изображения от координат реального положения отражателей, что позволяет повысить эффективность применения методов когерентного восстановления изображения от отражателей, а значит повысить точность определения координат отражателей.

Для пояснения описываемого способа:

на фигуре 1 приведена фотография образца с установленной на него призмой без антенной решетки,

на фигуре 2 приведены результаты калибровки антенной решетки PE-5.0М32Е0.8Р №0334 на призме X-42-R420 №1,

на фигуре 3 приведены изображения отверстия бокового сверления в образце, восстановленные по паспортным данным и восстановленные по параметрам, определенным по итогам калибровки.

Предложенный способ калибровки осуществляется следующим образом.

Для проведения калибровки нужен специальный образец с отверстием бокового сверления. В качестве такого образца может выступить стальной образец (см. Фиг.1) толщиной 18 мм, в котором на глубине 12 мм просверлено отверстие бокового сверления диаметром 2 мм. Для фиксации призмы на калибровочном образце имеется упор. Для того чтобы расстояние xw от передней грани призмы до центра отверстия было калиброванной величиной, между упором образца и призмой можно вставлять вкладыши длиной 10 мм. Стенки образца должны быть параллельны с точностью не менее чем 0.01 мм на 100 мм, а скорости продольной и поперечной волны в образце должны быть измерены с точностью не менее 0.5%.

Антенная решетка на призме устанавливается на образец вплотную, либо к упору, либо к краю вкладыша. Рекомендуемое расстояние xw должно быть примерно равно расстоянию, при котором центральный луч попадает на дно под отверстием бокового сверления. Эхосигналы следует измерять с усилением, не допускающим возникновения нелинейных искажений. Способ калибровки основан на достижении максимального совпадения по заданному критерию измеренных эхосигналов p ( r t , r r , t ) и их оценки p ^ ( r t , r r , t ; v ) при вариации таких параметров как стрела призмы аw, расстояние пробега в призме рw, скорость звука в призме cw,l. Вектор, по которому происходит оптимизация, обозначим как v=(aw,pw,cw). Его размеры могут быть увеличены за счет включения дополнительных параметров для оптимизации, например угла наклона призмы βw, или времени пробега в протекторе tprot. Критерием максимального совпадения измеренных эхосигналов p ( r t , r r , t ) и их оценки p ^ ( r t , r r , t ; v ) может служить достижение минимума целевой функции D(v)

v = a r g m i n v = ( a w , p w , c w ) D ( p ( r t , r r , t ) , p ^ ( r t , r r , t ; v ) ) .

Далее целевую функцию D ( p ( r t , r r , t ) , p ^ ( r t , r r , t ; v ) ) будем обозначать как D(v). Если работать с комплексными сигналами, которые можно получить из обычных эхосигналов с помощью преобразования Гильберта, то целевую функцию можно представить в виде величины обратной функции корреляции D c ( v ) = 1 | p ( x , t ) p ^ ( x , t ; v ) d t d x | , где значок * означает операцию комплексного сопряжения.

В качестве примера работы предложенного способа приведем результаты калибровки антенной решетки PE-5.0М32Е0.8Р №0334 на призме X-42-R420 №1. Антенная решетка имеет рабочую частоту 5 МГц, расстояние между элементами равно 0.8 мм. Призма с углом наклона βw=42 градусов изготовлена из плексигласа. Оценка поля p ^ ( x , t ; v ) проводилась для прямого луча и однократно отраженного от дна образца. Результаты калибровки приведены (см. Фиг.2.).

Для оценки эффективности предложенной процедуры калибровки изображение отверстия бокового сверления в образце для калибровки восстанавливались методом M-C-SAFT по шести акустическим схемам на поперечных волнах по паспортным параметрам Ошибка! Источник ссылки не найден, и по параметрам, полученным после выполнения процедуры калибровки. Изображения, восстановленные по параметрам определенным по итогам калибровки, точнее соответствуют границе отверстия (см. Фиг.3.).

Таким образом, предлагаемый способ позволяет получать восстановленные изображения отражателей с отклонениями от мест реального расположения меньше четверти длины волны на эффективной части антенной решетки.

Способ калибровки ультразвуковой антенной решетки, установленной на призму, заключающийся в излучении ультразвуковых сигналов с помощью множества элементов антенной решетки в образец известной толщины и прием ультразвуковых сигналов, отраженных от отверстия бокового сверления известного диаметра на заданной глубине, регистрации множества ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, расчета оценки эхосигналов, зависящей от скорости звука в призме и ее геометрических параметров, сравнении между собой измеренных и рассчитанных эхосигналов, и поиска таких значений скорости звука в призме и ее геометрических параметров, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки,
отличающийся тем, что в результате калибровки ультразвуковой антенной решетки определяются значения скорости продольной волны в призме, ее геометрические параметры и время пробега в протекторе антенной решетки.



 

Похожие патенты:

Использование: для измерения продольного и сдвигового импендансов жидкостей. Сущность изобретения заключается в том, что с помощью ультразвукового преобразователя возбуждают в двух тонких волноводах различные нулевые моды нормальных волн, измеряют коэффициенты затухания каждого типа волны в волноводах и рассчитывают продольный и сдвиговый импедансы исследуемой жидкости, при этом волноводы акустического блока изготавливают в виде тонких полос различной толщины, возбуждают в них нулевую моду волны Лэмба, калибруют акустический блок путем последовательного измерения в обоих волноводах коэффициентов затухания нулевой моды волны Лэмба при их последовательном погружении в две жидкости с известными продольным и сдвиговым импедансами, из полученных уравнений рассчитывают коэффициенты, связывающие импедансы жидкости с коэффициентом поглощения волны Лэмба в волноводах, затем погружают волноводы в исследуемую жидкость, измеряют коэффициенты затухания нулевой моды волны Лэмба в обоих волноводах и с помощью найденных численных значений коэффициентов по известным соотношениям рассчитывают продольный и сдвиговый импедансы исследуемой жидкости.

Изобретение относится к устройствам неразрушающего контроля структуры и дефектов металлических изделий и может быть использовано при изготовлении образцов для тестирования и настройки установок ультразвукового контроля проката (УЗК).

Изобретение относится к неразрушающим методам производственного контроля и может найти применение при анализе различных волоконных материалов в промышленности.

Использование: для возбуждения и приема симметричных и антисимметричных волн в тонких волноводах. Сущность изобретения заключается в том, что на поверхности волновода закрепляют ультразвуковой преобразователь, который присоединяют к генератору и приемнику электрических сигналов, затем прикладывают электрическое напряжение к преобразователю таким образом, чтобы в волноводе в направлении, перпендикулярном к его оси, излучалась объемная, например, продольная волна, затем принимают, усиливают и обрабатывают эхо-сигнал, создаваемый нормальной волной, возникающей в волноводе за счет частичной трансформации в нем объемной волны в нормальную, при этом дополнительно закрепляют на противоположной стороне волновода соосно к первому преобразователю ультразвуковой преобразователь, акустические параметры которого в пределах не более ±5% отличаются от параметров первого преобразователя, причем электрическое соединение обоих преобразователей производят таким образом, чтобы фазы излучаемых и принимаемых ими сигналов либо совпадали (для случая симметричных нормальных волн), либо имели противоположные знаки (для случая антисимметричных нормальных волн), для чего при излучении и приеме симметричных нормальных волн оба преобразователя электрически соединяют параллельно, а при излучении и приеме антисимметричных нормальных волн преобразователи возбуждают электрическим напряжением противоположной полярности и присоединяют оба преобразователя к различным входам дифференциального усилителя или оба преобразователя электрически соединяют параллельно, а их пьезоэлементы поляризуют в противоположных направлениях.

Использование: для определения типа дефекта в металлических изделиях. Сущность изобретения заключается в том, что выполняют импульсное облучение исследуемой зоны ультразвуковым излучением, регистрацию исходного отраженного сигнала, его компьютерную обработку для определения информативных параметров, по которым судят о наличии и типе дефекта, при этом к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1, и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по определенной формуле находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1, и t2, затем используя частоты ƒ0, ƒ1 и ƒ2 формируют новые безразмерные параметры - нормированные девиации частоты ƒr1 и ƒr2, отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта.

Изобретение относится к лесной, деревообрабатывающей промышленности и может быть использовано при сертификации древесины на корню в условиях лесного хозяйства и лесозаготовок, а также при сертификации древесины круглых и пиленых древесных материалов в условиях переработки древесного сырья и механической обработки древесины.

Использование: для контроля перемешивания среды в виде сырой нефти в резервуаре. Сущность изобретения заключается в том, что в процессе перемешивания поочередно каждым обратимым электроакустическим преобразователем излучают широкополосный акустический сигнал через среду к другим обратимым электроакустическим преобразователям, принимают и преобразуют эти сигналы другими, за исключением излучившего этот широкополосный акустический сигнал, обратимыми электроакустическими преобразователями в соответствующие принятые электрические сигналы, при этом обработку принятых электрических сигналов осуществляют путем вычисления взаимных корреляционных функций каждого из принятых электрических сигналов с широкополосным электрическим сигналом, вычисляют общую ширину корреляционных откликов, о завершении перемешивания нефти судят по стабилизации общей ширины корреляционных откликов.
Использование: для неразрушающего контроля труб. Сущность изобретения заключается в том, что излучают внутрь трубы с одного ее конца серию повторяющихся зондирующих акустических сигналов, разделенных интервалами времени между их повторами в серии, детектируют с помощью микрофона отраженные от дефектов внутреннего объема трубы сигналы, измеряют отраженные сигналы и усредняют результаты по всем измерениям серии сигналов, определяют характер дефекта по амплитудно-временным характеристикам усредненного сигнала, при этом длительность интервалов времени между повторами зондирующих акустических сигналов в серии изменяют от сигнала к сигналу в серии таким образом, чтобы интервал времени перед каждым последующим сигналом отличался от предыдущих интервалов времени на величину не менее длительности зондирующего акустического сигнала.

Использование: для контроля конструкций с использованием ультразвука в пространствах с малым зазором. Сущность: заключается в том, что контрольный сканер [1000] имеет низкопрофильное строение, предназначенное для вхождения в узкие пространства и контроля конструкций [10], например сварных соединений [13].

Использование: для определения упругих констант делящихся материалов при повышенных температурах. Сущность заключается в том, что установка для определения упругих констант делящихся материалов при повышенных температурах содержит звуководы, снабженные акустическими изоляторами, между концами звуководов размещен образец из делящегося материала, а на противоположных коцах установлены пьезоэлектрические преобразователи, соединенные с генератором и регистрирующей аппаратурой, при этом образец и часть звуководов окружены нагревателем и помещены они в вакуумную камеру, при этом образец соединен с термопарой, вакуумная рабочая камера помещена в герметичный перчаточный бокс и имеет рубашку охлаждения и протоки охлаждения проточной водой.

Использование: для изготовления образцов для настройки дефектоскопической аппаратуры. Сущность изобретения заключается в том, что изготавливают эталонные образцы в форме параллелепипеда с искусственными дефектами для градуировки и установки порога чувствительности ультразвуковых дефектоскопов, при этом выполняют в образце технологические сквозные отверстия диаметром от 0,5 мм до 1,0 мм, перпендикулярные продольной оси образца и параллельные его рабочей поверхности, затем вводят в них обрабатывающий инструмент, после чего применяют электроэрозионную обработку для выполнения этим обрабатывающим инструментом узких сквозных пазов, параллельно сквозным технологическим отверстиям, высотой от 5 до 20 диаметров инструмента. Технический результат: обеспечение возможности получать искусственные дефекты в виде сквозных узких пазов заданного размера, с заданной глубиной залегания в плоскостях, перпендикулярных плоскости ввода-приема ультразвуковых колебаний и оси параллелепипеда. 4 ил.

Изобретение относится к области неразрушающего контроля. Сущность: дефектоскопическая установка для неразрушающего контроля конструкции, у которой имеется внутренняя часть с отверстием, содержит внешний зонд с множеством стенок, у каждой из которых имеется поверхность, соответствующая одной из множества соответствующих внешних поверхностей соответствующей стенки конструкции. Внешний зонд содержит первый элемент внешнего зонда, а также второй элемент внешнего зонда, магнитно сопряженные друг с другом за счет магнитного притяжения между магнитом, расположенным на первом элементе внешнего зонда, и магнитом, расположенным на втором элементе внешнего зонда. Устройство также содержит магнитный балансир, выполненный с возможностью принудительного перемещения второго элемента внешнего зонда в направлении повышенного магнитного сопряжения между вторым элементом внешнего зонда и первым элементом внешнего зонда за счет магнитного отталкивания между магнитом, расположенным на магнитном балансире, и магнитом, расположенным на втором элементе внешнего зонда. 2 н. 13. з.п. ф-лы, 5 ил.

Использование: для дефектоскопии и толщинометрии различных материалов. Сущность изобретения заключается в том, что ультразвуковой иммерсионный многоэлементный пьезоэлектрический преобразователь содержит герметичный корпус с демпфирующим веществом, пьезоэлементы, установленные внутри корпуса и расположенные в корпусе симметрично относительно акустической оси преобразователя, и линзу, расположенную со стороны излучающей поверхности пьезоэлементов, акустические оси пьезоэлементов пересекаются между собой на продольной оси преобразователя, вектор поляризации всех пьезоэлементов направлен либо в сторону излучения, либо в сторону демпфирующего вещества, причем линза выполнена общей для всех пьезоэлементов или состоит из отдельных секций, при этом пьезоэлементы расположены с образованием вогнутой или выпуклой относительно линзы поверхности, все пьезоэлементы выполнены с общим для них положительным и отрицательным электродами, перекрывающими заполненные полимерным компаундом промежутки между пьезоэлементами и подключенными к электрическому герметичному разъему, при этом линза и демпфирующее вещество поверхностями, обращенными к образованным пьезоэлементами и полимерным компаундом поверхностям, каждая со своей стороны, плотно прилегает к расположенным на этих поверхностях электродам, причем линза приклеена к расположенному на пьезоэлементах электроду или плотно прилегает к электроду через слой акустически проводящей жидкости. Технический результат: обеспечение возможности увеличения длины рабочей зоны и расширения диаграммы направленности пьезоэлектрического преобразователя при упрощении конструкции преобразователя. 5 з.п. ф-лы, 3 ил.

Использование: для компенсации погрешности измерения ультразвукового локатора. Сущность изобретения заключается в том, что выполняют излучение ультразвукового сигнала, прием ответного сигнала, измерение временного интервала между излученным и принятым сигналами и определение расстояния до отражающей поверхности путем умножения скорости распространения ультразвука в контролируемой среде на измеренный временной интервал, при этом излучение, прием ультразвуковых сигналов и измерение временных интервалов между излученным и принятым ультразвуковым сигналами производят на двух частотах с разными периодами, затем производят сравнение этих временных интервалов и их коррекцию в соответствии с заданным математическим выражением. Технический результат: обеспечение возможности снижения погрешности и повышения стабильности измерений при волноводном распространении ультразвуковых колебаний. 2 ил.

Использование: для компенсации погрешности измерения ультразвукового скважинного глубиномера. Сущность изобретения заключается в том, что устройство компенсации погрешности измерения ультразвукового локатора содержит генератор ультразвуковых импульсов, подключенный к излучателю, и последовательно соединенные приемник, усилитель, пороговое устройство, блок формирования временного интервала, блок измерения временного интервала и блок управления и индикации, выход которого связан с генератором и входом блока формирования временного интервала, источник опорного напряжения, подключенный к входу порогового устройства, кварцевый генератор, подключенный к блоку измерения временных интервалов, при этом второй генератор ультразвуковых импульсов подключен к второму излучателю, последовательно соединены второй приемник, второй усилитель, второе пороговое устройство, второй блок формирования временного интервала и второй блок измерения временного интервала, причем источник опорного напряжения подключен к второму входу второго порогового устройства, вход второго блока измерения временного интервала связан с кварцевым генератором, а выход второго блока измерения временного интервала подключен к блоку управления и индикации, выходы которого подключены ко второму генератору и второму блоку формирования временного интервала. Технический результат: снижение погрешности и повышение стабильности измерений при волноводном распространении ультразвуковых колебаний. 2 ил.

Использование: для определения коэффициентов звукопоглощения материалов. Сущность изобретения заключается в том, что выполняют измерение эталонных аналоговых сигналов с помощью первого и второго микрофонов акустического интерферометра, их аналогово-цифровое преобразование, вычисление передаточной функции с помощью непрерывного вейвлет-преобразования каждого из измеренных эталонных сигналов, вычисление коэффициентов отражения и коэффициентов звукопоглощения, представление результатов вычислений в графической форме в виде графика зависимости коэффициентов звукопоглощения от частоты или среднегеометрических частот 1/n - октавных полос, где n - целое число, при этом в качестве эталонного используют детерминированный аналоговый сигнал длительностью не менее 13 секунд с экспоненциально возрастающей частотой в диапазоне 100-4000 Гц. Технический результат: повышение точности определения коэффициентов звукопоглощения материалов в низкочастотном диапазоне. 2 ил.

Изобретение относится к способам испытаний и эксплуатационного ультразвукового контроля изделий. Для повышения достоверности ультразвукового неразрушающего контроля перед проведением контроля изделие нагружают нагрузкой, достаточной для раскрытия гипотетического дефекта типа трещины в месте контроля до величины, которая обеспечила бы отражение ультразвуковой волны от дефекта и сделала его выявляемым. Достигается повышение надежности и качества изделия. 3 з.п. ф-лы, 5 ил.

Использование: для измерения объемной концентрации водорода. Сущность изобретения заключается в том, что выполняют измерение температуры и скорости ультразвука в измеряемом газе, при этом определяют скорость в чистом водороде при той же температуре, а концентрацию водорода в газовой смеси вычисляют из математического выражения, учитывающего отношение квадрата скорости ультразвука в чистом водороде к квадрату скорости ультразвука в измеряемой смеси газов и отношение молярной массы примесей в водороде к молярной массе чистого водорода. Технический результат: упрощение системы измерений объемной концентрации водорода, повышение ее долговременной стабильности и снижение погрешности измерений. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области сейсмоакустических исследований и касается устройства контроля динамических характеристик сейсмоакустических преобразователей. Устройство включает в себя излучающий элемент, исследуемый сейсмоакустический преобразователь, опорное зеркало, оптический фотоприемник, оптически квантовый генератор и оптическую призму с полупрозрачным зеркалом, расположенным под углом 45° к основанию. Призма расположена между излучающим элементом и исследуемым сейсмоакустическим преобразователем. В качестве излучающего и контролирующего элементов используется пьезокерамическое кольцо, концентрично с которым установлен оптический фотоприемник. Опорное зеркало и оптический фотоприемник акустически развязаны с излучающим элементом и призмой. Технический результат заключается в повышении чувствительности и упрощении конструкции устройства. 1 ил.

Изобретение относится к системе для выполнения калибровочных отражателей на трубе. Переносная система электроэрозионной обработки для выполнения калибровочных отражателей на трубе содержит основание, монтируемое на трубу, режущий инструмент, электродвигатель, функционально соединенный с режущим инструментом для перемещения режущего инструмента в соответствии предварительно выбранной схемой, электрод, функционально соединенный с режущим инструментом, источник питания, функционально соединенный с электродом и функционально соединяемый с трубой, при этом источник питания выполнен с возможностью электрической подачи напряжения от электрода на трубу для удаления материала с трубы, источник диэлектрической текучей среды, находящийся во взаимодействии по текучей среде с трубой для удаления материала, удаляемого с трубы, при этом электродвигатель и источник питания и/или источник диэлектрической текучей среды установлены на основании. Изобретение обеспечивает возможность выполнения калибровочного стандарта из трубы сосуда высокого давления путем нарезания на поверхности толстостенной трубы сосуда высокого давления калибровочных отражателей в соответствии с выбранными предварительно заданными техническими требованиями. 2 н. и 13 з.п. ф-лы, 4 ил.
Наверх