Способ плазменного азотирования деталей



Способ плазменного азотирования деталей
Способ плазменного азотирования деталей

 


Владельцы патента RU 2530192:

Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина) (RU)

Изобретение относится к области поверхностного упрочнения путем азотирования деталей. Может использоваться при изготовлении деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха. Плазменное азотирование деталей проводят путем перемещения детали относительно плазмотрона в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона с щелевым выходным отверстием. В качестве плазмообразующего газа используют азот, являющийся одновременно легирующим элементом. Полученный легированный азотом поверхностный слой обеспечивает повышенную износостойкость, усталостную прочность и сопротивление коррозии в условиях абразивного изнашивания с минимальным уровнем деформаций и короблений деталей. 1 з.п. ф-лы, 2 ил., 2 пр.

 

Изобретение относится к области поверхностного упрочнения путем азотирования деталей и может быть использовано при изготовлении широкой номенклатуры деталей и инструмента, к которым предъявляются требования повышенного сопротивления схватыванию и адгезии в парах трения и коррозионной стойкости в условиях влажного воздуха. Из машиностроительной отрасли в таких условиях работает большинство деталей почвообрабатывающей, землеройной, кормоуборочной техники, а также пары трения ходовой части автотранспорта.

Известен способ плазменного азотирования (см. РЖ "Металловедение и термическая обработка", №3,1214. Обзор. Применение технологии плазменного азотирования. Application technology of plasma nitriding. Kanetake Norio. "Int. Semin. Plasma Heat Treat. Sel. and Technol. Senlis, 21-23 Sept., 1987". Paris, 1987, 145-153).

В известном способе плазменного азотирования сталей деталь помещается в газовую среду с определенным соотношением газовых компонентов. Такая обработка интенсифицирует насыщение поверхности детали азотом, но сопряжена с необходимостью применения насыщающей среды и смешивающего устройства, обеспечивающего ее состав в строгой пропорции газов H2/N2, что увеличивает эксплуатационные издержки.

Наиболее близким по технической сущности к заявляемому изобретению является способ плазменного азотирования деталей (Патент RU2240375 «Способ плазменного азотирования деталей» опубликован: 20.11.2004 - прототип), при котором упрочняемую деталь перемещают в зоне плазменной дуги относительно плазмотрона и используют в качестве плазмообразующего газа сжатый воздух, в качестве насыщающей среды используют азот плазмообразующего воздуха, и упрочняемую деталь перемещают относительно плазмотрона со скоростью, достаточной для оплавления поверхностного слоя, способного сохраниться без растекания за счет сил поверхностного натяжения.

В способе-прототипе интенсивное диффузионное насыщение элементами азота протекает в пределах оплавленного поверхностного слоя нагреваемого материала - для технического железа и углеродистых сталей глубина оплавленного слоя, который удается сохранить при нагреве без растекания за счет поверхностного натяжения - 0,15 мм, следовательно, на такую глубину производится упрочнение за счет азотирования из столба воздушно-плазменной дуги.

Однако оплавление поверхностного слоя обрабатываемой детали приводит к необходимости последующей механической обработки, что значительно уменьшает толщину азотированного слоя.

Технический результат предлагаемого изобретения - получение поверхностного слоя легированного азотом, обеспечивающего повышенную износостойкость, усталостную прочность и сопротивление коррозии в условиях абразивного изнашивания с минимальным уровнем деформаций и короблений деталей.

Технический результат достигается тем, что в способе плазменного азотирования деталей, при котором обрабатываемую деталь перемещают относительно плазмотрона, согласно изобретению, перемещение детали происходит в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона с щелевым выходным отверстием, в качестве плазмообразующего газа используют азот, выполняющий также роль легирующего элемента.

Кроме того, при толщине обрабатываемой детали меньше 25 мм, она дополнительно подвергается спрейерному охлаждению, синхронному с плазменной обработкой, и погружается в охлаждающую ее воду на 1/3 толщины для снижения коробления.

На фиг.1 изображена схема экспериментальной установки для реализации предлагаемого способа. На фиг.2 приведена фотография поперечного микрошлифа образца стали 60Г (после диффузионного насыщения азотом (×1000)).

Способ плазменного азотирования деталей осуществляется следующим образом (фиг.1). Обрабатываемая деталь 1 перемещается относительно плазмотрона 2 в зоне плазменной струи, формирующейся в преобразователе потока плазмотрона 3 с щелевым выходным отверстием 4. Одним из известных способов возбуждается дуга между электродами плазмотрона 2, подается плазмообразующий газ - азот. Обработка детали происходит в направлении, перпендикулярном щелевому выходному отверстию 4 преобразователя плазмотрона, широкими полосами, равными длине щелевого отверстия.

При малых толщинах деталей (меньше 25 мм) с недостаточным теплоотводом от обрабатываемой поверхности, возникает необходимость организации ее интенсивного охлаждения с целью снижения коробления, для чего обрабатываемая деталь дополнительно подвергается спрейерному охлаждению 5, синхронному с плазменной обработкой, и погружается в охлаждающую ее воду 6 на 1/3 толщины.

Предлагаемый способ плазменного азотирования позволяет получить поверхность обрабатываемой детали с однородными прочностными свойствами и не требующую дополнительной механической обработки.

Пример по п.1 конкретного выполнения. Азотированию подвергался образец 1 из стали 60Г толщиной 40 мм со следующими режимами обработки: ширина сканирования 40 мм; удельная мощность теплового потока 6,22·108 Вт/м2; скорость взаимного перемещения плазмотрон-образец 4 мм/с; расход плазмообразующего газа (азота) - 1,8 г/с. При обработке на этих режимах толщина слоя азотистого аустенита достигает 50 мкм. Из образца вырезали поперечный микрошлиф (по отношению к зоне обработки), который после травления наблюдали в оптическом металлографическом микроскопе при увеличении ×1000.

Как показано на фиг.2, микроструктура состоит из трех слоев: 1 - слой нитридов и оксидов; 2 - слой азотистого аустенита; 3 - слой фермообразного мартенсита. Фазовый состав и параметры кристаллической решетки определялся рентгеноструктурным анализом. Микротвердость легированного слоя измерялась на микротвердомере ПМТ-3 и нарастает от аустенитной зоны - 7,5 ГПа к зоне фермообразного мартенсита - до 9,0 ГПа.

Пример по п.2 конкретного выполнения. Азотированию подвергался образец 2 из стали 60Г толщиной 14 мм со следующими режимами обработки: ширина сканирования 40 мм; удельная мощность теплового потока 6,22·108 Вт/м; скорость взаимного перемещения плазмотрон-образец 4 мм/с; расход плазмообразующего газа (азота) - 1,8 г/с; расход охлаждающей воды - 30 г/с. При обработке на этих режимах толщина слоя азотистого аустенита достигает 50 мкм. Из образца вырезали поперечный микрошлиф (по отношению к зоне обработки), который после травления наблюдали в оптическом металлографическом микроскопе при увеличении ×1000. Микроструктура образца 2 аналогична микроструктуре образца 1.

Плазменное воздействие по предлагаемому способу характеризуется высокими скоростями нагрева и охлаждения, малой длительностью пребывания металла при температурах выше критических, что способствует повышению уровня свойств стали и одновременной реализации химико-термической обработки без оплавления поверхностного слоя детали.

1. Способ плазменного азотирования деталей, включающий перемещение обрабатываемой детали относительно плазмотрона, отличающийся тем, что деталь перемещают в зоне плазменной струи, которую формируют в преобразователе потока плазмотрона с щелевым выходным отверстием, причем в качестве плазмообразующего газа и одновременно легирующего элемента используют азот.

2. Способ по п.1, отличающийся тем, что при толщине менее 25 мм обрабатываемую деталь дополнительно подвергают спрейерному охлаждению, синхронному с плазменной обработкой, и погружают деталь в охлаждающую ее воду на 1/3 толщины для снижения коробления.



 

Похожие патенты:

Изобретение относится к области машиностроения и может быть использовано при изготовлении деталей двигателей, а также в медицине и других отраслях промышленности.
Изобретение относится к машиностроению, в частности к производству штанг для бурильных машин мелкошпурового бурения (до 4250 мм). .

Изобретение относится к области металлургии, в частности к сплавам на основе кобальта, упрочняемым азотированием. .
Изобретение относится к химико-термической обработке изделий, получаемых методом порошковой металлургии, а именно к азотированию. .

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из технически чистого титана ВТ1-0, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.

Изобретение относится к металлургической промышленности, а именно к химико-термической обработке поверхности изделий из титановых сплавов ВТ6 и ВТ16, и может быть использовано для повышения эксплуатационных характеристик медицинского инструмента.

Изобретение относится к плазменной химико-термической обработке поверхности изделий и может быть использовано в машиностроении. .

Изобретение относится к области химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов.
Изобретение относится к области химико-термической обработки сплавов и может быть использовано для изготовления высокотемпературных деталей и узлов горячего тракта газотурбинных авиационных двигателей и других изделий, работающих при температурах до 1100-1200°С с кратковременным увеличением до 1300°С.

Изобретение относится к металлургии, а именно к способам упрочнения металлов азотированием, и может быть использовано при изготовлении деталей из титановых сплавов, работающих при циклических нагрузках.

Изобретение относится к области ионно-лучевой вакуумной обработки материалов и может быть использовано в машиностроении для повышения эксплуатационных свойств деталей машин и механизмов.

Изобретение относится к ионной очистке поверхности изделий из диэлектрического материала или проводящего материала с диэлектрическими включениями. Изделия размещают на проводящем держателе, генерируют плазму с импульсно-периодическим ускорением ее ионов путем прохождения плазменного потока через ускоряющий зазор и с обеспечением поочередного облучения поверхности изделий потоком ускоренных ионов и плазмой при подаче на проводящий держатель высокочастотных короткоимпульсных потенциалов смещения.

Изобретение относится к люминесцентным материалам - конвертерам вакуумного ультрафиолетового излучения в излучение видимого диапазона, выполненным в виде аморфной пленки оксида кремния SiOX на кремниевой подложке, предназначенным для создания функциональных элементов фотонных приборов нового поколения, а также для контроля жесткого ультрафиолетового излучения в вакуумных технологических процессах.

Изобретение относится к области химико-термической обработки металлов. Устройство для химико-термической обработки деталей в несамостоятельном тлеющем разряде содержит вакуумную камеру с подложкой для размещения деталей, источник питания, соединенный отрицательным полюсом с подложкой, а положительным - с корпусом камеры, термоэмиссионный электрод и второй источник питания, соединенный отрицательным полюсом с термоэмиссионным электродом, а положительным - с корпусом камеры.

Изобретение относится к способу изготовления газодинамического подшипника поплавкового гироскопа. Осуществляют формообразование фланца и опоры с полусферическими встречно обращенными рабочими поверхностями.

Изобретение относится к области модификации поверхности металлов и сплавов и может быть использовано в машиностроении при производстве деталей, работающих в условиях трения скольжения.

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·1016 ион/см2 в указанную пленку и первый отжиг при температуре 900÷1000°C в течение 1÷1,5 часов в атмосфере сухого азота.

Изобретение относится к области получения мощных ионных пучков, а именно к катодам, которые могут быть использованы в установках для ионной имплантации металлов и сплавов, работающих в непрерывном и импульсном режимах.

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий.
Изобретение относится к области машиностроения и может быть использовано в авиационном двигателестроении и энергетическом турбостроении для защитно-упрочняющей обработки пера рабочих лопаток компрессора и турбины из легированных сталей и сплавов на никелевой основе для повышения выносливости и циклической долговечности деталей.

Изобретение относится к способу нанесения наноалмазного материала комбинированной электромеханической обработкой и может быть использовано в машиностроительной, авиационной, автомобильной и других отраслях промышленности. В нормальных атмосферных условиях проводят обработку, при которой на поверхность трения стальных деталей наносят обмазку, состоящую из коагулированных наноалмазов в виде порошка размером 200…250 нм, смешанных с консистентным графитным смазочным материалом, и затем осуществляют электромеханическую обработку с обеспечением поверхностного слоя стали с феррито-сорбито-трооститной структурой и формированием на поверхности стали наноструктурного слоя из графита, спеченного с наноалмазами, с получением общего упрочненного слоя толщиной до 1,2 мм. Обеспечивается повышение триботехнических показателей и износостойкости деталей с покрытием. 4 ил., 1 табл.
Наверх