Устройство для моделирования двухканальных преобразователей

Изобретение относится к средствам моделирования и оценивания факторов, затрудняющих восприятие информации операторами сложных технических систем. Технический результат заключается в обеспечении предобработки информации в ситуациях сложного (произвольного) воздействия на моделируемый объект дестабилизирующих факторов посредством применения однотипных фрагментов оснащаемого интеллектуального стенда. Устройство использует многоканальную матричную структуру с обратной связью, устройства для контроля и линеаризации передаточных характеристик многоканальных преобразователей для указанных исследовательских задач и экспериментов. В устройство введены блок управления, генератор многомерных последовательностей, блоки сопряжения, коммутации, сравнения, памяти, счетчик числа переключений субблока выявления неисправностей. 2 ил.

 

Устройство для моделирования двухканальных преобразователей (УМ ДКП) при исследовании регенерирующих процессов с дискретным временем относится к автоматике и вычислительной технике и может быть использовано для решения исследовательских и прикладных научно-технических задач [1, 2], применимых в принципе и сориентированных на моделирование и оценивание факторов, затрудняющих восприятие информации операторами сложных технических систем или приводящих к их переутомлению на необходимых временных интервалах деятельности (на примере области трехмерной стереоскопической визуализации).

В данных средствах и методах также рассматривается эффект Пульфриха - психофизический эффект восприятия, возникающий при искусственной или естественной задержке зрительного сигнала одного из глаз, в результате которого движущийся вбок объект в поле зрения интерпретируется зрительной корой как находящийся в зависимости от направления и скорости движения ближе или дальше от реального положения [3, 4].

Областью применения относится в целом к функциональным задачам оснащаемого посредством данного УМ ДКП интеллектуального стенда с использованием специального языка схем радикалов [5].

В реализуемом УМ ДКП при исследовании регенерирующих процессов с дискретным временем может быть в принципе использован базовый метод статистической оценки показателя частоты воздействия дестабилизирующих факторов [2, 9] посредством аппаратной реализации процедуры, основанной на применении алгоритма обнаружения аномалий искусственной иммунной системы - т.н. процедуры отрицательного отбора [6].

Присутствие факторов, затрудняющих восприятие информации операторами сложных технических систем или приводящих к их переутомлению на необходимых временных интервалах деятельности, рассматривается в данном случае на примере области трехмерной стереоскопической визуализации, в частности, в числе основных причин присутствует, к примеру, резкое различие яркости по отдельным каналам [7].

В математической кибернетике известны устройства, позволяющие осуществить различные по своей природе физические реализации неформальных моделей интеллектуальной обработки данных [5, 8].

На практике наиболее распространенной является задача идентификации с применением вероятностных систем распознавания, что позволяет обеспечить реализацию в процессе идентификации, в т.ч. и при моделировании распознавания, ряда возможностей метода статистических испытаний, в нашем случае - с использованием т.н. регенеративных моделей [1, 9].

Известны принципы функционирования и некоторые свойства многоканального устройства матричной структуры с обратной связью.

Данная матрица с обратной связью представляет собой устройство типа матрицы Штайнбуха [10], в которой между горизонтальными и вертикальными линейками образована обратная связь через блок нормирования. Наличие итеративного процесса позволяет использовать указанную матрицу с обратной связью в качестве генератора многомерных последовательностей.

Получение последовательности с заданными характеристиками может быть обеспечено путем подбора состава элементов матрицы и совокупности стартовых сигналов. Такая ассоциация позволит обеспечить не только произвольную гибкую перестройку связей в модели, но и организовать моделирование процедуры распознавания сложного динамического объекта (СДО) в рамках структуры без увеличения числа и сложности связей.

Однако при использовании указанного средства как эталона для логических систем распознавания в составе многоканального устройства матричной структуры с обратной связью при моделировании процесса идентификации СДО в практике, как правило, используемые характеристики априорных данных не являются достаточными для последующей оценки показателя частоты воздействия дестабилизирующих факторов [2, 9, 11].

Наиболее близким по назначению и технической сущности является устройство для контроля и линеаризации передаточных характеристик многоканальных преобразователей [12], обеспечивающее функциональное диагностирование контролируемых многоканальных преобразователей; устройство содержит блок выявления неисправности преобразователей, блок вычисления характеристик преобразователей, инвертор и коммутатор, подключенные к преобразователям.

В числе основных недостатков искомого средства, применимого в принципе при создании инвариантных к помехам линейных преобразователей, - это существенные ограничения при предобработке охватываемых ситуаций сложного (произвольного, т.е. одновременного или поочередного наложения) воздействия на моделируемый объект в рамках интеллектуального стенда (условия опережающего моделирования) с уточнением временных параметров исследуемого процесса внешними средствами, которые не позволяют производить моделирование многоканальных преобразователей с требуемым качеством в случае возникновения явлений, близких к статистически необратимым преобразованиям [9].

Задачей изобретения является создание комплексного устройства, позволяющего реализовать упреждающую предобработку в ситуациях сложного (произвольного) воздействия на моделируемый объект дестабилизирующих факторов посредством применения однотипных фрагментов оснащаемого интеллектуального стенда, в т.ч. блока памяти и др., с использованием многоканального устройства матричной структуры с обратной связью, а также устройства Титова В.Б. для контроля и линеаризации передаточных характеристик многоканальных преобразователей.

Требуемый технический результат достигается тем, что при моделировании опорной процедуры распознавания сложного динамического объекта в устройство дополнительно введены в новой последовательности блок управления и генератор многомерных последовательностей, счетчики числа переключений субблока выявления неисправностей, блоки сопряжения, коммутации, сравнения и памяти, а также новые связи между указанным оснащением, соответствующие функциональные связи.

Устройство для моделирования двухканальных преобразователей, содержащее блоки управления и памяти, генератор многомерных последовательностей, блоки контроля и линеаризации передаточных характеристик многоканальных преобразователей с дополнительно введенными блоком управления, блоками сопряжения, коммутации, сравнения и памяти, счетчиками числа переключений субблока выявления неисправностей, соответственно включает в своем составе компоненты, приведенные на фиг.1 (для функционально самостоятельного варианта) [11].

Функционально самостоятельный (одноканальный) компонент устройства для моделирования двухканальных преобразователей охватывает:

генератор многомерных последовательностей 1, выполненный в виде многоканального устройства матричной структуры с обратной связью, имеющий управляющий вход 1, 2n информационных входов и 2" информационных выходов, информационные выходы которого соответствуют входам блока сопряжения 2;

блок сопряжения 2, имеющий 2n входов и выход, входы которого соответствуют информационным выходам генератора многомерных последовательностей 1, выход которого подключен к входу 2 коммутатора 3;

коммутатор 3, имеющий управляющий вход 1, 2 информационных входа 2 и 3, а также выход, информационный вход 2 подключен к выходу блока сопряжения 2, выход которого подключен к входу блока контроля и линеаризации передаточных характеристик многоканальных преобразователей 4;

блок контроля и линеаризации передаточных характеристик многоканальных преобразователей 4, выполненный в виде устройства Титова В.Б. для контроля и линеаризации передаточных характеристик многоканальных преобразователей, имеющий вход и 2 выхода, вход подключен к выходу коммутатора 3, выход 1 подключен к функциональному входу 2 счетчика числа переключений 5;

счетчик числа переключений 5, имеющий управляющий вход 1, функциональный вход 2 и выход, функциональный вход 2 подключен к выходу 1 блока контроля и линеаризации передаточных характеристик многоканальных преобразователей 4.

Функционально самостоятельный (одноканальный) компонент устройства для моделирования двухканальных преобразователей работает в основных режимах работы прообраза (предшествует в полезной модели Неустройство моделирования процедуры распознавания сложного динамического объекта).

Устройство для моделирования двухканальных преобразователей схематично приведено на фиг.2 и в своем составе соответственно содержит:

- блок управления 1, имеющий четыре выхода, выход 1 блока управления 1 подключен к входу 1 блока коммутации 4, выход 2 блока управления 1 подключен к входу генератора многомерных последовательностей 2, выход 3 блока управления 1 подключен к входу 1 счетчика 8, выход 4 блока управления 1 подключен к входу 1 счетчика 9;

- генератор многомерных последовательностей 2, выполненный в виде многоканального устройства матричной структуры с обратной связью, имеющий управляющий вход и 2n информационных выходов, информационные выходы которого соответствуют входам блока сопряжения 3;

- блок сопряжения 3, имеющий 2n входов и выход, входы которого соответствуют информационным выходам генератора многомерных последовательностей 2, выход которого подключен к входу 4 блока коммутации 4;

- блок коммутации 4, имеющий управляющий вход 1, 3 информационных входа 2, 3, 4 и два выхода, управляющий вход 1 блока коммутации 4 подключен к выходу 1 блока управления 1, информационные входы 2 и 3 блока коммутации 4 соответствуют исследуемым внешним информационным каналам, информационный вход 4 блока коммутации 4 подключен к выходу блока сопряжения 3, выход 1 блока коммутации 4 подключен к входу 1 блока сравнения 5 и к входу блока контроля и линеаризации передаточных характеристик 6, выход 2 блока коммутации 4 подключен к входу 2 блока сравнения 5 и к входу блока контроля и линеаризации передаточных характеристик 7;

- блок сравнения 5, имеющий два входа и выход, вход 1 блока сравнения 5 подключен к выходу 1 блока коммутации 4, вход 2 блока сравнения 5 подключен к выходу 2 блока коммутации 4, выход блока сравнения 5 подключен к входу 2 блока памяти 10;

- блоки контроля и линеаризации передаточных характеристик 6 и 7, имеющие каждый вход и выход, входы которых соответственно соединены с выходами 1 и 2 блока коммутации 4, выходы которых соответственно соединены с входами 2 счетчиков числа переключений 8 и 9, выход 2 соединен с соответствующим ему входом блока памяти 7;

- счетчик числа переключений 8, имеющий управляющий вход 1, информационный вход 2 и выход, управляющий вход 1 счетчика числа переключений 8, подключен к выходу 4 блока управления 1, информационный вход 2 подключен к выходу блока контроля и линеаризации передаточных характеристик 6, выход счетчика числа переключений 8 соединен с входом 1 блока памяти 10;

- счетчик числа переключений 9, имеющий управляющий вход 1, информационный вход 2 и выход, управляющий вход 1 счетчика числа переключений 9, подключен к выходу 3 блока управления 1, информационный вход 2 подключен к выходу блока контроля и линеаризации передаточных характеристик 7, выход счетчика числа переключений 9 соединен с входом 3 блока памяти 10;

- блок памяти 10, имеющий 3 входа, которые соответственно подключены к выходам счетчика числа переключений 8, блока сравнения 5, счетчика числа переключений 9.

В научно-технической литературе не обнаружено технических решений с указанными существенными признаками, что позволяет сделать вывод о его новизне. Не были обнаружены и устройства, в которых поставленная цель достигалась бы всей вновь введенной совокупностью существенных признаков, что позволяет сделать вывод об изобретательском уровне предложения.

Устройство также поясняется чертежами, где на фиг.1 представлена структурная схема функционально самостоятельного компонента устройства для моделирования двухканальных преобразователей. На фиг.2 соответственно представлено построение устройства для моделирования двухканальных преобразователей, дополненное блоком сравнения.

Устройство для моделирования двухканальных преобразователей работает в соответствии с назначением функционально самостоятельного (одноканального) компонента в ранее описанных режимах работы устройства для моделирования процедуры распознавания сложного динамического объекта [11], обеспечивая при этом условия функционирования устройства в целом без активации (автономный) и с активацией оперативного режима, который, в новом исполнении, уже также предполагает и возможности последующего отключения наложения последовательности в исследуемых каналах как поочередно, так и одновременно:

предполагается, что в начальном состоянии генератор многомерных последовательностей 2 отключен, счетчики числа переключений 8 и 9 по управляющим входам 1 обнулены, исследуемые внешние сигналы поступают на входы 2 и 3 блока коммутации 4, на входы блоков контроля и линеаризации передаточных характеристик многоканальных преобразователей 6 и 7 поступают сигналы через блок коммутации 4;

блоком сравнения 5 обеспечивается сопоставление искомых параметров указанных одноканальных компонентов согласно опорной процедуре [6, 11];

генератор многомерных последовательностей 2 используется как для юстировки, так и для обеспечения наложения требуемой последовательности посредством блока управления 1 и блока коммутации 4;

с выхода блока сравнения 5 в блок памяти 10 (как и со счетчиков 8 и 9) поступают данные о результатах предобработки охватываемых ситуаций сложного (произвольного, т.е. одновременного или поочередного наложения) воздействия на моделируемый объект в рамках интеллектуального стенда (условия опережающего моделирования) с уточнением временных параметров исследуемого процесса внешними средствами;

в случае превышения порога срабатывания счетчика числа переключений 8 (9) после активации оперативного режима происходит останов УМ ДКП и задача обнаружения (идентификации) на данном этапе для соответствующих каналов считается выполненной.

В частности, относительно режимов работы и коммутации УМ ДКП обеспечивает соответственно задействование по отношению к внешнему (по необходимому количеству каналов) сигналу, посредством генератора многомерных последовательностей 2, блоков сопряжения 3 и коммутации 4 - функционирование интеллектуального стенда в целом по штатному режиму работы устройства Титова В.Б. для контроля и линеаризации передаточных характеристик многоканальных преобразователей, см. фиг.1 [11, 12]; нештатный режим работы устройства для контроля и линеаризации передаточных характеристик многоканальных преобразователей является ключевым по функциональному предназначению предлагаемого устройства, переход в который (режим работы) происходит после превышения порогового числа срабатывания счетчика числа переключений; искомыми выходными данными для блока памяти 10 являются показания блоков контроля и линеаризации передаточных характеристик многоканальных преобразователей 6 и 7 (соответственно показания счетчиков 8 и 9, а также блока сравнения 5).

Таким образом, о влиянии факторов, затрудняющих восприятие информации операторами сложных технических систем или приводящих к их переутомлению на необходимых временных интервалах деятельности и их уровне в среде функционирования надсистемы, представляется возможным судить по степени проявления искомого свойства в процессе функционирования описанного каскада, обеспечивающего упреждение в принципе возможных ситуаций сложного (произвольного) воздействия на моделируемый объект в рамках интеллектуального стенда с гарантированным временем исследования процесса внешними средствами (исходя из их потенциального быстродействия), с требуемым качеством в случае возникновения явлений, близких по сути к статистически необратимым преобразованиям [9].

Так, прецеденты функционирования проявляются при возникновении дестабилизирующих факторов в ходе выполнения отдельных и конкретных функциональных операций ряда разрабатываемых комплексов [2, 13]. По мере накопления информации о дестабилизирующих факторах, возникших в ходе таковых операций, появляется актуальная возможность оценивания показателя частоты дестабилизирующих факторов по накопленным в процессе проведения комплексных исследований статистическим данным.

Под статистической оценкой показателя частоты воздействия понимается числовое значение данного показателя, вычисленное по результатам наблюдений за указанными операциями.

Последовательность {Xn, n>1} случайных векторов размерности К является регенерирующим процессом, если существует возрастающая последовательность 1<β12<… случайных дискретных моментов времени, называемых моментами регенерации, такая что развитие процесса, начиная с каждого из этих моментов, определяется теми же вероятностными законами, что и в момент β1.

Это означает, что между любыми двумя последовательными моментами регенерации, например βj и βj+1, часть процесса {Xn, βj≤n<βj+1} является независимой «вероятностной копией» части процесса между любыми двумя другими последовательными моментами регенерации. Однако для части процесса, заключенной между моментом 1 и моментом β1, хотя и независимой от остальных частей, допускается отличие от них по распределению. Часть процесса {Xn, βj≤n<βj+1} будем называть j-м циклом.

На примере систем массового обслуживания для Xn=Wn моментами регенерации {βj, j≥1} являются порядковые номера тех требований, которые в момент прибытия застают обслуживающее устройство свободным. Поскольку представляющие интерес в практике случаи регенерирующих моделей в представленной формулировке имеют стационарные распределения, возможно обеспечить оценку искомых характеристик.

Пусть f будет измеримой функцией от К аргументов, принимающей действительные значения, и предположим, что цель моделирования состоит в оценке значения r≡E{f(X)} (в действительности эти т.н. «хорошие» функции включают все, которые представляют практический интерес).

Соответствующим выбором функции f можно оценить широкий ряд стационарных характеристик, представляющих практический интерес.

Если f(x)=x для всех x, то r≡E{f(X)}=E{X}.

Таким образом, оценивание г эквивалентно оцениванию Е{Х).

Если f(x)=х2, то r=Е{Х2};

r равно средней длине случайного вектора Х в пространстве размерности К.

Рассмотрим следствия регенерации, которые используются при получении доверительного интервала для г.

Пусть

Y j = i = β j β j + 1 1 f ( X i ) ,

т.e. Yj является суммой значений f(Xi) нa j-м цикле.

Последовательность состоит из независимых и одинаково распределенных случайных векторов.

Если

E{|f(X)|}<∞,

то

r = E { f ( X ) } = E { Y 1 } E { α 1 } .

В качестве практически возможного к реализации использован подход, представляющий собой метод статистической оценки показателя частоты воздействия дестабилизирующих факторов [9].

Принципы работы заявленного УМ ДКП, реализующего оснащение интеллектуального стенда посредством аппаратной реализации процедуры отрицательного отбора, основанной на применении алгоритма обнаружения аномалий искусственной иммунной системы, сводятся к реализации принципа неокончательного принятия решения при оценке ожидаемого воздействия путем подсчета числа переключений субблока выявления неисправностей [6].

Указанный пример был приведен в числе возможных предпосылок и вариантов статистической оценки показателя частоты воздействия дестабилизирующих факторов посредством предложенного УМ ДКП [14]. И представляется очевидным, что в предпочтительных вариантах выполнения могут быть сделаны изменения и модификации, не выходящие из объема настоящего изобретения, с использованием большего числа уже описанных в формуле однотипных фрагментов при сопряжении многоканальных преобразователей, а также посредством применения ряда иных во многом сходных статистических методов [1, 9, 13].

Список использованных источников

1. М. Крэйн, О. Леуман. Введение в регенеративный метод анализа моделей. М.: Наука, 1982.

2. Канащенков А.И., Меркулов В.И., Самарин О.Ф. Облик перспективных бортовых радиолокационных систем. Возможности и ограничения. - М.: ИПРЖР, 2002.

3. 3D TV становится реальностью / Журнал Mediasat. 2010, №03(38). С.26-28. [Режим доступа: ЭЙ]. http://mediasat.net.ua/content/news_all/4509.

4. Low differential 3-D viewer glasses and method. EP 0325019 (A1), 89-07-26.

5. Язык схем радикалов. Методы и алгоритмы. /Под ред. А.В. Чечкина и А.В. Рожнова. - М.: Радиотехника, 2008.

6. Искусственные иммунные системы и их применение. / Под ред. Д. Дасгупты. Пер. с англ. под ред. А.А. Романюхи. - М.: Физматлит, 2006.

7. Математическое моделирование технологии двигательного камуфляжа и ее приложение при разработке компонентов программного обеспечения на основе сведений бионики. Конкурс молодежных инновационных проектов «Полет мысли: авиация и космонавтика - 2007» (МАКС-2007).

8. Радченко А.Н. Моделирование основных механизмов мозга. Л.: Наука, 1968.

9. Электромагнитная совместимость и имитационное моделирование инфокоммуникационных систем. - М.: Радио и связь, 2002.

10. Акопян Р.А., Агамалова М.А. Обучаемая матрица. Авт.свид. №262494. "Открытия, изобретения, промышленные образцы, товарные знаки", 1969. №6.

11. RU 61044.

12. Авт.свидетельство СССР №1675854, кл. G05B 23/02. Устройство Титова В.Б. для контроля и линеаризации передаточных характеристик многоканальных преобразователей. Титов В.Б., Русинов К.А. 1989.

13. Еремеев В.Е. "Книга перемен" и семантическое кодирование. // Вопросы философии. 2007. №5. С.112-121.

Устройство для моделирования двухканальных преобразователей, содержащее генератор многомерных последовательностей, блок управления, блок памяти, блок контроля и линеаризации передаточных характеристик многоканальных преобразователей, отличающееся тем, что в устройство дополнительно введены блок управления 1, блок сопряжения 3, блок коммутации 4, блок сравнения 5, блоки контроля и линеаризации передаточных характеристик многоканальных преобразователей 6 и 7, счетчики 8 и 9, блок памяти 10, блок управления 1, имеющий четыре выхода, выход 1 блока управления 1 подключен к входу 1 блока коммутации 4, выход 2 блока управления 1 подключен к входу генератора многомерных последовательностей 2, выход 3 блока управления 1 подключен к входу 1 счетчика 8, выход 4 блока управления 1 подключен к входу 1 счетчика 9, генератор многомерных последовательностей 2, выполненный в виде многоканального устройства матричной структуры с обратной связью, имеющий управляющий вход и 2n информационных выходов, информационные выходы которого соответствуют входам блока сопряжения 3, блок сопряжения 3, имеющий 2n входов и выход, входы которого соответствуют информационным выходам генератора многомерных последовательностей 2, выход которого подключен к входу 4 блока коммутации 4, блок коммутации 4, имеющий управляющий вход 1, три информационных входа 2, 3, 4 и два выхода, управляющий вход 1 блока коммутации 4 подключен к выходу 1 блока управления 1, информационные входы 2 и 3 блока коммутации 4 соответствуют исследуемым внешним информационным каналам, информационный вход 4 блока коммутации 4 подключен к выходу блока сопряжения 3, выход 1 блока коммутации 4 подключен к входу 1 блока сравнения 5 и к входу блока контроля и линеаризации передаточных характеристик 6, выход 2 блока коммутации 4 подключен к входу 2 блока сравнения 5 и к входу блока контроля и линеаризации передаточных характеристик 7, блок сравнения 5, имеющий два входа и выход, вход 1 блока сравнения 5 подключен к выходу 1 блока коммутации 4, вход 2 блока сравнения 5 подключен к выходу 2 блока коммутации 4, выход блока сравнения 5 подключен к входу 2 блока памяти 10, блоки контроля и линеаризации передаточных характеристик 6 и 7, имеющие каждый вход и выход, входы которых соответственно соединены с выходами 1 и 2 блока коммутации 4, выходы которых соответственно соединены с входами 2 счетчиков числа переключений 8 и 9, выход 2 соединен с соответствующим ему входом блока памяти 7, счетчик числа переключений 8, имеющий управляющий вход 1, информационный вход 2 и выход, управляющий вход 1 счетчика числа переключений 8 подключен к выходу 4 блока управления 1, информационный вход 2 подключен к выходу блока контроля и линеаризации передаточных характеристик 6, выход счетчика числа переключений 8 соединен с входом 1 блока памяти 10, счетчик числа переключений 9, имеющий управляющий вход 1, информационный вход 2 и выход, управляющий вход 1 счетчика числа переключений 9 подключен к выходу 3 блока управления 1, информационный вход 2 подключен к выходу блока контроля и линеаризации передаточных характеристик 7, выход счетчика числа переключений 9 соединен с входом 3 блока памяти 10, блок памяти 10, имеющий 3 входа, которые соответственно подключены к выходам счетчика числа переключений 8, блока сравнения 5, счетчика числа переключений 9.



 

Похожие патенты:

Изобретение относится к контролю и диагностике систем автоматического управления и их элементов. Техническим результатом является уменьшение вычислительных затрат, связанных с реализацией моделей с пробными отклонениями параметров или анализом знаков передач сигналов.

Группа изобретений относится к планированию нагрузки электростанции. Техническим результатом является оптимизация планирования нагрузки в электростанции с целью минимизации эксплутационных затрат.

Изобретение относится к области техники контроля авиационного двигателя летательного аппарата, в частности к стандартизации данных, используемых для контроля авиационного двигателя.

Изобретение относится к области техники контроля авиационного двигателя, в частности к идентификации отказов и к обнаружению неисправных компонентов в авиационном двигателе.
Изобретение относится к корабельному вооружению и судовому радиооборудованию. Способ заключается в проведении натурных испытаний комплекса средств вооружения корабля, в процессе которых в каждом испытании постоянно измеряют и фиксируют параметры состояния внешней среды и испытуемого комплекса.

Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является расширение функциональных возможностей способа для нахождения одного или сразу нескольких неисправных блоков (кратных дефектов) в динамической системе с произвольным их соединением, а также улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов.

Изобретение относится к управлению траекторией движения судна, выполняющего сложное маневрирование при швартовке, динамическом позиционировании или дрейфе. Способ характеризуется тем, что перед выполнением сложного маневрирования судно выполняет вращение под воздействием средств активного управления, например подруливающего устройства, при этом измеряют величину угловой скорости судна ω и рассчитывают вращающий момент Mpr, образуемый подруливающим устройством.

Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Технический результат - расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия), увеличение помехоустойчивости способа диагностирования дискретных систем автоматического управления путем улучшения различимости дефектов и уменьшение аппаратных затрат на вычисление весовой функции.

Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Технический результат - расширение функциональных возможностей способа для нахождения одного или сразу нескольких неисправных блоков (кратных дефектов) в дискретной динамической системе с произвольным соединением блоков, а также расширение функциональных возможностей способа путем применения рабочего диагностирования (без использования тестового воздействия) и уменьшение аппаратных затрат на вычисление весовой функции.

Изобретение относится к области измерительной техники и технической диагностики, в частности к устройствам контроля работоспособности и диагностики неисправностей радиоэлектронной аппаратуры.

Изобретение относится к области диагностики неисправностей радиоэлектронной аппаратуры. Техническим результатом является повышение эффективности диагностики радиоэлектронной аппаратуры или его отдельных элементов неконтактным способом. Способ заключается в получении тепловизионного изображения радиоэлектронных элементов на печатной плате и сравнении его с эталонным тепловизионым изображением. На тепловизионном изображении элементов на диагностируемой печатной плате определяют относительные координаты и значения радиационной температуры элементов на печатной плате по относительным координатам элементов на диагностируемой печатной плате; выбирают эталонное тепловизионное изображение печатной платы из заранее сформированного банка данных, вычисляют функцию сходства S между радиационными температурами соответствующих элементов на диагностируемой и эталонной печатных платах; проводят диагностику работоспособности каждого элемента на диагностируемой плате путем проверки условия (Tmin jk≤Tjk≤Tmax jk), где Tjk - радиационная температура j-го элемента на диагностируемой печатной плате, °С; Tmin jk - минимально возможная радиационная температура j-гo элемента на диагностируемой печатной плате; Tmax jk - максимально возможная радиационная температура j-гo элемента на диагностируемой печатной плате.

Изобретение относится к техническим системам, а именно к способам оптимального моделирования устройств электронной техники. Технический результат - упрощение определения выходной реакции линейного устройства на входной сигнал в виде функции времени и расширение функциональных возможностей за счет возможности моделирования линейного устройства в виде дифференциальных уравнений с переменными коэффициентами. Заявленный способ включает моделирование работы линейного устройства в виде линейного дифференциального уравнения n-го порядка с постоянными коэффициентами, определение n собственных параметров линейного устройства λi (i=1, 2, …, n), последующее собственно определение реакции линейного устройства на входной сигнал. В котором собственно определение реакции линейного устройства на входной сигнал осуществляют для каждого i-го собственного параметра линейного устройства путем умножения входного сигнала на экспоненциальную функцию времени с отрицательным знаком при i-м собственном параметре линейного устройства, полученное произведение интегрируют по времени, результат интегрирования по времени умножают на экспоненциальную функцию времени с положительным знаком при каждом i-м собственном параметре, далее полученные произведения для каждого i-го собственного параметра линейного устройства суммируют с соответствующими весовыми множителями по всем n собственным параметрам линейного устройства. 1 ил.

Изобретение относится к области диагностики технического состояния систем с электрическим приводом. Технический результат заключается в обеспечении контроля технического состояния системы управления электроприводом. Для этого предложен способ автоматической диагностики системы с электроприводом, включающей управляющее устройство, соединенное посредством каналов связи с электроприводом, содержащим блок управления и электродвигатель, основанный на последовательной подаче тестирующих сигналов, при этом систему переводят в режим диагностики, при котором сначала диагностируют информационные каналы связи блока управления путем подачи тестовых сигналов с выходов блока управления на входы управляющего устройства и анализа управляющим устройством поступления тестовых сигналов на своих входах, при этом исправными информационными каналами связи блока управления считаются те каналы, через которые прошли все тестовые сигналы в течение заданного времени и в заданной последовательности, затем при условии признания исправными информационных каналов связи блока управления диагностируют управляющие каналы связи блока управления путем подачи тестовых сигналов с выходов управляющего устройства на входы блока управления и анализа блоком управления поступления тестовых сигналов на своих входах, при этом исправными управляющими каналами связи блока управления считаются те каналы, через которые прошли все тестовые сигналы в течение заданного времени и в заданной последовательности, и завершают режим диагностики. 7 ил.

Изобретение относится к области судовождения - автоматическому управлению движением судна. Система определения гидродинамических коэффициентов математической модели движения судна содержит задатчик идентификационных маневров управления движением судна, объект управления, а также блок формирования коэффициентов усиления в процессе идентификации гидродинамических коэффициентов судна. Блок измерения включает датчики: бокового ускорения, боковой скорости судна, продольной скорости, угловой скорости, угла перекладки руля, углового ускорения. Блок памяти содержит текущие оценки гидродинамических коэффициентов судна и элементы ковариационной матрицы. Достигается уточнение гидродинамических коэффициентов математической модели движения судна, повышение качества автоматического управления движения, повышение безопасности проводки судна в узкостях, снижение нагрузки рулевого привода при сильном волнении. 3 ил.

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является расширение полноты контроля объекта контроля. Дополнительно к формированию инициирующих воздействий и контролю реакций объекта в дополнительных сеансах контролируется система электропитания объекта. Для осуществления способа в систему контроля включен блок измерительных токов, дополнительные связи в объекте контроля и системе контроля, обеспечивающие контроль целостности цепей системы электропитания объекта контроля и параметров его источников питания. 2 н.п. ф-лы, 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при техническом обслуживании сложных технических объектов. Технической результат заключается в расширении полноты контроля объекта контроля. Дополнительно к формированию инициирующих воздействий и контролю реакций объекта в отдельных сеансах контроля проверяется встроенная в объект система телеизмерений его параметров. Для осуществления способа предлагается три варианта системы контроля. В первом варианте включен блок приема телеметрического сигнала и дополнительные связи на объекте контроля и в системе контроля, обеспечивающие доступ системы контроля к дополнительным датчикам параметров компонентов объекта контроля. Во втором варианте, дополнительный выход объект контроля соединен с промежуточным выходом его системы телеизмерений. В третьем варианте дополнительный выход соединен с промежуточным выходом системы телеизмерений через блок согласования телеметрического сигнала. 4 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат заключается в уменьшении аппаратных и вычислительных затрат, связанных с уменьшением числа измеряемых сигналов объекта диагностирования. Он достигается тем, что предложен способ поиска неисправного блока в непрерывной динамической системе, в котором в отличие от прототипа определяют число групп динамических блоков N=2 так, что каждая группа имеет один входной и один выходной сигналы, назначают две контрольные точки для измерения выходных сигналов каждой группы, создают модели с пробными отклонениями для двух контрольных точек, для чего вводят пробное отклонение параметров в один из блоков каждой группы, вычисляют диагностические признаки наличия неисправной группы блоков, по минимуму значения диагностического признака определяют дефектную группу блоков, дефектную группу разбивают на две подгруппы путем назначения контрольной точки на выходе одного из динамических блоков дефектной группы так, чтобы каждая новая подгруппа содержала только один вход и один выход, контрольную точку на выходе группы блоков, не содержащих неисправность, удаляют, фиксируют контрольные точки на выходах подгрупп блоков, определяют модели с пробными отклонениями для каждой подгруппы, вычисляют диагностические признаки для каждой подгруппы блоков, определяют дефектную подгруппу блоков по минимуму диагностического признака, операции разбиения дефектной подгруппы блоков и определения пробных отклонений продолжают до тех пор, пока дефектная подгруппа не будет содержать только один блок, который принимается за неисправный. 2 ил.

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является расширение функциональных возможностей способа за счет возможности поиска топологических дефектов. Технический результат достигается тем, что регистрируют реакцию заведомо исправной системы на интервале в контрольных точках и определяют и регистрируют интегральные оценки выходных сигналов системы; определяют и регистрируют интегральные оценки выходных сигналов модели для каждой из контрольных точек и каждого из пробных отклонений; определяют деформации интегральных оценок выходных сигналов модели; определяют нормированные значения деформаций интегральных оценок выходных сигналов модели; замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный входной сигнал, определяют интегральные оценки выходных сигналов контролируемой системы; определяют отклонения интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений; определяют нормированные значения отклонений интегральных оценок выходных сигналов контролируемой системы; определяют диагностические признаки; по минимуму диагностического признака определяют топологический дефект. 1 ил.

Изобретение относится к контролю и диагностированию систем автоматического управления и их элементов. Технический результат - поиск неисправностей. Предварительно регистрируют реакцию заведомо исправной дискретной во времени системы для дискретных тактов регистрации сигнала с дискретным постоянным шагом на интервале наблюдения в контрольных точках, и многократно определяют (одновременно) интегральные оценки выходных сигналов дискретной системы для значений параметра дискретного интегрирования, для чего в момент подачи тестового сигнала на вход дискретной системы с номинальными характеристиками одновременно начинают дискретное интегрирование сигналов системы управления с шагом для параметров интегрирования в каждой из контрольных точек с весами с шагом, путем подачи на первые входы блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают дискретные экспоненциальные сигналы с шагом для блоков дискретного интегрирования, выходные сигналы блоков перемножения подают на входы блоков дискретного интегрирования с шагом, интегрирование завершают в момент времени, полученные в результате дискретного интегрирования оценки выходных сигналов регистрируют, фиксируют число рассматриваемых одиночных дефектов блоков. Определяют элементы знаков передач сигналов каждого блока, входящего в состав системы для каждой контрольной точки. Элементы знаков передач сигналов используют в заявляемом способе вместо изменений интегральных оценок сигналов модели для всех контрольных точек, полученные для пробных отклонений параметров блоков. Затем определяют нормированные значения вектора знаков передач сигналов для каждого блока, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал, определяют интегральные оценки сигналов контролируемой дискретной системы для контрольных точек и для параметров дискретного интегрирования, определяют отклонения интегральных оценок сигналов контролируемой дискретной системы для контрольных точек и параметров дискретного интегрирования от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой дискретной системы для параметров дискретного интегрирования, определяют диагностические признаки при параметрах дискретного интегрирования, по минимуму значения диагностического признака определяют неисправный блок. 1 ил.

Изобретение относится к контрольному устройству распределительного шкафа, которое через промышленную сеть соединено с различными датчиками и/или исполнительными устройствами для контроля и управления различными функциями распределительного шкафа, такими как кондиционирование, регулирование влажности, контроль доступа. Технический результат заключается в создании контрольного устройства распределительного шкафа с надежной передачей данных и возможностью приспособления к разным случаям применения распределительных шкафов. Для этого предложены контрольное устройство и способ, в которых по меньшей мере часть датчиков и/или исполнительных устройств в качестве датчиков прямого подключения и/или исполнительных механизмов прямого подключения оснащены собственными схемами подключения к шине и через них подсоединены к промышленной сети, и устройство управления имеет блок инициализации или выполнено с возможностью соединения с подобным блоком, через который датчики прямого подключения и/или исполнительные механизмы прямого подключения являются инициализируемыми перед их запуском в работу и при этом автоматически адресуемыми, а затем на основании индивидуально присвоенных адресов посредством устройства управления являются соединенными с обменом данными для их работы. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к средствам моделирования и оценивания факторов, затрудняющих восприятие информации операторами сложных технических систем. Технический результат заключается в обеспечении предобработки информации в ситуациях сложного воздействия на моделируемый объект дестабилизирующих факторов посредством применения однотипных фрагментов оснащаемого интеллектуального стенда. Устройство использует многоканальную матричную структуру с обратной связью, устройства для контроля и линеаризации передаточных характеристик многоканальных преобразователей для указанных исследовательских задач и экспериментов. В устройство введены блок управления, генератор многомерных последовательностей, блоки сопряжения, коммутации, сравнения, памяти, счетчик числа переключений субблока выявления неисправностей. 2 ил.

Наверх