Устройство для измерения вязкости материала

Изобретение относится к технике измерения вязкости веществ, а именно к устройствам для измерения эффективной вязкости материала с помощью ротационного вискозиметра. Устройство для измерения вязкости материала включает плиту, стойку с установленной на ней панелью, на которой закреплено основание, с измерительным устройством, состоящим из наружного измерительного цилиндра, имеющего отверстия в стенках и днище, объединенные между собой концентрическими металлическими трубочками посредством дугообразного двухпозиционного металлического капилляра. Также устройство содержит гибкий соединительный шланг и штуцер, внутренний измерительный цилиндр, привод и датчик угла поворота. Устройство дополнительно снабжено комбинированными датчиками термопар-потенциометров, установленными с возможностью подключения к записывающему устройству в имеющихся отверстиях в стенках и днище наружного измерительного цилиндра на расстоянии, равном внутреннему диаметру внешнего цилиндра, и на расстоянии, равном половине между внутренним диаметром внешнего цилиндра и наружным диаметром внутреннего цилиндра. Техническим результатом является повышение точности измерения величины вязкости материала и экспрессности получения результатов технологического воздействия на его реологические свойства, возможность измерения величины температуры и внутреннего электропотенциала при измерении вязкости материала. 2 ил.

 

Изобретение относится к технике измерения вязкости веществ, а именно к устройствам для измерения эффективной вязкости материала с помощью ротационного вискозиметра.

Известно устройство для измерения вязкости материала, включающее коаксиально расположенные наружный измерительный цилиндр и внутренний вращающийся измерительный цилиндр, установленный на измерительном штоке, соединенном с электроприводом, силоизмеритель, датчик угла поворота, электропривод, термостатирующее устройство, исследуемый материал поступает в зазор коаксиальной цилиндрической системы ротационного вискозиметра, вытесняя при этом массу материала, оставшуюся от предыдущего замера [Реометрия пищевого сырья и продуктов: Справочник / Под. ред. Ю.А. Мачихина. - М.: Агропромиздат. - 1990. - 271 с.].

Недостатком такого устройства для измерения вязкости материала является невысокая точность.

Наиболее близким по технической сущности и достигаемому эффекту является ротационный вискозиметр [Пат. РФ №2324919, G01N 11/14, Устройство для измерения вязкости материала], содержащий основание, два коаксиально расположенных измерительных цилиндра, привод и схему измерения угла поворота измерительного цилиндра, причем в наружном измерительном цилиндре выполнены отверстия в стенках и днище, объединенные между собой концентрическими металлическими трубочками посредством дугообразного двухпозиционного металлического капилляра, гибкого соединительного шланга и штуцера.

Недостатком такого ротационного вискозиметра является недостаточно оперативное получение экспериментальных данных, относительно невысокая точность и информативность.

Задача изобретения - создание устройства, позволяющего получать данные об эффектах, сопровождающих внутреннее трение в материале.

Технический результат заключается в возможности получения данных о величине температуры и внутреннего электропотенциала при измерении вязкости материала, способствующих повышению точности измерения величины вязкости материала, и информативности.

Техническая результат достигается тем, что в устройстве для измерения вязкости материала, включающем плиту, стойку с установленной на ней панелью, на которой закреплено основание, с измерительным устройством, состоящим из наружного измерительного цилиндра, имеющего отверстия в стенках и днище, объединенные между собой концентрическими металлическими трубочками посредством дугообразного двухпозиционного металлического капилляра, гибкого соединительного шланга и штуцера, внутреннего измерительного цилиндра, привода и датчика угла поворота, новым является то, что устройство дополнительно снабжено комбинированными датчиками термопар-потенциометров, установленными с возможностью подключения к записывающему прибору в имеющихся отверстиях в стенках и днище наружного измерительного цилиндра на расстоянии, равном внутреннему диаметру внешнего цилиндра, и на расстоянии, равном половине между внутренним диаметром внешнего цилиндра и наружным диаметром внутреннего цилиндра (dвнутренний диаметр внешнего цилиндра≤dдатчика≤dнаружный диаметр внутреннего цилиндра).

На фиг.1 представлен общий вид устройства, на фиг.2 - разрез А-А устройства.

Устройство для измерения вязкости материала включает в себя плиту 1, стойку 2 с установленной на ней панелью 3, на которой закреплено основание 4, на основании закреплен наружный измерительный цилиндр 5, внутренний измерительный цилиндр 6 и датчик угла поворота 7, установленные на приводном валу 8, привод которого осуществляется от электродвигателя 9, наружный измерительный цилиндр 5 снабжен отверстиями 10, объединенными между собой концентрическими металлическими трубочками 11 посредством дугообразного двухпозиционного металлического капилляра 12, гибкого соединительного шланга 13, штуцера 14 на корпусе термостатирующей ячейки 15 с объемным насосом (не показан), в имеющихся отверстиях в стенках и днище наружного измерительного цилиндра 5 установлены датчики 16 термопар-потенциометров для измерения величины температуры и электропотенциала, которые подсоединяются к индуцирующе-записывающему устройству посредством разъема 17 (не показан).

Устройство для измерения вязкости материала работает следующим образом.

К штуцеру 14 на корпусе термостатирующей ячейки 15 подключают объемный насос (не показан), а датчики 16 термопар-потенциометров для измерения величины температуры - к индуцирующе-записывающему устройству посредством разъема 17. При установленной и термостатированной измерительной системе в зазор между внешним 5 и внутренним 6 цилиндрами через отверстия 10 во внешнем цилиндре подают исследуемое вещество, включают электродвигатель 9. В процессе проведения измерения можно вводить дополнительный компонент в объем исследуемого вещества через отверстия 10 в стенках и днище внешнего цилиндра 5 измерительной системы. В следствие “тормозящего” эффекта исследуемого вещества внутренний цилиндр 6 поворачивается на определенный угол относительно своей оси вращения, величина угла поворота фиксируется датчиком угла поворота 7, сигнал от которого передается на блок индикации (не показан), также за счет этого же эффекта “торможения” часть внутренней механической энергии вещества переходит в тепловую и электромагнитную энергию на основании явления магнетизма - явления взаимодействия отдельных частиц вещества (или одно-, разнородных веществ (их микрообъемов) в целом), в результате которого возникают взаимопереходы энергии частиц (вещества), комплексно реализующиеся в изменении величины локального магнитного поля с последующим изменением величин температуры и ЭДС, т.е. материальным переносчиком взаимодействия отдельных частиц вещества (или одно-, разнородных веществ в целом) является электромагнитное поле, которое реализуется на механическом уровне в виде изменения величины силы (внутренней), “противодействующей” внешней силе, которая “нарушает” состояние относительного равновесия вещества (собственно явление вязкости вещества), а также является причиной возникновения комплексного изменения состояния вещества - изменения величины магнитного поля локального с последующим изменением величин температуры и ЭДС - до достижения им (исследуемым веществом) состояния относительного равновесия при данных условиях (температура, градиенты скорости сдвига), которые выражаются в изменении величин температуры и электрического потенциала в данной точке, что дополнительно фиксируется установленными датчиками 16 температуры-потенциала в имеющихся отверстиях 10 в стенках и днище внешнего цилиндра измерительной системы. После окончания измерений вязкости материала его удаляют из измерительной системы через отверстия 10 в стенках и днище внешнего измерительного цилиндра 5, через которые затем в зазор между коаксиальными цилиндрами 5 и 6 подается промывная жидкость для удаления остатков исследуемого вещества и воздух для удаления остатков промывочной жидкости, т.е. удаление, промывку и другие подготовительные операции осуществляются без демонтажа коаксиальной цилиндрической измерительной системы устройства.

Исследуемый образец вещества подается объемным насосом внутрь системы, термостатируется, через систему отверстий 10, металлических трубочек 11 и капилляра 12 можно вводить дополнительные вещества непосредственно в объем исследуемого материала с помощью дискретной объемной подачи, чем достигается факт изменения рецептурно-технологического состава исследуемого вещества при данных технико-технологических условиях.

В предлагаемом устройстве исключаются погрешности, обусловленные наличием возможных остаточных напряжений и неоднородностью структуры исследуемого материала, находящегося в измерительной системе, которые могут иметь место из-за ввода внутреннего измерительного цилиндра в исследуемое вещество при монтаже наружного измерительного цилиндра на основание.

Предложенное устройство для измерения вязкости материала позволяет повысить точность измерения величины вязкости материала и экспрессность получения результатов технологического воздействия на его реологические свойства, создает возможность осуществления измерения величины вязкости материала в потоке, при постоянном термостатировании измерительной системы.

Устройство для измерения вязкости материала, включающее плиту, стойку с установленной на ней панелью, на которой закреплено основание, с измерительным устройством, состоящим из наружного измерительного цилиндра, имеющего отверстия в стенках и днище, объединенные между собой концентрическими металлическими трубочками посредством дугообразного двухпозиционного металлического капилляра, гибкого соединительного шланга и штуцера, внутреннего измерительного цилиндра, привода и датчика угла поворота, отличающееся тем, что устройство дополнительно снабжено комбинированными датчиками термопар-потенциометров, установленными с возможностью подключения к записывающему устройству в имеющихся отверстиях в стенках и днище наружного измерительного цилиндра на расстоянии, равном внутреннему диаметру внешнего цилиндра, и на расстоянии, равном половине между внутренним диаметром внешнего цилиндра и наружным диаметром внутреннего цилиндра.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения коэффициента динамической вязкости текучих сред со сложными реологическими свойствами, зависящими от скорости сдвига, давления и температуры.

Изобретение относится к приборостроению и может быть использовано при изготовлении вискозиметров для измерения реологических свойств жидкостей. .

Изобретение относится к медицинской технике, а именно к устройствам и способам исследования биомеханических свойств крови. .

Изобретение относится к измерительной технике, в частности к аэрогидродинамическим устройствам для определения вязкости, и может найти применение в различных отраслях промышленности при контроле состава и свойств жидкостей.

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения вязкости жидкостей, а также контроля готовности и качества полимерных и других растворов, например, при производстве полимерных волокон.

Изобретение относится к устройствам для непрерывного контроля процесса образования молочного сгустка при производстве сыров и кисломолочных продуктов. .

Изобретение относится к устройству, предназначенному для измерения реологических характеристик вязкоупругого материала. .

Изобретение относится к области реологии, в частности к разработке способов определения неньютоновской вязкости полимерных соединений, их растворов и концентрированных суспензий гранулированных материалов.

Изобретение относится к области медицины. .

Изобретение относится к измерительной технике и может быть использовано для исследования вязкости крови. .

Настоящее изобретение относится к устройствам для исследования реологических характеристик материалов и способам использования данных устройств. Более конкретно, объектом настоящего изобретения являются импеллерные чувствительные элементы для исследования реологических характеристик жидкостей, содержащих твердые частицы, в различных условиях обработки. В общем способе исполнения, настоящее изобретение содержит импеллерный чувствительный элемент, закрепляемый в приводной головке реометра и используемый для измерения реологических характеристик текучих сред, содержащих твердые частицы, в широком диапазоне значений температур и скоростей сдвига. Устройства для измерения реологических характеристик текучих сред с твердыми частицами в широком диапазоне значений температур и скоростей сдвига дают возможность получения более точных реологических характеристик. Температуры проведения измерений могут быть очень высокими, свыше 100°C, а используемые значения скоростей сдвига являются типичными для производственных трубопроводных систем. Техническим результатом является создание импеллерных чувствительных элементов, дающих возможность проведения реологических исследований, результаты которых достаточно точно отражают фактические рабочие условия, а также позволяющих точно измерять реологические свойства жидкостей, содержащих твердые частицы и предотвращать оседание твердых частиц в образцах жидкостей при проведении реологических измерений. 3 н. и 37 з.п. ф-лы, 6 ил.

Изобретение относится к диагностической медицинской технике и может быть использовано при оценке вязкости крови. Устройство включает ротор, средство приведения ротора во вращение, средство регистрирующее параметры вращения ротора, измерительную ячейку, причем ротор размещен внутри измерительной ячейки с зазором, при этом ротор и измерительная ячейка выполнены таким образом чтобы соблюдалось условие: 1,0<δ<1,03 или 1,03<δ≤1,1, где δ отношение радиуса измерительной ячейки к радиусу ротора. Достигается упрощение конструкции и повышение точности измерений за счет комплексного анализа различных составляющих вязкости крови. 13 з.п. ф-лы, 10 ил.

Изобретение относится к устройствам для непрерывного контроля процессов гелеобразования в молочных сгустках при производстве сыров и кисломолочных продуктов, а также для контроля процессов гелеобразования в других отраслях промышленности, производящих или применяющих структурированные жидкости. Колебательный контур содержит основание, корпус, нагружающее устройство, измерительное устройство, емкость и блок управления. При этом нагружающее устройство включает присоединенный к валу шагового электродвигателя понижающий редуктор с передаточным отношением не менее 20:1, на выходном валу которого зафиксирована втулка кулачка, к которой винтами прикреплен диск кулачка с выполненным по его центру сквозным окном, а со стороны втулки и симметрично его центральной оси, перпендикулярной оси продолговатых отверстий для винтов, в нем выполнен прямоугольной формы паз, в который с возможностью вращения помещен эксцентрик с шлицем, хвостовик которого с зазором вставлен в центральное отверстие втулки кулачка. При этом диск кулачка контактирует с установленным соосно ему в центральной втулке, прикрепленной вертикально над ним к кронштейну основания, толкателем, на верхнем конце которого горизонтально зафиксирован столик с емкостью. Измерительное устройство состоит из размещенного с зазором в емкости чувствительного элемента, выполненного в виде рифленых пластинок, прикрепленных с равным шагом по окружности к вертикально расположенному измерительному стержню, зафиксированному в замке прецизионного тензометрического силоизмерителя, установленного на кронштейне на основании. Техническим результатом является упрощение конструкции и повышение точности измерений. 6 ил.

Изобретение относится к автоматизации технологического контроля производственных процессов в химической и нефтехимической промышленности. Способ измерения вязкости жидкости ротационным вискозиметром включает создание и измерение разности давлений в нагнетательной и всасывающей камерах ротационного насоса, измерение скорости вращения ротора, с последующим нахождением искомого параметра расчетным путем. При этом измерения проводят в динамическом режиме и дополнительно измеряют крутящий момент на приводном валу насоса, температуру на выходе насоса, далее рассчитывают вязкость контролируемой жидкости по формулам: где: A, F, G - постоянные коэффициенты; Δ p - разность давлений в нагнетательной и всасывающей камерах; n - скорость вращения ротора; t - температура на выходе насоса; Мпр - крутящий момент, затрачиваемый на приводном валу насоса; t0 - приведенная температура. Целесообразно в качестве ротационного насоса использовать роторно-вращательный насос. Техническим результатом является упрощение способа и повышение его надежности. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для непрерывного контроля процесса образования геля при свертывании молока в производстве сыров и кисломолочных продуктов, а также в биологической, химической и других отраслях промышленности. Технический результат направлен на упрощение конструкции и повышение точности измерений. Вибрационный реометр содержит основание, нагружающее устройство, измерительное устройство и блок управления. Нагружающее устройство состоит из закрепленного горизонтально на основании электромагнита, включающего стальной цилиндрический стакан с силовой катушкой, закрытый стальной крышкой. В днище стакана и в крышке выполнены центральные отверстия с запрессованными в них антифрикционными втулками, в которых установлен цилиндрический ферромагнитный сердечник, в который перпендикулярно его оси запрессован стальной палец, с минимальным зазором перемещающийся в продольном пазу, выполненном в одной из втулок. На одном конце сердечника имеется резьбовой хвостовик, на который навинчены стальной упорный диск и конус из антифрикционного материала, а осевые перемещения сердечника ограничены установленным на диэлектрическом кронштейне на основании регулируемым упором, винт которого контактирует со стальным диском. При этом конус упирается в демпфер, состоящий из расположенного вертикально плоского Г-образного рычага, коротким плечом присоединенного к подшипнику, установленному над сердечником на кронштейне на основании, а на его длинном плече, расположенном соосно оси конуса, установлен противовес с винтовым стопором. К противоположному торцу сердечника перпендикулярно его оси горизонтально приварена пластина, к которой вертикально прикреплен консольный брус, свободным концом шарнирно соединенный через промежуточный рычаг с вертикально расположенным нагружающим рычагом. Рычаг зафиксирован во втулке, прикрепленной к регулируемой подшипниковой опоре. Основание опоры закреплено двумя винтами, проходящими через вертикальные прорези кронштейна, установленного на основании. На конце нагружающего рычага в замке закреплен стержень с припаянной к нему нажимной пластиной, расположенной в вертикальной плоскости параллельно пластине-отражателю, зафиксированной снизу на основании с возможностью изменения зазора между пластинами и снабженной предохранительной скобой. Измерительным устройством является консольный брус, состоящий из тонкой стальной пластины, которая выполнена в виде балки равного сопротивления, к которой с обеих сторон приклеены по ее оси симметрии датчики омического сопротивления. Техническое решение позволяет упростить конструкцию прибора и повысить точность измерений. 8 ил.

Изобретение относится к измерительной и аналитической технике и предназначено для измерения вязкости и исследования реологических свойств различных жидкостей. Ротационный вискозиметр включает измерительный блок с цилиндрической камерой, заполняемой анализируемой жидкостью, и расположенным в ней подвижным воспринимающим элементом, приводимым во вращение электродвигателем, и систему измерения периода вращения, подвижный воспринимающий элемент приводится во вращение ротором вентильного электродвигателя с системой контроля потребляемой мощности и угла поворота. При этом воспринимающий элемент выполнен заодно с ротором в виде тонкостенного полого цилиндра с интегрированными постоянными магнитами вентильного электродвигателя, а внутри подвижного воспринимающего элемента коаксиально установлен цилиндрический вытеснитель таким образом, чтобы обеспечивать одинаковую скорость сдвига исследуемой жидкости в наружном и внутреннем зазоре воспринимающего элемента; включает камеру мультипликатора высокого давления, в которую помещен измерительный блок, и независимую индуктивную систему контроля угла поворота. Техническим результатом заявленного изобретения является повышение чувствительности и точности измерения вязкости при разных скоростях сдвига исследуемой жидкости, обеспечение возможности замера вязкости жидкости при давлении выше атмосферного, расширение диапазона измеряемых вязкостей. 3 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для непрерывного контроля процесса образования геля при свертывании молока в производстве сыров и кисломолочных продуктов. Колебательный структурометр состоит из закрепленного при помощи кронштейна вертикально на основании электромагнита с цилиндрическим ферромагнитным сердечником, на нижнем конце которого имеется хвостовик и подпружиненный упорный диск с отверстием, в которое входит направляющая ступенчатого пальца, на большем диаметре которого предусмотрена резьба с регулировочной и стопорной гайками. Над сердечником расположен корпус гидравлического демпфера. В корпусе выполнена цилиндрическая камера, в которую сверху вставлен подпружиненный поршень с уплотнительной манжетой. Камера разделена на верхнюю рабочую и нижнюю расширительную емкости запрессованным в нее диском с центральным калиброванным отверстием. Расширительная емкость снабжена воздушным резьбовым клапаном, а сверху на поршне имеется центральный выступ, контактирующий со скобой, нижний конец которой зафиксирован на верхнем конце сердечника. На хвостовике сердечника закреплен корпус тензометрического силоизмерителя, к которому присоединен измерительный шток, снабженный нажимным диском. Технический результат заключается в упрощении конструкции прибора и повышении точности измерений. 4 ил.

Изобретение относится к автоматизации технологического контроля производственных процессов в химической и нефтехимической промышленности. Заявленный способ измерения вязкости полиэтилентерефталата ротационным вискозиметром в динамическом режиме включает измерение скорости вращения ротора, измерение крутящего момента на приводном валу насоса, температуры на выходе насоса. При этом измерение давления проводят на всасе роторного насоса и затем рассчитывают вязкость контролируемой жидкости по формулам: где А, В, С - постоянные коэффициенты;рвс - давление на всасе насоса;n - скорость вращения ротора;Мпр - крутящий момент, затрачиваемый на приводном валу насоса (или сила тока на электродвигателе насоса);t - температура на выходе насоса;t0 - приведенная температура.Технический результат - устранение погрешности при определении вязкости полиэтилентерефталата и повышение его точности и надежности. 1 ил.
Наверх