Мелкозернистый цементобетон на основе модифицированного базальтового волокна


 


Владельцы патента RU 2530812:

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова" (RU)

Изобретение относится к конструкционным материалам и может использоваться в различных отраслях промышленности, например в дорожном и гражданском строительстве. Технический результат заключается в повышении трещиностойкости, прочности, стойкости микроармирующего компонента к воздействию агрессивной щелочной среды цементного камня. Мелкозернистый цементобетон состоит из цемента, песка, воды, пластифицирующей добавки и базальтового волокна, вводимое в смесь методом гидрораспушения, при следующем соотношении компонентов, мас.%: цемент - 34, песок - 64, вода -1,4, пластифицирующая добавка - 0,3, базальтовое волокно - 0,3. 2 табл.

 

Изобретение относится к конструкционным материалам и может использоваться в различных отраслях промышленности, например в дорожном и гражданском строительстве.

Из уровня техники известен способ модифицирования поверхности неорганического волокна, модифицированное волокно и композиционный материал [патент РФ №2475463 RU]. Однако в данном способе не указаны свойства, отображающие влияние агрессивных сред на поверхность волокна, что характеризует данный способ как слабо-эффективный для решения поставленных задач по достижению высоких прочностных характеристик цементобетона. При применении данной технологии к указанному волокну (базальтовое волокно) на поверхности волокна образуется оболочка из твердого углеродного вещества, которая может приводить к образованию хрупкой поверхности, тем самым изменяя категорию материала из упругого в твердое. Таким образом, указанный способ не позволяет достичь высокой адгезии продуктов гидратации клинкерных минералов на поверхности волокна. Также к недостаткам относится то, что при применении отдельных элементов модификации, указанных в данном способе, отсутствует методика контроля изменения структуры и поверхности модифицированного волокна.

Известен способ использования базальтовой фибры на основе расплава базальтовых пород, предназначенной для трехмерного упрочения и повышения в несколько раз стойкости фибробетона (по сравнению с железобетоном) к растрескиванию, изгибающим и разрывным нагрузкам, создает необходимый запас прочности и способствует сохранению целостности конструкции при сквозных трещинах, а также позволяет значительно уменьшить общий вес строительных конструкций [патент РФ №2418752 RU]. Тем не менее, в данном способе недостаточное внимание уделено проблемам щелочестойкости базальтового волокна. Учитывая специфику работы волокна в агрессивной щелочной среде цементобетона, необходимо уделять должное внимание проблемам коррозионной стойкости базальтового волокна в процессе эксплуатации. Таким образом, предложенный способ не отвечает всем требованиям, необходимым для использования указанного волокна в качестве микроармирующего компонента в фибробетоне.

Известно армирование бетонов базальтовой фиброй [Василовская Н.Г. Цементные композиции, дисперсно-армированные базальтовой фиброй / Н.Г. Василовская, И.Г. Енджиевская, И.Г. Калугин // Вестник ТГАСУ №3, 2011]; [Сарайкина К.А. Дисперсное армирование бетонов / К.А. Сарайкина, В.А. Шаманов // Вестник ПГТУ. Урбанистика. 2011. №2] и др. Однако, при указанном соотношении компонентов, не удается достигнуть эффективного трехмерного упрочнения структуры цементобетона.

Наиболее близким техническим решением, принятым за прототип, является способ приготовления модифицированной фибробетонной смеси и модифицированная фибробетонная смесь [патент РФ №2433038 RU], включающий перемешивание в смесителе портландцемента, фибры стальной, заполнителя, пластифицирующей и модифицирующей добавок и воды затворения, в качестве стальной фибры используют «Миксарм»-фибру, выполненную из стальной проволоки с коническими анкерами на концах, в качестве пластифицирующей добавки - пластификатор «Д-11», в качестве модифицирующей добавки - многослойные углеродные нанотрубки диаметром 8-40 нм и длиной 2-50 мкм, предварительно проводят диспергацию портландцемента, указанных пластификатора и модифицирующей добавки и их перемешивание с фиброй в линейно-индукционном вращателе в течение 5-7 минут, а полученный продукт перемешивают в смесителе при последовательном введении заполнителя и воды затворения. Однако в указанном способе используется нерациональная последовательность ввода сырьевых компонентов, а также в процессе перемешивания фибры происходит ее соприкосновение с твердыми частицами цементобетонной смеси, что приводит к механическим повреждениям и истиранию фибры. Не описывается рациональный способ ввода микроармирующего компонента, что является важной составляющей для получения композита заданной прочности. В результате снижается эффективность применения указанного способа. Также недостатком является слабая степень армирования, так как при указанном соотношении армирующего компонента возможно образование комков и неравномерностей в структуре композита. Учитывая соотношение длины к диаметру, волокна являются достаточно длинными, что также будет негативно сказываться на равномерности распределения. Известно, что в цементной среде присутствует агрессивная щелочная среда, способная вызвать коррозию. В указанном прототипе не изучен вопрос коррозионной стойкости микроармирующего компонента.

Целью заявляемого изобретения является улучшение механических характеристик бетонов: повышение их трещиностойкости, прочности при растяжении при изгибе, повышение стойкости микроармирующего компонента к воздействию агрессивной щелочной среды цементного камня.

Поставленная цель достигается за счет того, что мелкозернистый цементобетон, состоящий из цемента, песка, воды, пластифицирующей добавки и базальтового волокна согласно предлагаемому изобретению содержит модифицированное базальтовое волокно, вводимое в смесь методом гидрораспушения, при следующем соотношении компонентов, мас.%:

цемент 34
песок 64
вода 1,4
пластифицирующая добавка 0,3
базальтовое волокно 0,3

Для повышения эффективности использования базальтового волокна в цементобетоне была принята возможность увеличения щелочестойкости волокна путем его термической обработки.

Процесс термообработки волокна происходил следующим образом: фибру подвергали нагреву при температуре 500°C, время изотермической выдержки составляло 30 мин. Охлаждение происходило при комнатной температуре в воздушной среде.

Для подтверждения эффективности применения базальтового волокна в цементобетоне образцы проходили испытание на щелочестойкость путем выдержки волокна в растворе цементного молочка (pH 12,9).

В указанный раствор вводили распушенное волокно. Концентрацию базальтового волокна в растворе выбирали с учетом предельного содержания фибры в цементных композитах (3-12% массы вяжущего), установленного на основании анализа литературных данных и опытным путем. Таким образом, оптимальная концентрация волокна, позволяющая достигнуть максимальных прочностных характеристик составила 7%.

По истечении срока выдержки для удаления остатков цементной составляющей волокно промывали слабым раствором соляной кислоты (0,1%) через фильтровальную бумагу. Для удаления посторонних примесей впоследствии образец промывали 1 л дистиллированной воды. Далее оставшееся на фильтровальной бумаге базальтовое волокно просушивали при комнатной температуре. Растворимость волокна определяли по разности масс первоначальной навески и сухого остатка в результате выдержки в щелочной среде. Потерю массы выражали в процентах. Возможные потери волокна при промывке (т.н. технологические потери) приняты сопоставимыми для каждого эксперимента. Результаты испытаний представлены в таблице 1.

Таблица 1
Зависимость щелочестойкости волокна от температурной обработки
Время испытания, сут Масса после выдержки, г Потеря массы, % pH раствора после выдержки Цвет
Исходное волокно
1 3 2,77 7,7 11,9 норм
2 7 2,46 18,8 11,5 слабо-осветл.
3 14 2,15 28,4 10,3 осветл.
4 28 2,1 34 10,1 осветл
Волокно термообработанное при 300°C
5 3 2,91 3,3 11,9 норм
6 7 2,84 5,4 11,5 норм
7 14 2,74 8,57 10,3 норм
8 28 2,66 11,39 10,1 сл.-осветл.
Волокно термообработанное при 400°C
9 3 2,89 2,9 11,9 норм
10 7 2,82 6,1 11,5 норм
11 14 2,77 7,8 10,3 норм
12 28 2,73 9,04 10,1 сл.-осветл.
Волокно термообработанное при 500°C
13 3 2,95 1 11,9 норм
14 7 2,88 2,1 11,5 норм
15 14 2,87 4,11 10,3 норм
16 28 2,84 5,5 10,1 сл.-осветл.

Увеличение температуры с 300 до 500°C способствует повышению щелочестойкости волокна. Потеря массы при выдержке в щелочном растворе после 28 сут в данном случае составляет около 5%, тогда как исходное волокно за это время теряет более 30% начальной массы волокна.

Для достижения рационального способа ввода использовали метод гидрораспушения. При этом способе волокно перемешивается в воде затворения, что способствует более равномерному его распределению. Далее суспензия добавляется в смесь цемента и песка.

Заданная подвижность достигалась с использованием пластификатора СП-1 производства Полипласт. Установлено существенное влияние способа введения волокна и вида пластификатора на физико-механические свойства мелкозернистого бетона (таблица 2).

Предварительное распушение волокна в воде затворения в присутствии нафталинформальдегидного пластификатора (СП-1) приводит к повышению прочности при сжатии на 24% и при изгибе на 30% по сравнению с составами, полученными одновременным смешением всех компонентов (традиционный способ). Это обусловлено адсорбцией пластификатора на поверхности базальтового волокна и ее гидрофилизацией, что приводит к формированию сольватной оболочки на поверхности волокна и его равномерному распределению сначала в воде, а впоследствии, в растворной смеси.

Характеристика используемых компонентов.

1. Цемент производства ЗАО «Осколцемент» ЦЕМ I 42,5 П.

2. Песок Ново-Товолжанского месторождения, Белгородской области.

3. Пластифицирующие добавки, СП-1 (производства Полипласт).

4. Волокно базальтовое: ООО «Машзавод БАСК».

Плотность - 2,7 г/см3;

прочность на растяжение - 1600-3600 МПа;

модуль упругости - 80-110 МПа;

удлинение при разрыве - 1,4-3,6%;

диаметр - 3-12 мкм.

Для получения цементобетона с заданными прочностными характеристиками предложен комплексный подход к способу введения базальтового волокна с пластифицирующей добавкой. Так, в работе использован способ введения предварительно распределенного волокна в воде затворения (распушение) в присутствии добавки с дальнейшим введением суспензии в формовочную смесь.

Предварительное распушение волокна в воде затворения в присутствии нафталинформальдегидного пластификатора (СП-1) приводит к повышению прочности при сжатии на 24% и при изгибе на 30% по сравнению с составами, полученными одновременным смешением всех компонентов. Это обусловлено адсорбцией пластификатора на поверхности базальтового волокна и ее гидрофилизацией, что приводит к формированию сольватной оболочки на поверхности волокна и его равномерному распределению сначала в воде, а, в последствии, в растворной смеси.

Подбор рационального состава мелкозернистого цементобетона проводили согласно ГОСТ 26633-91. В качестве расчетных параметров учитывалась подвижность бетонной смеси, прочность при сжатии и изгибе, а также проектная марка по морозостойкости.

Состав мелкозернистого цементобетона определяли расчетно-экспериментальным путем по ГОСТ 27006-86 и ГОСТ 7473-94. На первом этапе рассчитывали предварительный состав бетона, обеспечивающий получение заданной подвижности цементно-песчаной смеси и заданную прочность бетона.

Подбор пластификатора осуществляли, исходя из заданной подвижности бетонной смеси, которая подбиралась по стандартной методике, согласно ГОСТ 24211-2008.

Таблица 2
Состав и свойства мелкозернистого цементобетона
№ состава п/п Расход материалов, мас.% Количество добавки, мас.% В/Ц, мас.% Количество микроармирующего компонента, мас.% Предел прочности при сжатии, МПа Предел прочности при изгибе , МПа Класс бетона по прочности на сжатие Класс бетона по прочности на изгиб Класс морозостойкости бетона
Цемент песок
1 32,22 66,27 0,24 1,27 0,25 47,3 5,09 В35 Btb 4,0 F300
2 35,3 63,08 0,27 1,35 0,23 56,31 6,2 В40 Btb 4,4 F300
3 32,2 66,32 - 1,57 - 42,11 3,77 В30 Btb 3,2 F300
4 36,17 62,13 - 1,7 - 45,81 4,3 В35 Btb 3,6 F300

Мелкозернистый цементобетон, состоящий из цемента, песка, воды, пластифицирующей добавки и базальтового волокна, отличающийся тем, что содержит модифицированное базальтовое волокно, вводимое в смесь после предварительного гидрораспушения в присутствии нафталинформальдегидного пластификатора (СП-1), при следующем соотношении компонентов, масс.%:

цемент 34
песок 64
вода 1,4
пластифицирующая добавка 0,3
базальтовое волокно 0,3



 

Похожие патенты:

Объектом настоящего изобретения является предварительная сухая вяжущая смесь, содержащая в масc.%: портландцементный клинкер с удельной поверхностью по Блейну, составляющей от 4500 до 9500 см2/г, предпочтительно от 5500 до 8000 см2/г, при этом минимальное количество упомянутого клинкера в массовых процентах относительно общей массы предварительной смеси определяют по следующей формуле (I): [-6.10-3×SSBk]+75, в которой SSBk является удельной поверхностью по Блейну, выраженной в см2/г; летучие золы; по меньшей мере один сульфат щелочного металла, при этом количество сульфата щелочного металла определяют таким образом, чтобы количество эквивалентного Na2O в предварительной смеси превышало или было равно 5 масc.% по отношению к массе летучих зол; по меньшей мере один источник SO3 в таком количестве, чтобы количество SO3 в предварительной смеси превышало или было равно 2 масc.% по отношению к массе портландцементного клинкера; дополнительные материалы, имеющие Dv90, меньший или равный 200 мкм, которые выбирают из порошков известняка, при этом количество клинкера+количество летучих зол превышает или равно 75 масc.%, предпочтительно 78 масc.% по отношению к общей массе предварительной смеси; при этом общее количество клинкера в предварительной смеси строго меньше 60 масc.% по отношению к общей массе предварительной смеси.
Изобретение относится к промышленности строительных материалов. Технический результат - увеличение прочности сцепления оболочки с поверхностью крупного заполнителя.
Изобретение относится к промышленности строительных материалов. Сырьевая смесь для получения искусственной породы включает, мас.%: портландцемент 26-30, кварцевый песок 48,44-56,9, вода 16-20, волокнистая металлокерамика 1,0-1,5, фенилэтоксисилоксан 0,06-0,1.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Бетонная смесь содержит, мас.%: портландцемент 25,0-27,0; характеризующийся гранулометрическим составом, мас.%: частицы крупнее 0,63 мм, но мельче 1 мм - 0,2; крупнее 0,315 мм, но мельче 0,63 мм - 4,8; крупнее 0,14 мм, но мельче 0,315 мм - 62; мельче 0,14 мм - 33 золошлаковый наполнитель 15,0-19,0; дробленая и просеянная через сетку №10 шлаковая пемза плотностью 0,4-1,6 г/см3 30,3-34,3; алюминиевая пудра 0,1-0,2; суперпластификатор С-3 0,5-0,6; вода 23,0-25,0.
Изобретение относится к области производства искусственных материалов, имитирующих природные. Сырьевая смесь для изготовления материала, имитирующего природный камень, включающая измельченную слюду и жидкое стекло, дополнительно включает воду, белый портландцемент, кварцевый песок, пигмент фталоцианиновый зеленый или пигмент фталоцианиновый голубой при следующем соотношении компонентов, мас.%: измельченная и просеянная через сетку №5 слюда 35,0-40,0, жидкое стекло 3,0-5,0, вода 16,0-18,0, белый портландцемент 27,0-31,0, кварцевый песок 10,7-13,9, пигмент фталоцианиновый зеленый или пигмент фталоцианиновый голубой 0,1-0,3.
Изобретение относится к области строительных материалов, а именно к многокомпонентным сухим строительным смесям, и может быть использовано при создании тонкой армированной оболочки объемных бетонных блоков в объемно-блочном домостроении, в том числе и для ремонта поверхности объемных бетонных блоков, плит перекрытия, несущего каркаса и т.п.

Изобретение относится к области строительства, в частности к составам и способам получения облегченных кладочных растворов, предназначенных для устройства ограждающих конструкций из эффективных мелкоштучных элементов.
Изобретение относится к производству строительных материалов и может быть использовано для производства стеновых блоков с классом прочности от В2,5 до В7,5. Технический результат заключается в повышении прочности и морозостойкости, снижении водопоглощения.
Изобретение относится к составу сырьевой смеси для получения бетона с повышенной плотностью, отсутствие крупных пор снижает риск коррозии бетона, что увеличивает долговечность бетона и повышает возможность использования его в условиях агрессивной среды, поэтому может быть использовано для производства бетона высокого качества.
Изобретение относится к составу бетонной смеси и может найти применение в строительной отрасли, преимущественно при производстве бетонных стеновых блоков. Технический результат - повышение прочности бетона.

Изобретение относится к производству строительных материалов и может быть использовано для получения бетонных строительных изделий, подвергающихся тепловлажностной обработке при твердении, для гражданского и промышленного строительства. Гранулированный композиционный заполнитель для бетонных изделий размером 0,5-10,0 мм, состоящий из ядра и оболочки, где ядро получено гранулированием смеси совместно молотых до удельной поверхности 150-250 м2/кг диатомита и гидроксида натрия при их массовом соотношении 0,70-0,95:0,05-0,30 со связкой - водным раствором силиката натрия плотностью 1,2-1,3 г/см3 в количестве 0,1-7,0 мас.% от смеси, а оболочка сформирована на поверхности ядра его окатыванием сухой пылевидной смесью совместно молотых извести негашеной и натрия кремнефтористого в массовом соотношении 0,85-0,95:0,05-0,15 с последующим твердением до прочности не менее 0,12 МПа, после указанного окатывания осуществляют дополнительно распыление 40%-ного водного раствора глиоксаля в количестве 1,0-8,0 мас.% (на 100%-ное вещество) от массы компонентов оболочки. Бетонное строительное изделие получено с использованием указанного выше гранулированного заполнителя. Технический результат - снижение теплопроводности и водонепроницаемости бетонных изделий при повышении и сохранении прочностных показателей. 2 н.п. ф-лы, 1 табл., 1 пр.
Изобретение относится к горной промышленности и может быть использовано при разработке месторождений полезных ископаемых с закладкой выработанного пространства. Технический результат - снижение расхода цемента и повышение прочности закладочной композиции, использование песка с более низким модулем крупности. Закладочная композиция, включающая портландцемент, пластифицирующую добавку, мелкозернистый заполнитель - песок и воду, дополнительно содержит в качестве вяжущего молотые отходы обогащения мокрой магнитной сепарации железистых кварцитов со средним размером частиц 2,071 мкм, в качестве пластифицирующей добавки - суперпластификатор СП-1, а песок со средним размером частиц 62,26 мкм при следующем соотношении компонентов, мас.%: указанный цемент - 13,48; указанный песок - 56,43; указанные отходы - 2,70; суперпластификатор СП-1 - 0,138; вода - остальное. 1 пр., 2 табл.
Изобретение относится к производству строительных материалов и может быть использовано для получения бетонных строительных изделий, подвергающихся тепловлажностной обработке при твердении, для гражданского и промышленного строительства. Гранулированный композиционный заполнитель для бетонных изделий размером 0,5-10,0 мм, состоящий из ядра и оболочки, где ядро получено гранулированием смеси совместно молотых до удельной поверхности 150-250 м2/кг опоки и гидроксида натрия при их массовом соотношении 0,70-0,95:0,05-0,30 со связкой - водным раствором силиката натрия плотностью 1,2-1,3 г/см3 в количестве 0,1-7,0 мас.% от смеси, а оболочка сформирована на поверхности ядра его окатыванием сухой пылевидной смесью совместно молотых извести негашеной и натрия кремнефтористого в массовом соотношении 0,85-0,95:0,05-0,15 с последующим твердением до прочности не менее 0,12 МПа, при получении ядра одновременно с указанной связкой используют подогретый до 50оС алкилсульфонат в количестве 0,1-7,0 мас.% от массы компонентов ядра. Бетонное строительное изделие изготовлено с использованием указанного выше гранулированного заполнителя. Технический результат - снижение продолжительности тепловлажностной обработки и водонепроницаемости бетонных изделий при повышении и сохранении прочностных показателей. 2 н.п. ф-лы, 1 табл., 1 пр.

Настоящее изобретение относится к промышленности строительных материалов и применяется для изготовления бетонных изделий: высокохудожественных ажурных ограждений и решеток, столбов, тонкой тротуарной плитки и бордюрного камня, тонкостенной плитки для внутренней и внешней облицовки зданий и сооружений, декоративных изделий и малых архитектурных форм. Способ приготовления самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси заключается в последовательном перемешивании компонентов до получения смеси с требуемой текучестью. Первоначально в смесителе перемешивают воду и гиперпластификатор, затем засыпают цемент, микрокремнезем, каменную муку и перемешивают смесь в течение 2-3 мин, после чего вводят песок и фибру и перемешивают в течение 2-3 мин. Получают самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести, которая содержит в своем составе следующие компоненты: портландцемент ПЦ500Д0, песок фракции от 0,125 до 0,63, гиперпластификатор, волокна, микрокремнезем, каменную муку, ускоритель набора прочности и воду. Способ изготовления бетонных изделий в формах заключается в приготовлении бетонной смеси, подаче смеси в формы и последующей выдержке в пропарочной камере. Внутреннюю, рабочую поверхность формы подвергают обработке тонким слоем воды, затем заливают в форму самоуплотняющуюся особовысокопрочную реакционно-порошковую фибробетонную смесь с очень высокими свойствами текучести. После заполнения формы распыляют на поверхность смеси тонкий слой воды и накрывают форму технологическим поддоном. Технический результат - получение самоуплотняющейся особовысокопрочной реакционно-порошковой фибробетонной смеси с очень высокими свойствами текучести, обладающей высокими прочностными характеристиками, имеющей низкую стоимость и позволяющей изготавливать ажурные изделия. 2 н. и 2 з.п. ф-лы, 1 табл., 3 ил.
Изобретение относится к производству искусственных материалов, имитирующих природные. Сырьевая смесь для имитации природного камня включает, мас.%: измельченный и просеянный через сетку №014 доменный шлак 15,0-20,0; угольную пыль 5,0-7,0; портландцемент 21,0-25,0; суперпластификатор С - 3 1,0-1,3, измельченные и просеянные через сетку №5 железистые кварциты 46,7-58,0, при водоцементном отношении 0,5-0,6. Технический результат - повышение прочности. 1 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству бетонов. Технический результат заключается в снижении расхода цемента при обеспечении прочности бетона. Сырьевая смесь для изготовления бетона, содержит, мас.%: портландцемент 27,0-31,0; зола-унос ТЭС 52,3-58,9; суперпластификатор С-3 0,8-1,4; этилсиликонат натрия либо метилсиликонат натрия 0,2-0,5; лавсановое волокно длиной 5-30 мм 0,05-0,1; вода 13,0-15,0. 1 табл.
Изобретение относится к промышленности строительных материалов и касается изготовления изделий (блоков) из арболита, поверхность которых подлежит оштукатуриванию. Технический результат заключается в изготовлении арболита с одновременным получением на его поверхности основы для штукатурки. Арболитовая смесь содержит, мас.%: портландцемент 34,3-36,0; нарубленные на отрезки длиной 4-6 см стебли тростника камыша с влажностью 10-12% 19,6-20,6; техническая сера 3,1-3,6; хромсодержащий шлам 1,5-1,7; пиритные огарки 6,2-7,2; вода - остальное. 1 табл.

Изобретение относится к возведению монолитных конструкций в труднодоступных районах, а именно к литым бетонным смесям для монолитного бетонирования строительных конструкций. Способ монолитного бетонирования морской стационарной ледостойкой платформы включает приготовление бетонной смеси путем смешения сухих компонентов: вяжущего - шлакопортландцемента, кварцевого песка, щебня гранитного фракции 5-20 мм, тонкомолотого минерального наполнителя - порошка МП-1, с водой и добавками - пластификатором на основе поликарбоксилатов - Muraplast FK-63 и замедлителем твердения - Centrament Retard 390, до получения бетонной смеси литой консистенции с расплывом конуса 50-70 см, расслаиваемостью не более 0,4% и сохраняемостью не менее 3-х часов, подачу бетонной смеси в опалубку бетононасосом со скоростью истечения 2500-3000 л/час, а твердение осуществляют в нормальных условиях в течение 28-60 суток, при следующем соотношении компонентов, мас.%: шлакопортландцемент 13,3-16,9, песок кварцевый 42,4-42,6, указанный щебень 25,3-27,9, минеральный порошок МП-1 6,6-6,8, указанный пластификатор 0,1-0,2, указанный замедлитель твердения 0,07-0,08, вода - остальное. Технический результат - обеспечение вязкости и сохраняемости бетонной смеси при ее подаче, повышение трещиностойкости бетона. 4 табл.

Изобретение относится к производству строительных материалов, в частности к производству бетона, предназначенного для стыков, инъектирования каналов, заполнения пространств, при бетонировании тоннелей и т.п. Технический результат - обеспечение надежного контакта твердеющего бетона с поверхностью бетонируемого пространства и компенсации усадочных деформаций, что обеспечивает плотность и непроницаемость зоны контакта-стыка. Бетонная смесь включает портландцемент, щебень фракции 5-10, песок, воду, комплексную расширяющую добавку, содержащую глиноземистый цемент и молотый гипсовый камень. Комплексная расширяющая добавка дополнительно содержит суперпластификатор Glenium-51 и пудру алюминиевую при следующем соотношении компонентов, мас.%: портландцемент 17-21, щебень гранитный фракции 5-10 мм 31-33, песок двух фракций 0,16-0,63 мм и 1,25-5 мм с модулем крупности 2,7 31-37, комплексная расширяющая добавка 3,3-6,6, вода остальное. Комплексная расширяющая добавка содержит, мас.%: глиноземистый цемент с содержанием Al2O3 не менее 35 мас.% 69-72 , молотый гипсовый камень с содержанием SO3 не менее 42 мас.% 22-24, суперпластификатор Glenium-51 3,2-7,9, пудра алюминиевая 0,8-1,1. 9 табл.

Изобретение относится к промышленности строительных материалов, в частности к производству бетонных стеновых блоков. Бетонная смесь содержит, мас.%: портландцемент 26,0-28,0; золошлаковый наполнитель 56,55-60,9; этилсиликонат натрия 1,0-1,4; нарезанное на отрезки 5-10 мм полиэтиленовое волокно 0,05-0,1; вода 12,0-14,0. Технический результат - повышение морозостойкости бетона. 1 табл.
Наверх