Способ получения коллективного концентрата


 


Владельцы патента RU 2530923:

Федеральное государственное бюджетное учреждение науки Горный институт Уральского отделения Российской академии наук (ГИ УрО РАН) (RU)

Изобретение относится к способам получения коллективного концентрата для извлечения благородных металлов из глинисто-солевых отходов предприятий, перерабатывающих калийно-магниевые руды и каменную соль. Способ включает обогащение шламов гидроциклонированием, фильтрацию полученного предконцентрата, представляющего собой смесь крупных фракций осадочного и части флотируемого материала обезвоживание, подсушивание, гранулирование, сушку. При этом на гидроциклонирование поступают шламы с отношением Т:Ж=1:2. Гидроциклонирование проводят в 4 стадии. Разгрузки каждой стадии гидроциклонирования объединяют в предконцентрат. Исходную пульпу подают на первый гидроциклон с температурой 50÷70°С и под давлением 2,5÷4 атм. Соотношение пескового насадка к сливному на всех гидроциклонах составляет 0,5÷0,66:1. Сушку гранул осуществляют при температуре до 150°С для избежания ухода благородных металлов в возгоны. Техническим результатом является максимальное извлечение благородных металлов из полученного концентрата. 3 з.п. ф-лы, 5 табл.

 

Изобретение относится к способам получения коллективного концентрата для извлечения благородных металлов из глинисто-солевых отходов предприятий, перерабатывающих калийно-магниевые руды и каменную соль, и может быть использовано и для выделения двух или более компонентов, в виде твердых частиц, находящихся в различном «фазовом» состоянии, например осадка и флотируемых частиц, где жидкая фаза может быть представлена двумя и (или) более компонентами, отличающимися по растворимости или плотности.

Известны способы обезвоживания материала, близкие к изобретению по технической сущности (Справочник по обогащению руд. Специальные и вспомогательные процессы. М.: Недра, 1983, стр.77, 78, 96-98, 100, 102, 108, 109. Абрамов А.А., Леонов С.Б. Обогащение руд цветных металлов. М.: Недра, 1991 г., стр.35,37), представляющие собой обезвоживание материала разной крупности в классификаторах, фильтрующих центрифугах, вакуумных фильтрах, пресс-фильтрах, сушильных печах и др. Указанные способы рассчитаны на максимальное отделение жидкой фазы от твердой для материала определенной крупности. Однако эти способы не рассчитаны каждый по отдельности на отделение жидкой фазы «шламов» ввиду сложности и особенностей вещественного и гранулометрического состава материала. Поскольку более 70% материала имеют крупность менее 0,1 мм и более 20% крупность менее 0,044 мм, то при применении фильтрующих центрифуг, обеспечивающих остаточную влажность менее 5% при крупности материала более 1 мм, в нашем случае часть материала будет уходить в фильтрат и вместе с ней будет теряться часть полезного компонента. По этим же причинам не могут быть применены пресс-фильтры. Напрямую применение сушильных печей невозможно без предварительного обезвоживания. Поэтому для обезвоживания шламов после центрифугирования необходим комплекс методов обезвоживания, осуществляемый несколькими аппаратами.

Известен способ получения концентрата из глинисто-солевых отходов предприятий, перерабатывающих калийно-магниевые руды и каменную соль для извлечения благородных металлов (БМ), (патент №2256504, опубл. 2005.07.20), включающий, по крайней мере, двухстадийное гидроциклонирование шламов с выделением концентрата, причем гидроциклонирование осуществляют в две или три стадии, а концентрат гидроциклонов представляет собой твердую фазу - нерастворимый остаток (н.о.) шламов.

При этом на гидроциклонирование поступают шламы с отношением Т:Ж=1:3, на стадии первого гидроциклонирования выделяют концентрат в виде крупной фракции н.о. и слив первого гидроциклона в виде мелкой фракции н.о. и раствора соли, слив первого гидроциклона распульповывают до Т:Ж=1:8 и направляют для перечистки на вторую стадию гидроциклонирования с выделением на ней концентрата в форме остаточной фракции н.о. шлама и слива второго гидроциклона в виде раствора соли с последующим объединением выделенных гидроциклонированием концентратов, при этом в случае большого остаточного содержания н.о. в сливе второго гидроциклона осуществляют дополнительную третью стадию гидроциклонирования, т.о. перерабатывают шламы галургической и флотационной фабрик.

Недостатком данного способа является недостаточно высокий процент благородных металлов в концентрате из глинисто-солевых отходов предприятий.

Известен также способ получения коллективного концентрата из глинисто-солевых отходов предприятий перерабатывающих калийно-магниевые руды и каменную соль по патенту RU №2284221 (опубл. 27.09.2006), который включает гидроциклонирование, осуществляемое в три стадии, коллективный концентрат гидроциклонов (пульпа) представляет собой твердую фазу, состоящую из осадочной и флотируемой части, представляющую нерастворимый в воде остаток (н.о.) шламов и жидкую фазу. Пульпа имеет соотношение Т:Ж=1:1 (жидкой и твердой фаз) и остаточное содержание солей К и Na не более 15%.

Недостатком данного способа является недостаточно высокий процент благородных металлов в концентрате из глинисто-солевых отходов предприятий.

Наиболее близким к заявляемому изобретению является способ получения коллективного концентрата для извлечения благородных металлов из статьи Д.В. Оносова «К вопросу о комплектации обогатительной установки для переработки шламов дополнительными устройствами», опубликованной в 2007 г. в виде материалов ежегодной научной сессии Горного института УрО РАН по результатам НИР в 2006 г. Способ включает трехстадийное гидроциклонирование шламов с выделением концентрата, причем коллективный концентрат, полученный после гидроциклонирования, представляет собой смесь осадочного и флотируемого материала с Т:Ж 1:1, который обезвоживают подсушивают, гранулируют, затем сушат.

Недостатком данного способа является недостаточно высокий процент благородных металлов в концентрате из глинисто-солевых отходов предприятий.

Предлагаемым изобретением решается задача наиболее полного извлечения благородных металлов из глинисто-солевых отходов предприятий, перерабатывающих калийно-магниевые руды и каменную соль.

Техническим результатом является создание способа переработки отходов предприятий, перерабатывающих K-Mg руды и каменную соль с максимальным извлечением благородных металлов из полученного концентрата, а именно: выделение из пульпы, после гидроциклонирования, предконцентрата, с выходом целевого продукта (объединенного коллективного концентрата) 29% (табл.5) от исходной пульпы (распульпованный исходный шлам), содержащего 60÷70% сульфата кальция от исходного. Извлечение БМ в концентрат может составлять 60÷80% от исходного. Содержание хлоридов составляет 15÷20%.

Для достижения указанного технического результата в способе получения коллективного концентрата обогащения из глинисто-солевых отходов (шламов) для извлечения БМ, включающем обогащение шламов гидроциклонированием, фильтрацию полученного предконцентрата, представляющего собой смесь крупных фракций осадочного и части флотируемого материала, обезвоживание, подсушивание, гранулирование, сушку, гидроциклонирование производят в 4 стадии, причем на гидроциклонирование поступают шламы с отношением Т:Ж=1:2, а разгрузки каждой стадии гидроциклонирования объединяются в предконцентрат, пульпа поступает на первый гидроциклон с температурой 50÷70°С и под давлением 2,5÷4 атм, а соотношение пескового насадка к сливному на всех гидроциклонах составляет 0,5÷0,66:1, сушка гранул происходит при температуре до 150°С, с целью избежать ухода БМ в возгоны.

Отличительными признаками способа от указанного выше известного, наиболее близкого к нему, является то, что гидроциклонирование производят в 4 стадии, причем на гидроциклонирование поступают шламы с отношением Т:Ж=1:2, а разгрузки каждой стадии гидроциклонирования объединяются в предконцентрат, пульпа поступает на первый гидроциклон с температурой 50÷70°С и под давлением 2,5÷4 атм, а соотношение пескового насадка к сливному на всех гидроциклонах составляет 0,5÷0,66:1, сушка гранул происходит при температуре до 150°С, с целью избежать ухода БМ в возгоны.

Благодаря наличию этих признаков способ обеспечивают выход полезного продукта (предконцентрата) 29% (табл.5) и высокое извлечение благородных металлов, конечный продукт процесса переработки отходов - концентрат обогащения (гранулят) имеет влажность 0,5÷3%, содержание сульфатов кальция (основных концентраторов органического вещества и БМ) до 70% от исходного и содержание хлоридов калия или натрия 15÷20%.

Способ осуществляется следующим образом. Шлам распульповывается водой до соотношения твердой и жидкой фаз Т:Ж=1:2 для максимального перехода твердой солевой фазы в раствор. Далее пульпа поступает на гидроциклонирование. Гидроциклонирование приготовленной пульпы осуществляется в 4 стадии на 10, 7, 5, и 5-и градусных гидроциклонах. Гидроциклонирование производят последовательно через 10-и, 7-и, и 5-и градусные гидроциклоны, с перечисткой концентрата обогащения на каждой стадии через перечистной (дублирующий) гидроциклон и выходом в коллективный предконцентрат только разгрузок гидроциклонов. На первый этап гидроциклонирования пульпа поступает при температуре 50÷70°С для приоритетного высаживания KCl, в силу разных температурных коэффициентов кристаллизации KCl и NaCl, под давлением 2,5÷4 атм. После гидроциклонирования обеспечивается удаление излишков влаги посредством фильтрования на фильтр-прессах для дальнейшего гранулирования. В процессе гранулирования и сушки в барабанной печи получается продукт с содержанием соли 20±5% и размером гранул ⌀5÷8 мм, для дальнейшей пиро - и гидрометаллургической переработки.

В таблице 1 приведены результаты гидроциклонирования распульпованного шлама при получении предконцентрата.

Техническая сущность концентрирования большей части сульфатов кальция в предконцентрате, составляющем 29% (табл.5) от распульпованного шлама, основана на выявленных особенностях грансостава нерастворимого в воде остатка (Н.О.) шлама, распределения в нем сульфата кальция, органического вещества и БМ. Эти особенности заключались в следующем:

1. В крупных фракциях Н.О. шлама (-1+0,25 мм) скапливалось до 20% материала Н.О. шлама и до 60% сульфата кальция и 60-80% БМ;

2. Во фракциях (-0,044 мм) скапливалось до 80% материала Н.О. шлама.

Зависимость извлечения БМ от гранулометрического и минерального состава Н.О. шламов показана в таблице 2.

Дальнейшие исследования шламов показали, что несмотря на близкий состав сильвинитовой руды, особенности рудоподготовки на отдельных фабриках могут сказываются на грансоставе и минеральном составе Н.О. шлама (табл.3) еще более контрастно.

Установленная зависимость обусловила возможность отделения крупной фракции Н.О. шлама, содержащей до 60% сульфатов кальция способом гидроциклонирования.

Далее предконцентрат обогащения подвергается фильтрации на фильтр-прессах с температурой предконцентрата 50÷70% для приоритетного высаживания KCl, в силу разных температурных коэффициентов кристаллизации KCl и NaCl, грануляции, сушке и передается на пиро- и гидрометаллургический передел, причем диаметр гранул составляет от 6 до 8 мм, а влажность 0,5÷3%.

Результаты рентгеновского количественного фазового анализа (РКФА) продуктов гидроциклонирования показаны в таблице 4.

Расчет выхода целевого продукта и ангидрида показан в таблице 5.

Авторами было выявлено, что максимальное извлечение БМ из глинисто-солевых отходов предприятий, перерабатывающих калийно-магниевые руды и каменную соль, возможно при распульповывании шлама водой до соотношения твердой и жидкой фаз Т:Ж=1:2; а также то, что приоритетное высаживание KCl, в силу разных температурных коэффициентов кристаллизации KCl и NaCl, происходит при фильтрации на фильтр-прессах с температурой предконцентрата 50÷70%.

Способ по заявленному изобретению заключается в максимальном извлечении сульфатной составляющей Н.О. шламов с природной и техногенной органикой, концентрирующих в себе БМ, в виде концентрата обогащения (гранулята) - материала, наиболее пригодного для дальнейшей пиро- и гидрометаллургической переработки.

Таблица 1
Стадия Гидроциклон Ø насадка, мм Давление, атм
α° Назначение Насадок
I 10 Основной Разгр. 8 3,0
Слив 12
Перечистной Разгр. 8 2,5
Слив 12
II 7 Основной Разгр. 5 3,0
Слив 10
Перечистной Разгр. 5 3,5
Слив 10
III 5 Основной Разгр. 4 4,0
Слив 8
Перечистной Разгр. 4 4,0
Слив 8
IV 5 Основной Разгр. 4 4,0
Слив 8
Перечистной Разгр. 4 3,5
Слив 8
Объем и выход продуктов, л (%)
Исходный шлам при Т 50÷70°С 2466 (100%)
Концентрат 721 (29%)
Отходы 1702 (69%)
Примечание: Соотношение диаметров насадков разгрузка: слив 0,5÷0,66:1;
α - угол конусности гидроциклона.

Таблица 3
Классы крупности Выход, % Минеральный состав пробы (прибл. вес. %)
гипс ангидрит кварц КПШ доломит хлорит слюды пирит
Проба УЛТП-24 навеска 5044 г.
+1 11,32 96 1 1 1 1
-1+0,5 2,72 98 1 1
-0,5+0,25 1,75 98 1 1
-0,25+0,1 0,74 98 1 1
-0,1+0,071 0,24 25 10 8 12 42 1 1 1
-0,071+0,045 1,79 1 28 23 33 9 3 2 2
-0,045 81,44 5 24 34 24 4 3 5
Таблица 4
Продукты гидроциклони-рования Минеральный состав, %
Ангидрит кварц КПШ* доломит галит сильвин гематит хлорит слюды
1.1 19 11 18 12 11 23 1 2 2
1.3 Бр 45 13 16 14 2 7 1 1 1
1.4 Бр 31 13 17 13 5 16 1 2 2
1.5 Бр 31 13 16 10 8 17 1 2 2
1.5 Бр/ 28 15 18 13 7 14 1 2 2
1.5 Бр// 26 15 20 13 9 12 1 2 2
1.2 33 13 18 15 5 14 1 2
1.5 Ac// 13 8 18 11 25 22 2 1
1.5 Бс// 15 9 16 11 20 26 1 1 2
* КПШ - калиевый полевой шпат

Условные обозначения: 1.1 - исходный распульпованный шлам

1.2 - коллективный предконцентрат

1.5Ас//+1.5Бс// - отходы гидроциклонирования

1.3 Бр - разгрузка 2-ого 10-градусного (перечистного) гидроциклона

1.4 Бр - разгрузка 2-ого 7-градусного (перечистного) гидроциклона

1.5 Бр - разгрузка 2-ого 5-градусного (перечистного) гидроциклона

1.5 Бр/- 1-я перечистка

1.5 Бр// - 2-я перечистка

Таблица 5
Продукты гидроциклонирования Масса, кг Количество ангидрита, кг
1.1 2466 468,54
1.2 721 237,93
1.5Ас//+1.5Бс// 1702 203,28
Выхода целевого продукта и выход ангидрита в целевой продукт, %
Выход целевого продукта 29,23
Выход ангидрита в целевой продукт 50,78

1. Способ получения коллективного концентрата обогащением глинисто-солевых отходов в виде шламов для извлечения благородных металлов, включающий гидроциклонирование шламов, фильтрацию полученного предконцентрата, представляющего собой смесь крупных фракций осадочного и части флотируемого материала, обезвоживание, подсушивание, гранулирование и сушку гранул, отличающийся тем, что на гидроциклонирование поступают шламы в виде пульпы с отношением Т:Ж=1:2, причем гидроциклонирование производят в 4 стадии и разгрузку каждой стадии гидроциклонирования объединяют в предконцентрат, при этом на первую стадию на первый гидроциклон пульпу подают с температурой 50÷70°С.

2. Способ по п.1, отличающийся тем, что пульпу подают на первый гидроциклон под давлением 2,5÷4 атм.

3. Способ по п.1, отличающийся тем, что соотношение пескового насадка к сливному на всех гидроциклонах составляет 0,5÷0,66:1.

4. Способ по п.1, отличающийся тем, что сушку гранул проводят при температуре до 150°С.



 

Похожие патенты:

Изобретение относится к отражательной печи для переплава алюминиевых ломов. Печь содержит корпус, образованный огнеупорными наружными боковыми, передней и задней торцевыми стенками, накопительную ванну и наклонную площадку, ограниченные подом и стенками, свод, две сливные летки, поворотную чашу, газоход и сварной каркас, на котором все размещено.

Изобретение относится к гидрометаллургии, а именно к выщелачиванию молибдена из техногенных минеральных образований, и предназначено для извлечения молибдена. Способ включает электрохимический и фотохимический синтез в выщелачивающем растворе активных окислителей и комплексообразователей с получением анолита и католита.
Изобретение относится к способу комплексной переработки красного шлама - отходов глиноземного производства, содержащего гематит, шамозит, гетит, магнетит, алюмосиликаты, для получения железосодержащего концентрата и алюмосиликатного продукта и изготовления строительных материалов.
Изобретение относится к способу переработки медно-ванадиевых отходов процесса очистки тетрахлорида титана. Твердые медно-ванадивые отходы выщелачивают водой с получением медно-ванадиевой пульпы, в которую подают гипохлорит кальция или осветленную пульпу газоочистных сооружений титано-магниевого производства с концентрацией активного хлора, равной 15-90 г/дм3, при соотношении гипохлорита кальция к медно-ванадиевой пульпе, равном (1,5-2,0):1.

Изобретение относится к способу извлечения металлов из потока, обогащенного углеводородами и углеродистыми остатками, при помощи секции обработки. Способ включает направление указанного потока на экстракцию путем смешивания указанного потока с подходящим гидрофилизирующим агентом, способным устранять гидрофобные свойства указанного потока, направление смеси, состоящей из указанного потока и указанного гидрофилизирующего агента, на разделение с отделением жидкой фазы, содержащей большую часть гидрофилизирующего агента и углеводородов, растворенных из твердой фазы.

Изобретение относится к способу извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия. Способ включает окислительный обжиг, перколяционное выщелачивание огарка водным раствором окислителя или смеси окислителей с получением ренийсодержащего раствора и нерастворимого остатка, сорбцию рения из ренийсодержащего раствора в отдельном аппарате, сушку нерастворимого остатка, последующее шихтование с флюсами и плавку на металлический коллектор.

Изобретение относится к области переработки отходов. Установка содержит последовательно установленные загрузочный бункер, мартеновскую печь, камеру дожигания, рекуператор нагрева воздуха горения, теплоутилизатор, дымосос и дымовую трубу, средство подачи топлива.

Группа изобретений относится к утилизации твердых ртутьсодержащих отходов, в частности люминесцентных ламп. Способ утилизации твердых ртутьсодержащих отходов включает стадию окисления с последующей выдержкой, обработку смеси отходов с демеркуризационным раствором полисульфида щелочного металла с последующим выдерживанием реакционной смеси.

Изобретение относится к двухванной отражательной печи с копильником для переплава алюминиевых ломов. Печь содержит корпус, образованный огнеупорными наружными боковыми, передней и задней торцевыми стенками, две ванны, ограниченные подами, сводом и стенками, две сливные летки, газоход и постамент, на котором все размещено.
Изобретение относится к утилизации твердых бытовых отходов, содержащих благородные металлы. Электронный лом дробят на молотковой дробилке, добавляют измельченную медь, а затем плавят в присутствии флюса в течение 45-60 мин при температуре 1320-1350°C с продувкой воздухом при его расходе 3-4,5 л/ч и отделяют от шлака полученный сплав, содержащий не менее 2,6 мас.% благородных металлов.

Изобретение относится к химико-металлургическому производству металлов платиновой группы (МПГ) и их соединений. Cпособ получения тетраоксида осмия включает загрузку контейнера с порошком металлического осмия в кварцевую трубу, помещенную в электрическую печь.

Изобретение относится к области гидрометаллургии драгоценных металлов. Способ переработки сульфидного сырья, содержащего драгоценные металлы, включает измельчение сырья до крупности не более 90 % класса минус 10 мкм, автоклавное окисление при подаче кислорода при температуре 100-110°C и парциальном давлении кислорода 1,0÷1,5 МПа с получением пульпы.

Изобретение относится к разделению и концентрированию металлов и может быть использовано для разделения платины, родия и никеля. Способ отделения платины (II, IV) и родия (III) от никеля (II) в хлоридных растворах, включает сорбцию платины (II, IV) и родия (III) и последующую десорбцию этих металлов.

Изобретение относится к химии и гидрометаллургии, в частности к устройству для выщелачивания металлов и их соединений. Устройство содержит конический реактор с крышкой, нижним патрубком ввода и верхним патрубком вывода реакционной смеси.
Изобретение относится к пирометаллургии. Способ переработки золотосодержащих неорганических материалов включает расплавление исходного сырья с флюсом, содержащим 3-15 мас.% обезвоженной буры, 0,5-3 мас.% оксида кальция и 0,4-3 мас.% кварцевого песка относительно суммы масс примесей в исходном продукте.
Изобретение относится к обогащению полезных ископаемых и может быть использовано для извлечения тонкодисперсного золота из глинистых отложений. Способ включает приготовление суспензии из глинистых отложений, улавливание из суспензии тонкодисперсного золота сорбцией введением сорбента на основе растительного материала, предварительно измельченного до крупности 0,3 мм, в суспензию и перемешиванием.

Изобретение относится к способу извлечения рения и платиновых металлов из отработанных катализаторов на носителях из оксида алюминия. Способ включает окислительный обжиг, перколяционное выщелачивание огарка водным раствором окислителя или смеси окислителей с получением ренийсодержащего раствора и нерастворимого остатка, сорбцию рения из ренийсодержащего раствора в отдельном аппарате, сушку нерастворимого остатка, последующее шихтование с флюсами и плавку на металлический коллектор.

Изобретение относится к способу извлечения ионов серебра из низкоконцентрированных растворов. Способ включает пропускание раствора через полимерное волокно для сорбции ионов серебра.

Изобретение относится к области гидрометаллургии благородных металлов и может быть использовано для извлечения серебра из щелочных цианистых растворов цементацией.
Изобретение относится к утилизации твердых бытовых отходов, содержащих благородные металлы. Электронный лом дробят на молотковой дробилке, добавляют измельченную медь, а затем плавят в присутствии флюса в течение 45-60 мин при температуре 1320-1350°C с продувкой воздухом при его расходе 3-4,5 л/ч и отделяют от шлака полученный сплав, содержащий не менее 2,6 мас.% благородных металлов.
Изобретение относится к области поисково-разведочных работ на золото, а также к анализу горных пород, руд, продуктов их переработки. Способ определения золотоносности горных пород включает многоступенчатое дробление исходного материала до фракции не более -0,5 мм, последующую классификацию полученного материала и обработку его бромоформом.
Наверх