Способ лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах питания

Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах питания. Способ основан на воздействии на поверхность исследуемого образца сфокусированного лазерного излучения с энергией импульса 0,1-1,3 Дж и длительностью импульса 100-130 мкс. Проводят анализ свечения лазерной искры, что позволяет выделить спектральные линии паров определяемых элементов и идентифицировать спектральные линии. Для определения каждого из элементов используются экспериментально установленные наиболее чувствительные линии эмиссии мышьяка в диапазоне 203-223 нм. Технический результат - определение оптимальных параметров лазерно-искрового воздействия на образцы исследуемых пищевых продуктов для выявления мышьяка в пищевом сырье и продуктах питания. 1 з.п. ф-лы.

 

Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах питания.

Актуальность предлагаемого изобретения обусловлена необходимостью разработки современного способа определения мышьяка в пищевом сырье и продуктах питания, в значительной степени лишенного недостатков, присущих применяемым способам определения мышьяка.

Изобретение представляет интерес для лабораторий химического и экологического контроля, предприятий АПК, Государственного таможенного комитета РФ, служб Санэпидемнадзора как способ определения мышьяка в пищевом сырье и продуктах питания.

Известен колориметрический способ определения мышьяка в пищевом сырье и продуктах питания. Способ основан на измерении интенсивности окраски раствора комплексного соединения мышьяка с диэтилдитиокарбаматом серебра в хлороформе [ГОСТ 26930-86. Сырье и продукты пищевые. Метод определения мышьяка]. Недостатком данного способа является длительная и сложная подготовка исследуемых проб; применение на этапе пробоподготовки и этапе проведения анализов значительного количества химических реагентов и химически чистой лабораторной посуды; длительность проведения анализов, невозможность автоматизации процесса проведения анализов.

Известен атомно-эмиссионный способ определения мышьяка в пищевом сырье и продуктах питания. Способ основан на измерении интенсивности линий определяемого элемента в спектре излучения, полученном при испарении анализируемого вещества под действием электрического разряда. Количественное содержание элемента определяется сравнением интенсивностей линий в спектрах излучения образцов сравнения и исследуемой пробы [ГОСТ 30538-97. Продукты пищевые. Методика определения токсичных элементов атомно-эмиссионным методом]. Недостатком способа является длительная и сложная подготовка исследуемых проб; применение значительного количества химических реагентов, химически чистой лабораторной посуды на этапах подготовки проб; длительность проведения анализов.

Наиболее близким аналогом, принятым за прототип, является атомно-абсорбционный способ определения мышьяка в пищевом сырье и продуктах питания. Метод основан на минерализации продукта смесью кислот и реагентов одним из следующих способов: сухое озоление, автоклавная минерализация, кислотная экстракция, проведении реакции гидрирования мышьяка в полученном растворе - минерализате с помощью боргидрида натрия, отгонке летучего гидрида мышьяка потоком аргона в разогретую кварцевую кювету-атомизатор и измерении содержания мышьяка атомно-абсорбционным способом по величине атомного поглощения на резонансной длине волны 193,7 нм [ГОСТ P 51766-2001. Сырье и продукты пищевые. Атомно-абсорбционный метод определения мышьяка]. Недостатком способа-прототипа является длительная и сложная подготовка исследуемых проб, использование спектрально чистого аргона, химически чистых реагентов, значительного количества лабораторной посуды, длительность проведения анализов.

Задача изобретения заключается в разработке современного способа определения мышьяка в пищевом сырье и продуктах питания, позволяющего без длительной и сложной подготовки проб, без применения горючих газов, химических реагентов, химически чистой лабораторной посуды, в автоматизированном режиме определять содержание мышьяка в исследуемой пробе.

Решение поставленной задачи достигается экспериментальным определением оптимальных параметров лазерно-искрового воздействия на образцы исследуемых пищевых продуктов, определением спектральных диапазонов с наиболее интенсивными линиями лазерной эмиссии, разработкой методики лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах питания.

Методика определения мышьяка в пищевом сырье и продуктах питания

1. Аппаратура и материалы

Лазерно-искровой эмиссионный спектроанализатор со специально разработанным программным обеспечением, сертификат Госстандарта РФ №7450, номер в Госреестре 19155-00.

Весы аналитические AB 60-01 ГОСТ 24104-2001.

Ступка и пестик фарфоровые ГОСТ 9147-80.

Пресс гидравлический настольный ручной ПГПР-4 ГОСТ 22690-88.

Пресс-форма для формирования таблеток.

Графит порошковый особой чистоты ГОСТ 23463-79.

2. Отбор проб

2.1. Отбор и подготовку лабораторной пробы к испытанию проводят в соответствии с нормативной документацией на данный вид продукции.

2.2. Минерализацию проб проводят по ГОСТ 26929-94.

3. Подготовка к испытанию

3.1. Подготовка лазерно-искрового эмиссионного спектроанализатора к работе и выбор условий измерения

Подготовка прибора к работе, его включение и выведение на рабочий режим осуществляется в соответствии с РЭ, прилагаемым к спектроанализатору.

3.2. Подготовка образцов для исследований

Из продуктов, минерализованных в соответствии с п.2.2, отбирается навеска определенной массой, помещается в фарфоровую ступку, где растирается до состояния пыли, перемешивается. Далее проба помещается в специальную пресс-форму под настольный лабораторный гидравлический пресс, где под определенным давлением прессуется таблетка в форме диска диаметром 5-12 мм.

4. Проведение измерений

4.1. В меню программного обеспечения лазерно-искрового эмиссионного спектроанализатора задаются экспериментально установленные параметры лазерного воздействия, а именно длительность импульса лазера 100-130 мкс, энергия излучения лазера 0,1-1,3 Дж. Для определения мышьяка используются экспериментально установленные наиболее чувствительные линии эмиссии в спектральном диапазоне 203-223 нм.

4.2 Проба, подготовленная по п.3.2, размещается на подложке специального устройства, расположенного на программно-управляемом столике лазерно-искрового эмиссионного спектроанализатора, позволяющего исследовать всю поверхность пробы. Производятся импульсы сфокусированного лазерного излучения на исследуемую поверхность. Образующаяся плазма содержит пары вещества данного образца. Анализ свечения лазерной искры с помощью полихроматора, многоэлементного фотодетектора и блока согласования с ПК позволяет выделить спектральные линии паров элементов, содержащихся в образце. Идентификация спектральных линий осуществляется в автоматическом режиме с помощью программного обеспечения, содержащего библиотеку эмиссионных спектров. Измерение эмиссии каждого образца проводится не менее 2 раз.

5. Обработка результатов

5.1. Специальное программное обеспечение лазерно-искрового эмиссионного спектроанализатора позволяет в автоматическом режиме рассчитывать концентрации элементов по значению лазерной эмиссии.

5.2. Результаты качественного и количественного анализа пробы выводятся на экран монитора ПК.

При воздействии сфокусированного лазерного излучения длительностью импульса 100-130 мкс и энергией излучения 0,1-1,3 Дж на поверхность исследуемого образца в форме диска диаметром 5-12 мм возникает лазерная искра оптического пробоя. При мгновенном температурном нагреве за счет эффекта послойной сублимации происходит отбор пробы вещества с поверхности образца. При этом образуется плазма, содержащая пары исследуемого образца. В плазме происходит возбуждение и ионизация свободных атомов определяемого элемента. Последующий переход атомов обратно из возбужденного состояния в обычное и рекомбинация ионов сопровождается излучением света определенных длин волн в спектральном диапазоне 203-223 нм, который регистрируются многоэлементным фотоприемником и передается в компьютер, где происходит сравнение полученных спектральных линий с линиями из библиотеки данных спектрально-аналитической программы. На основании этого осуществляется качественное и количественное определение мышьяка в исследуемой пробе.

1. Способ лазерно-искрового эмиссионного определения мышьяка в пищевом сырье и продуктах, основанный на воздействии сфокусированного лазерного излучения на поверхность исследуемого образца, при этом возникает лазерная искра оптического пробоя, образующаяся плазма содержит пары исследуемого вещества, анализ свечения лазерной искры с помощью полихроматора, многоэлементного фотодетектора и блока сопряжения с ПК позволяет выделить спектральные линии паров определяемых элементов, идентификация спектральных линий и анализ осуществляется в автоматическом режиме с помощью программного обеспечения, содержащего библиотеку эмиссионных спектров, отличающийся тем, что при данном способе определения мышьяка для возбуждения спектра элемента применяются специальные режимы лазерно-искрового воздействия на пробу, а именно длительность импульса лазера 100-130 мкс, энергия излучения лазера 0,1-1,3 Дж.

2. Способ по п.1, отличающийся тем, что специально подготовленная проба исследуемого пищевого продукта в форме диска диаметром 5-12 мм помещается на подложку программно-управляемого столика лазерно-искрового эмиссионного спектроанализатора, производятся импульсы лазера энергией 0,1-1,3 Дж и длительностью 100-130 мкс на поверхность исследуемого образца с возбуждением лазерной плазмы и последующим определением мышьяка в автоматизированном режиме, для определения элемента используются экспериментально установленные наиболее чувствительные линии эмиссии волн в диапазоне 203-223 нм.



 

Похожие патенты:

Изобретение относится к области приборостроения и может быть использовано для создания распределительных систем измерения температуры и деформации. Бриллюэновская система для отслеживания температуры и деформации содержит одно- или двухстороннее волокно с множеством волоконных брэгговских решеток (ВБР) на разных длинах волн и лазерную систему с задающей накачкой, настраиваемую в диапазоне существенно большем, чем бриллюэновский сдвиг.
Изобретение относится к области аналитической химии элементного анализа и может быть использовано для лазерно-искрового эмиссионного определения свинца, кадмия, меди, цинка в пищевом сырье и продуктах.

Изобретение относится к системам сигнализации и основано на использовании четырехкомпонентного настраиваемого лазера, работающего в средней части инфракрасного (ИК) диапазона для одновременного измерения и частиц, и газа.

Изобретение относится к области сельского хозяйства. .

Изобретение относится к способам определения кристаллизации и образования льда тяжелых изотопных видов воды в природной, при ее равномерном охлаждении, и применяется в датчиках кристаллизации установок разделения легкой и тяжелых вод.

Изобретение относится к обнаружению дефектов газо- и нефтепроводов на основании многомерных спектральных характеристик каждой мишени. .

Изобретение относится к области техники спектроскопического измерения концентрации веществ (в том числе экологически вредных) в различных агрегатных состояниях автоматическими аналитическими методами, особенно применительно к природным условиям.

Изобретение относится к области лазерной спектроскопии и спектрального анализа, а именно к области применения перестраиваемых полупроводниковых лазеров, и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода CO и CO2, например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к области лазерной спектроскопии и спектрального анализа и может быть использовано для одновременной диагностики абсолютного и относительного содержания окислов углерода CO и CO2 в газообразной среде, для мониторинга содержания окислов углерода СО и CO2 например, в выдыхаемом воздухе, в атмосфере, в частности для биомедицинской диагностики.

Изобретение относится к бесконтактным исследованиям поверхности металлов и полупроводников оптическими методами. .

Использование: для исследования нелинейного спинового резонанса в объемных, тонкопленочных и двумерных полупроводниковых наноструктурах. Сущность изобретения заключается в том, что для исследования нелинейного спинового резонанса образец охлаждают, воздействуют на него изменяющимся постоянным и слабым переменным магнитным полем, изменяющимся со звуковой частотой Ω, воздействуют на образец двумя когерентными излучениями: мощным излучением накачки и слабым тестовым излучением, имеющими правую круговую поляризацию, регистрируют сигнал, пропорциональный второй производной мощности тестового излучения на частоте 2Ω, определяют резонансное магнитное поле, исследуют форму кривой нелинейного спинового резонанса, совмещенные когерентные излучения направляют параллельно постоянному магнитному полю, определяют g-фактор исследуемого полупроводника. Технический результат: обеспечение возможности определения параметров энергетических зон в тонкопленочных и двумерных полупроводниковых наноструктурах. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области аналитической химии и касается способа определения амина в образце. Сущность способа заключается в контактировании образца, содержащего амин, с раствором соли, содержащей 2,2',2”,6,6',6”-гексаметокситритильный карбокатион, и последующем определении конъюгатов методами высокоэффективной жидкостной хроматографии и масс-спектрометрии. Способ пригоден как для летучих аминов малой массы, так и для полярных аминогликозидных соединений. Образующиеся производные аминов обладают поглощением в УФ-области и повышенной склонностью к ионизации, что облегчает их детекцию указанными выше методами. Использование способа позволяет с высокой точностью определить амины в образце. 2 з.п. ф-лы, 1 табл., 33 пр., 33 ил.

Изобретение относится к области сельского хозяйства, биологии и физиологии растений. Способ заключается в измерении оптических характеристик. При этом в течение заданного времени от 3 секунд и более измеряют динамику мерцания спеклов отраженного или прошедшего через объект когерентного лазерного излучения. По степени и скорости флуктуации интенсивности заданного участка спекл-картины судят о функциональном состоянии тканей – чем они выше, тем выше уровень метаболической активности исследуемого объекта. Способ позволяет уменьшить трудоемкость анализов и оценить функциональное состояние, метаболическую активность и жизнеспособность растений. 2 табл., 6 ил., 3 пр.

Изобретение относится к контрольно-диагностическим технологиям, может быть использовано для обнаружения и исследования дефектов материала, определения его размеров и идентификации его по химическому составу и дает возможность проводить работы на любых поверхностях, например, интерьеров и экстерьеров музейных комплексов. Способ определения дефектов материала заключается в предварительном визуальном определении участка поверхности материала с дефектом путем наведения камеры тепловизора на исследуемый участок поверхности и измерении температурного поля на поверхности материала по шкале тепловизора для выявления наличия температурных пиков на поверхности материала. При этом исследуемый материал облучают электромагнитным излучением на длине волны в области характеристической полосы поглощения материала дефекта, идентифицирующей химический состав вещества дефекта. По наличию контрастных участков в поле тепловизора определяют наличие дефектов, их химический состав и координаты местоположения. Технический результат - повышение информативности результатов исследований. 3 ил.
Наверх