Способ измерения расхода среды


 


Владельцы патента RU 2531032:

Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук (RU)

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной расходомер, измеряют его, далее разделяют его на два потока, один из которых считают равным входящему и направляют в нагрузку, другой - считают обратным, измеряют своим расходомером и вычитают из суммарного потока. При этом разделяют весь диапазон измерения на две части - первая часть измерения с обратным потоком, вторая часть измерения без обратного потока. В первой части диапазона обратный поток принудительно направляют к основному потоку для суммирования, изменяют его величину инверсно к величине основного потока. Во второй части диапазона расход основного потока измеряют основным расходомером без обратного потока. Кроме того, по изобретению устанавливают связь пропорциональной и инверсной между обратным потоком и основным. Технический результат - расширение диапазона измерения расхода. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах.

Известен способ измерения расхода среды, при котором среду подают из магистрали через насос, расходомер и рабочую нагрузку (Кремлевский П.П. Расходомеры и счетчики количества. Справочник//Л., Машиностроение, 1989, 702 с.). Недостатком известных способов является расположение измерительного устройства в последовательном ряду устройств потребления расхода, что не обеспечивает достаточную точность измерения расхода.

Известен способ измерения струйным расходомером (RU 1295230 А1, 07.03.1987) с недостаточной зоной чувствительности, которая ограничивает зону работоспособности и диапазон измерения. Недостатком известного способа является неизбежность существования противоречивых требований и невозможность их преодоления при реализации только одной физикой течения среды. Эти требования сведены к двум параметрам: минимальный измеряемый расход и максимальный допустимый перепад давления на расходомере в максимальной точке диапазона.

Известен способ измерения расхода текучей среды (RU 2157967 С2, 21.05.1998), принятый за прототип. Часть потока среды после магистрального расходомера возвращают через вспомогательный расходомер и ограничительный дроссель в магистраль перед насосом, и расход на рабочую нагрузку определяют как разность расходов через магистральный и вспомогательный расходомеры. Этот прием позволяет сместить зону измерения магистрального расходомера в необходимый диапазон с понижением нижней границы измерения.

Недостатками известного способа является требование о наличии в составе измерительного комплекса напорного устройства (насоса), установленного в магистраль, т.к. без него комплекс не работоспособен.

Кроме того, насос должен соответствовать магистральному расходу, что связано с выполнением других проектных требований: увеличенные габариты, вес, ресурс, цена и др.

Кроме того, при таком способе существует функциональная связь магистрального расходомера и его нагрузки, которая обязывает согласовывать их параметры между собой. Иначе работа комплекса невозможна, если нагрузка поглощает магистральный расход. Кроме того, второй измерительный прибор (вспомогательный расходомер) должен иметь погрешность измерения, заведомо меньшую, что обременяет комплекс дополнительной технологией измерения другого диапазона с вынужденной тарировкой, ценой, габаритами, весом и др.

Кроме того, магистральный и вспомогательный расходомеры беспрерывно работают в полном диапазоне измерения, что сокращает ресурс измерительной части комплекса, расположенной в линии возвращения части потока, которая предназначена только для расширения в нижней части диапазона, и при измерении в принятом диапазоне не должна функционировать.

Кроме того, диапазон измерения смещается при наличия линии обратного потока, которая понижает порог чувствительности и вместе с ним снижает верхнюю граница измерения, что значительно сужает диапазон измерения и предлагает выбирать магистральный расходомер с запасом по верхней границе.

Кроме того, потоки магистрального трубопровода и обратного - взаимозависимы. Не существует такого состояния, когда один поток постоянный по величине и при этом другой поток изменяется и может быть независимым.

Кроме того, при анализе известного комплекса как измерительного устройства показано, что звенья измерительной цепи (два расходомера) соединены по схеме встречно-параллельного соединения с положительной обратной связью, т.е. при увеличении расхода в магистральном трубопроводе одновременно увеличивается возвращающий расход через вспомогательный расходомер. Такое соединение в комплексе значительно увеличивает погрешность измерения не только в зоне понижения диапазона до порога чувствительности, так и после, т.к. в этом случае погрешности звеньев суммируются (Браславский Д.А. Приборы и датчики летательных аппаратов. М., Машиностроение, 1970, с. 108).

Кроме того, в известном комплексе измерения характеристика звена, расположенного в обратной связи, не инверсная, что не позволяет рассматривать систему как встречно-параллельное соединение с отрицательной обратной связью, которое уменьшает общую погрешность измерения всего комплекса измерения.

Техническим результатом является расширение диапазона измерения расхода, его разделения на две части с понижением уровня измерения в первой части диапазона, не снижая верхнего значения второй части диапазона, уменьшение погрешности схемы измерения первой части диапазона, рассматривая изменения величин потоков среды как информационные сигналы между звеньями измерительной системы, как встречно-параллельное соединение с отрицательной обратной связью, возможность получения различной функциональной связи между величинами основного и обратного потоков среды.

Технический результат достигается тем, что в предложенном способе измерения расхода среды основной поток суммируют с обратным потоком, проводят суммарный поток через основной расходомер, измеряют его, далее разделяют его на два потока, один из которых считают равным входящему и направляют в нагрузку, другой - считают обратным, измеряют своим расходомером и вычитают из суммарного потока, отличающийся тем, что разделяют весь диапазон измерения на две части - первая часть измерения с обратным потоком, вторая часть измерения без обратного потока, в первой части диапазона обратный поток принудительно направляют к основному потоку для суммирования, изменяют его величину инверсно к величине основного потока, во второй части диапазона расход основного потока измеряют основным расходомером без обратного потока.

Кроме того, по изобретению устанавливают связь, пропорциональной и инверсной между обратным потоком и основным.

Кроме того, по изобретению канал обратного потока используют как байпас при измерении во второй части диапазона.

Кроме того, по изобретению обратный поток имеет постоянную величину.

На чертеже представлена функциональная схема устройства с пониженным начальным уровнем измерения (порогом), реализующего предложенный способ измерения расхода среды.

Основной поток 1 среды проходит через сумматор 2 потоков, образуя суммарный поток 3, основной расходомер 4, разделитель 5 потоков на выход 6 к нагрузке. В сумматоре 2 к основному потоку 1 присоединяется обратный поток 7, который отделяется от суммарного потока 3 в разелителе 5 потока, образуя принудительную циркуляцию 7 расхода обратного потока через основной расходомер 4. Обратный поток 7, измеряемый своим расходомером 9, образуется под воздействием насоса (например, микронасоса) 8, управляемого через блок питания 10 устройством 11 сравнения сигналов. От основного расходомера 4 и расходомера 9 обратного потока сигналы сравниваются в устройстве 11 и происходит вычитание из суммарного потока 3 величины обратного потока 7 и фиксации сигнала фактического расхода основного потока 1 на индикаторе 12. При этом полагается, что после процедуры вычитания тот поток 6, который прошел через нагрузку, считается равным по величине основному потоку 1 с некоторой погрешностью ζ. При изменении величины основного потока 1 изменяется, например, пропорционально, с противоположным знаком (инверсно) величина обратного потока 7.

Весь диапазон измерения разделяют на две части: в первой - работает обратный поток 7, во второй - не работает обратный поток, в первой части диапазона обратный поток 7 принудительно направляют к основному потоку 1, изменяют величину обратного потока 7:

- увеличивают его при уменьшении основного потока 1 до согласованного (выбранного нижнего) значения первой части диапазона или

- уменьшают его величину до нуля по мере увеличения основного потока 1 до согласованного (выбранного верхнего) значения первой части диапазона.

В первой части диапазона вычитают из суммарного потока 3 обратный поток 7, фиксируя величину на индикаторе 12, во второй - остальной - части диапазона измерения при нулевой величине обратного потока 7 основной поток 1 измеряют основным расходомером 4, сигнал которого непосредственно проходит через устройство 11 на индикатор 12, фиксируя расход основного потока 1 во втором диапазоне.

В схеме на чертеже звеном 14 обратной связи служат - расходомер обратного потока 9 и насос 8, который имеет инверсную характеристику «расход-давление» по отношению к изменению расхода основного потока, звеном 13 прямой цепи является - основной расходомер 4, разделитель потока 5.

Звенья 13 и 14 включены по встречно-параллельной схеме для уменьшения относительной погрешности ζ измерения схемы, которая расчитывается по известной формуле (Браславский Д.А. Приборы и датчики летательных аппаратов. М., Машиностроение. 1970, с. 108)

ζ=ψ1ζ12·ζ2

ψ1=1/Σ1+S1S2) - коэффициент влияния звена 1 и ζ1 - его относительная погрешность,

ψ2=-S1S2/(1+S1S2) - коэффициент влияния звена 2 и ζ2 - его относительная погрешность,

S1 - крутизна характеристики «давление-расход» звена прямой цепи,

S2 - крутизна характеристики «давление-расход» звена обратной связи.

Поскольку ψ2 при такой схеме включения звеньев всегда со знаком минус, то общая относительная погрешность схемы измерения в первой части диапазона измерения снижена по сравнению с относительной погрешностью общей схемы.

Расширение диапазона измерения расхода достигается разделением его на две части с понижением уровня измерения в первой части диапазона. Величина обратного потока 7 звена обратной связи 14 позволяет повысить чувствительность основного расходомера 4 до согласованной нижней границы измерения, добавляя часть расхода, которой нехватает для начала уверенной работы расходомера 4. В известном способе обратный поток возвращается в магистраль (бак, емкость), в которой информационное поле по величине сигнала давления близко к нулю, т.к. насос, расположенный после точки суммирования потоков, определяет величину потенциала перед нагрузкой. В предложенном способе обратный поток возвращается в информационную линию с давлением по величине, отличной от нуля. В этом случае для реализации встречно-параллельной схемы с отрицательной обратной связью необходима инверсная характеристика «давление-расход» звена обратной связи. Т.е. при увеличении потенциала (давления) и расхода измеряемого потока в точке суммирования расход обратного потока уменьшается согласно характеристики «Р-Q» звена обратной связи.

Работа обратного потока 7 начинается с условного нуля, например Q2=20 л/ч, рабочей точки интервала между точкой уверенной работы основного расходомера 4 (например, Q1=40 л/ч) и пониженной согласованной границы измерения (например, Q=20 л/ч).

При недостаточном суммарном расходе по каналу 3, например, Q<20 л/ч и Q1=Q+Q2<40 л/ч, проходящему через основной расходомер 4, индикатор 12 не показывает процесса измерения. Т.е. расход Q<20 л/ч вообще не измеряется.

При достаточном Q1=Q+Q2≥40 л/ч суммарном расходе 3, проходящем через основной расходомер 4 и индикатор 12 показывает процесс измерения Q=Q1-Q2≥20 л/ч, то величина обратного потока 7 понижается на величину превышения над величиной 20 л/ч, поддерживая величину 40 л/ч, и так далее. Величина Q2 обратного потока 7 уменьшается с увеличением основного потока 1 по команде устройства сравнения 11 блоком питания 10 насоса 8 обратного потока 7. При этом поддерживается величина расхода Q1 по каналу 3 постоянной и равной, например, 40 л/ч. Такое поддержание расхода Q1=const на выбранном уровне необходимо для согласованной работы насоса 8 обратного потока с инверсной характеристикой (уменьшение расхода) по увеличению перепада давления во входном трубопроводе 1 в точке суммирования 2.

В другом варианте исполнения связи между расходом O1 и Q2 можно допустить, что Q1=var≤60 л/ч и Q2=const=20 л/ч, при достижении Q1=60 л/ч, звено обратной связи 14 выключается из работы. При такой работе предложенной схемы, напоминающей работу схемы прототипа, в которой насос работает постоянно, существует два недостатка.

Первый недостаток - насос 8 должен по своим техническим данным иметь возможность преодолевать уровень потенциала в канале 1 при наращивании расхода, например, до 60 л/ч, т.к. при увеличении расхода Q на входе 1 увеличивается перепад давления в точке суммирования.

Второй - самый важный недостаток - в такой схеме суммирования основного и обратного потоков вместо отрицательной обратной связи (ООС) возникает положительная обратная связь (ПОС), которая увеличивает погрешность измерения в диапазоне от сниженного порога (20 л/ч) до начала уверенной работы расходомера 4 (40 л/ч).

Принципиальное отличие схем понижения уровня порога чувствительности в предложенном способе и в прототипе в части определения погрешности измерения состоит в изменении существа обратной связи - ПОС заменяется на ООС.

Предложенный способ предоставляет возможность получения различной функциональной связи между величинами основного и обратного потоков среды, Например, для сокращения постоянной времени звеньев прямой цепи насос 8 включается с упреждением.

Когда в процессе увеличения основного потока 1 достигается точка уверенной работы расходомера 4, то к этому моменту величина обратного потока 7 близка к нулю, и дальнейшее увеличение величины основного потока 1 доводит его до полного исчезновения. Звено 14 выключается из работы измерения основного потока 1 и осуществляется плавный переход во вторую часть диапазона измерения. Весь расход основного потока 1 измеряется только основным расходомером 4. Диапазон измерения второй части остается прежним, который не уменьшается при включении в работу первой части диапазона. Общий диапазон измерения расширен и понижен нижний уровень измерения основного расходомера 4, который ранее, до включения обратного потока 7, был недоступен, не снижая верхнего значения второй части диапазона. Проходное сечение закрыто для циркуляции потока 7 при неработающем насосе и неработающий насос 8 через себя не пропускает поток 7.

При открытом проходном сечении неработающего насосе 8 его канал может использоваться как байпас с пересчетом коэффициента пропускания потока через всю схему, увеличивая общую пропускную способность схемы измерения и расширяя общий диапазон измерения. При этом часть основного потока проходит через проходное сечение насоса 8.

При малых сечениях байпаса при измерении во второй части диапазона этим потоком можно пренебречь.

1. Способ измерения расхода среды, при котором основной поток суммируют с обратным потоком, проводят суммарный поток через основной расходомер, измеряют его, далее разделяют его на два потока, один из которых считают равным входящему и направляют в нагрузку, другой - считают обратным, измеряют своим расходомером и вычитают из суммарного потока, отличающийся тем, что разделяют весь диапазон измерения на две части - первая часть измерения с обратным потоком, вторая часть измерения без обратного потока, в первой части диапазона обратный поток принудительно направляют к основному потоку для суммирования, изменяют его величину инверсно к величине основного потока, во второй части диапазона расход основного потока измеряют основным расходомером без обратного потока.

2. Способ измерения расхода среды по п.1, при котором устанавливают связь между обратным потоком и основным пропорциональной и инверсной.

3. Способ измерения расхода среды по п.1, при котором канал обратного потока используют как байпас при измерении во второй части диапазона.

4. Способ измерения расхода среды по п.1, при котором обратный поток имеет постоянную величину.



 

Похожие патенты:

Изобретения относятся к технике измерения расхода жидкости или газа. Способ включает этапы, выполняемые без прекращения потока текучей среды через расходомер, передачу ультразвукового сигнала первой частоты через указанную текучую среду; регулировку частоты с изменением первой частоты на вторую частоту и передачу другого ультразвукового сигнала второй частоты через указанную текучую среду, причем способ дополнительно включает использование одного общего акустического согласующего слоя для указанных ультразвукового сигнала и другого ультразвукового сигнала.

Использование: для определения скорости потока газовой среды. Сущность изобретения заключается в том, что осуществляют генерирование ультразвуковых колебаний, прием ультразвуковых колебаний электроакустическими преобразователями, измерение разности фаз электрических колебаний между сигналами от электроакустических преобразователей и вычисление скорости потока по разности фаз, при этом в зависимости от управляющего напряжения, посредством коммутатора на вход измерителя разности фаз подаются сигналы от электроакустических преобразователей 1, 2, 3, из которых электроакустические преобразователи 1, 2 расположены на концах измерительного канала, а преобразователь 3 - на расстоянии одной длины волны распространения ультразвука в воздухе; при нулевом управляющем напряжении обрабатывается сигнал с преобразователей 2 и 3 и запоминаются результаты измерения скорости звука; когда управляющее напряжение принимает значение единицы, через коммутатор проходят сигналы от преобразователей 1 и 2, а на выходе запоминающего устройства выдается запомненный результат измерения электрических сигналов, полученных на выходах преобразователей 2 и 3, и текущее значение разности фаз, полученное на выходе преобразователей 1 и 2; вычислительное устройство рассчитывает мгновенное значение скорости потока газовой среды.

Способ измерения расхода жидкости, протекающей через канал заключается в то, что в сечении канала выбирают сложную виртуальную измерительную поверхность, перекрывающую полностью все сечение канала, затем, в ее геометрическом центре или центрах устанавливают ультразвуковой источник или источники, формирующие группу узконаправленных лучей, пронизывающих виртуальную измерительную произвольную поверхность с заданным шагом по широте и долготе так, что она покрывается сеткой точек пересечения каждого луча с виртуальной измерительной поверхностью, причем каждый луч перпендикулярен поверхности в точке пересечения.

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя. Посадочное гнездо преобразователя проходит вдоль центральной оси от открытого конца в сквозном отверстии к закрытому концу, являющемуся удаленным по отношению к сквозному отверстию.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля и измерения расхода двухфазного потока сыпучих диэлектрических материалов, перемещаемых воздухом по металлическому трубопроводу.

Ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В некоторых примерах реализации ультразвуковой расходомер содержит патрубок, блок преобразователя и блок заглушки посадочного гнезда.

В одном из примеров реализации ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и посадочное гнездо преобразователя, проходящее от внешней поверхности патрубка к сквозному отверстию.

Предложен ультразвуковой расходомер для измерения потока текучей среды в трубопроводе. В одном из примеров реализации настоящего изобретения ультразвуковой расходомер содержит патрубок, имеющий сквозное отверстие и канал преобразователя, проходящий к сквозному отверстию.

Датчик ультразвукового расходомера может быть использован для определения расхода газов и жидкостей. Он состоит из пролетного канала, в торцах которого установлены акустические преобразователи, и двух патрубков, соединяющих пролетный канал с контролируемым трубопроводом.

Группа изобретений относится к измерительной технике и, в частности, к способу и системе обнаружения и отслеживания отложений. Система обнаружения нароста отложений в ультразвуковом расходомере включает ультразвуковой расходомер, муфту, пару преобразователей, закрепленных на муфте.

Способ измерения расхода многофазной жидкости, заключающийся в измерении акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, скорость прохождения жидкости определяют по частоте акустических шумов, вызываемых неравномерностью движения жидкости, предварительно измеряют температуру потока и давление в трубе, плотности каждой из фаз, а затем на основе предложенных зависимостей рассчитывают объемную или массовую доли каждой фазы. При этом, используя лабораторные результаты, составляют уравнения зависимости скорости звука каждой фазы от давления и температуры, а уравнение скорости звука для воды дополняют зависимостью от солености воды, при этом полученные уравнения записывают в расчетный блок, измеряют давление и температуру в трубопроводе, измеряют соленость воды, измеряют и записывают амплитуды и частоты колебаний трубы, по которой протекает многофазная жидкость, измеряемый диапазон частот делят на части, соответствующие каждой фазе, в каждой из частей после применения быстрых преобразований Фурье выделяют максимальные значения амплитуд и соответствующие им частоты и вычисляют объемный расход каждой фазы жидкости по соответствующей формуле. Технический результат - уменьшение погрешности измерения каждой фазы. 4 ил.

Преобразовательный блок ультразвукового расходомера. По меньшей мере некоторые из пояснительных примеров реализации представляют собой системы, содержащие: патрубок, который задает внешнюю поверхность, центральный проход и посадочное гнездо преобразователей, проходящее от внешней поверхности к центральному проходу; и преобразовательный блок, соединенный с посадочным гнездом преобразователей. Преобразовательный блок содержит: переходной элемент, соединенный с патрубком, причем переходный элемент имеет первый конец, размещенный в посадочном гнезде преобразователей, и второй конец, расположенный снаружи внешней поверхности; пьезоэлектрический модуль с пьезоэлектрическим элементом, причем пьезоэлектрический модуль соединен непосредственно с первым концом переходного элемента и размещен во внешней поверхности; трансформаторный модуль с размещенным в нем трансформатором, причем трансформаторный модуль соединен непосредственно со вторым концом переходного элемента и размещен снаружи внешней поверхности; и электрический проводник, размещенный в проходе посредством переходного элемента и соединяющий трансформатор с пьезоэлектрическим элементом. Технический результат - повышение надежности ультразвуковых расходомеров, сокращение времени выявления неисправности и ремонта. 4 н. и 16 з.п. ф-лы, 12 ил.

Блок преобразователя для ультразвукового расходомера содержит пьезоэлектрический модуль. При этом пьезоэлектрический модуль содержит корпус, имеющий центральную ось, первый конец, второй конец, противоположный первому концу, и первую внутреннюю камеру, проходящую в радиальном направлении от первого конца. Кроме того, пьезоэлектрический модуль содержит пьезоэлемент, расположенный в первой внутренней камере. Кроме того, пьезоэлемент содержит распорки, расположенные в первой внутренней камере между пьезоэлементом и корпусом, причем каждая распорка расположена в радиальном направлении между пьезоэлементом и корпусом. Технический результат - улучшение качества ультразвуковых сигналов. 3 н. и 22 з.п. ф-лы, 9 ил.

Устройство для прохождения сигналов ультразвуковой частоты через контролируемую среду в трубопроводе содержит источник сигналов ультразвуковой частоты, как минимум, «N»-управляемых ключей, подсоединенных своими соответствующими выводами к выходу источника сигналов ультразвуковой частоты через схему развязки, как минимум, «М»-первых ультразвуковых пьезоэлектрических преобразователей, установленных на трубопроводе с контролируемой средой и подсоединенных своими соответствующими выводами к соответствующим вторым выводам одних из, как минимум, «N»-соответствующих управляемых ключей, «М»-вторых ультразвуковых пьезоэлектрических преобразователей, установленных на трубопроводе с контролируемой средой и подсоединенных своими соответствующими выводами к соответствующим вторым выводам других из, как минимум, «N»-соответствующих управляемых ключей, усилитель, непосредственно подсоединенный своим входом к выходу схемы развязки, и схему управления, подсоединенную своими соответствующими выходами к управляющим входам «N»-управляемых ключей и к выходу источника сигналов ультразвуковой частоты. Технический результат - исключение влияния разброса параметров электронных компонентов на процесс прохождения сигналов ультразвуковой частоты по электронным цепям устройства и, следовательно, повышение точности измерения объемного расхода контролируемой среды в трубопроводе. 3 ил.

Изобретение относится к ультразвуковому проточному датчику (110) для применения в текучей среде. Предложенный ультразвуковой проточный датчик (110) содержит, по меньшей мере, два ультразвуковых преобразователя (120, 122), расположенных в проточной трубе (112), вмещающей поток текучей среды, и разнесенных вдоль потока текучей среды. Ультразвуковой проточный датчик (110) также содержит отражательную поверхность (126), причем ультразвуковые преобразователи (120, 122) установлены с возможностью посылки друг другу ультразвуковых сигналов посредством однократного отражения последних на отражательной поверхности (126). Между ультразвуковыми преобразователями (120, 122) предусмотрено отклоняющее устройство (132), выполненное таким образом, чтобы в основном подавлять паразитные ультразвуковые сигналы, отражаемые отражательной поверхностью (126) и падающие на отклоняющее устройство (132), путем их отклонения в сторону от ультразвуковых преобразователей (120, 122). Отклоняющее устройство расположено, по меньшей мере, на средней трети соединительного отрезка между ультразвуковыми преобразователями (120, 122) и имеет, по меньшей мере, одну отклоняющую поверхность (134, 136; 150). Нормали к отклоняющей поверхности (134, 136; 150) образуют с нормалью к отражательной поверхности (126) углы, среднее значение которых больше 10°. Технический результат - повышение точности измерений за счет существенного подавления паразитных ультразвуковых импульсов. 6 з.п. ф-лы, 34 ил.

Изобретение относится к измерительной технике и преимущественно предназначено для использования в системах контроля и измерения скорости и расхода жидких и газообразных продуктов. Оно может быть использовано при транспортировке топливных продуктов, в водоснабжении, медицинской технике, а также в океанографии при измерении скорости течений в морях и океанах. Технический результат изобретения -повышение точности измерения при контроле параметров потока. Точность измерения скорости потока можно повысить, зная скорость распространения звука в среде и величины задержек в электронных схемах и акустических преобразователях.
Изобретение относится к области гидроакустической метрологии. Сущность: при использовании известного свойства электроакустических излучателей изменять соотношение величин активной и реактивной составляющих своего сопротивления излучения в соответствии с флюктуациями характеристик среды - ее плотности, температуры и давления. Таким образом, контролируя соотношение названных величин, можно получать информацию о характеристиках среды и их динамике, сопровождающей, в частности, прокачивание жидкости в трубопроводах. Это соотношение при работе генератора на комплексную нагрузку однозначно характеризуется фазовым сдвигом между подводимым к излучателю напряжением и потребляемым им током, поэтому последний (фазовый сдвиг) и выбирают в качестве контролируемого параметра в предлагаемом способе контроля скорости потока и объемов прокачиваемых жидких сред в трубопроводах. Технический результат: существенное упрощение реализуемых по этому способу устройств со значительным снижением затрат на их производство, установку и эксплуатацию, что повлечет за собой повышение надежности последних и возможность реализации мобильного варианта устройства в целом.

Заявленная группа изобретений относится к ультразвуковым преобразователям для контроля текучей среды. Ультразвуковой преобразователь для контроля текучей среды включает в себя по меньшей мере один корпус с по меньшей мере одним внутренним пространством и по меньшей мере один размещенный во внутреннем пространстве сердечник с по меньшей мере одним электроакустическим преобразующим элементом. При этом корпус имеет по меньшей мере одно обращенное к текучей среде отверстие, по меньшей мере частично закрытое по меньшей мере одной изоляционной пленкой, край которой герметично заделан посредством по меньшей мере одного герметизирующего материала. Кроме того, корпус имеет расположенную со стороны текучей среды закраину, которая по меньшей мере частично окружает отверстие и к которой по меньшей мере частично прилегает изоляционная пленка, причем край изоляционной пленки заканчивается, по существу, вместе с закраиной корпуса. Также заявлен датчик, содержащий такой ультразвуковой преобразователь. Заявленная группа изобретений позволяет надежно защитить внутреннее пространство корпуса преобразователя от проникновения контролируемых сред. 2 н. и 9 з.п. ф-лы, 7 ил.

Описан ультразвуковой преобразователь (110) для применения в текучей среде (116). Ультразвуковой преобразователь (110) включает в себя по меньшей мере один сердечник (118) с по меньшей мере одним акустоэлектрическим преобразующим элементом (112), в частности пьезоэлектрическим преобразующим элементом (112). Также ультразвуковой преобразователь (110) имеет по меньшей мере один корпус (120) с по меньшей мере одним отверстием (122), по меньшей мере частично изолированным от текучей среды (116) посредством связанной с сердечником (118) изоляционной пленки (130). Изоляционная пленка (130) имеет по меньшей мере один компенсационный деформированный участок (134) для компенсации ее растяжения и обеспечения возможности взаимного перемещения сердечника (118) и корпуса (120) ультразвукового преобразователя. 12 н. и 7 з.п. ф-лы, 18 ил.

Изобретение относится к системам водоотведения. В системе, включающей модуль перекачки воды, содержащий насосы, приемный резервуар с подводящим трубопроводом, модуль анализа диагностируемых параметров, модуль контрольно-измерительных приборов, блок ввода объемов приемного резервуара, блок анализа водопритока, модуль анализа диагностируемых параметров, снабженный блоками ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода, анализа откачки воды из приемного резервуара, модуль контрольно-измерительных приборов снабжен датчиками уровня воды, установленными на подводящем трубопроводе и в приемном резервуаре, модуль перекачки воды снабжен запорно-регулирующим устройством с исполнительным органом, установленным на подводящем трубопроводе, устройством управления, при этом выходы блоков ввода геометрических характеристик приемного резервуара, ввода гидравлических характеристик подводящего трубопровода и блока анализа откачки воды из приемного резервуара подключены к входу блока анализа водопритока. Технический результат - возможность использования системы для решения задач по диагностике расхода воды. 4 з.п. ф-лы, 2 ил.
Наверх