Способ мониторинга состояния электрической сети и энергообъекта и устройство для его реализации



Способ мониторинга состояния электрической сети и энергообъекта и устройство для его реализации
Способ мониторинга состояния электрической сети и энергообъекта и устройство для его реализации

 


Владельцы патента RU 2531038:

Беляев Александр Николаевич (RU)
Валиков Александр Владимирович (RU)

Изобретение относится к контрольно-измерительной технике, в частности к измерениям параметров электрической сети и контроля состояния энергообъектов. Анализируют среднеквадратические значения входных токов и напряжений и на основе анализа определяют текущий типовой для энергосистемы режим электрической сети. В соответствии с определенным типовым режимом изменяют параметры измерений и формирования событий о состоянии сети и энергообъекта, включая осциллографирование, таким образом, обеспечивают зависимость степени детализации данных от текущего типового режима работы электрической сети и энергообъекта. Кроме того, на основе анализа режима устанавливают различные приоритеты (очередность) передачи данных измерений, событий и осциллограмм на верхний уровень управления для различных режимов, таким образом, при аварийной ситуации наиболее важные данные, необходимые для ликвидации последствий аварии, могут быть получены максимально быстро, а сохраненные при аварии осциллограммы, необходимые для детального анализа развития аварийной ситуации и ее причин, могут быть получены позднее. Технический результат заключается в повышении информативности измеряемых параметров электрической сети и состояния энергообъекта с одновременным снижением объема данных, передаваемых с энергообъекта по каналу связи на верхний уровень управления диспетчерскому персоналу. 2 н. и 11 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к контрольно-измерительной технике, в частности к системам и устройствам для измерения параметров электрической сети и контроля состояния энергообъектов (диспетчеризации электрических станций и подстанций, переключательных и секционирующих пунктов, узлов учета электроэнергии и т.п.).

УРОВЕНЬ ТЕХНИКИ

Для контроля и диспетчеризации состояния электрических сетей и энергообъектов в настоящее время применяется два подхода [1-4]:

- непрерывная передача данных о состоянии электрической сети и энергообъекта с заданным периодом обновления, при этом данные содержат значения измеряемого параметра и содержат или не содержат метку времени;

- формирование событий при обнаружении изменения состояния электрической сети и энергообъекта (выход измеряемого значения за заданный порог, изменение текущего измеряемого значения относительно предыдущего на заданную величину и т.п.), при этом события содержат значения измеряемого параметра и метку времени события.

Первый подход при малом (относительно времени изменения измеряемого технологического параметра) периоде обновления позволяет получить высокую степень детализации измеряемых параметров, но содержит большую избыточность в стационарном режиме (передаются данные, не содержащие новой полезной информации). Кроме того, объем данных требует наличия канала связи с энергообъектом с достаточно высокой пропускной способностью. Крайним случаем первого подхода является непрерывное осциллографирование формы входного сигнала измеряемого параметра. При относительно большом же периоде обновления обеспечивается низкая степень детализации измеряемых параметров, вплоть до пропуска быстропротекающих процессов.

Второй подход обеспечивает обнаружение изменений состояния электрических сетей и энергообъектов при уменьшении, по сравнению с первым подходом, объема данных с энергообъекта. Критерии формирования событий (например, выбор значений порогов, при пересечении которых измеряемым параметром формируется событие) имеют определяющее значение с точки зрения степени детализации данных измерений. Существуют комбинированные реализации, в которых при обнаружении изменений состояния электрических сетей и энергообъектов формируются соответствующие события со значениями параметров и одновременно производится запись формы сигнала.

Известен способ и устройство для одновременной записи осциллограмм с разной частотой дискретизации для анализа качества электроэнергии (Патент США №US8121801). Способ записи осциллограмм с различными частотами дискретизации заключается в том, что в аналого-цифровом преобразователе производят преобразование входных трехфазных сигналов тока и напряжения в цифровой код, далее с помощью цифровой обработки сигналов определяют нарушения режима электрической сети по среднеквадратическим значениям напряжения (переходные процессы, провалы, перенапряжения) и формируют осциллограммы с двумя различными частотами дискретизации в зависимости от определенного нарушения режима электрической сети.

Устройство, реализующее способ, состоит из блока входных датчиков, соединенных с аналого-цифровым преобразователем, выходы которого через блок программируемой логики подключены к двум процессорам обработки сигналов (первый для целей учета электроэнергии, второй для целей анализа качества электроэнергии), данные с процессоров обработки сигналов поступают на первый порт двухпортовой памяти, ко второму порту которой подключен центральный процессор, сохраняющий результаты обработки в долговременной памяти, а также передающий их на интерфейсы связи и панель индикатора.

Недостатком способа и устройств является:

- формирование сравнительно большого объема данных в осциллограммах, недопустимого при использовании каналов связи с ограниченной полосой пропускания, при обнаружении событий по среднеквадратическим значениям.

Известен способ и система для мониторинга напряжения в счетчиках, связанных беспроводной сетью (Патент США №US7860672). Способ заключается в том, что в каждом из счетчиков измеряют входные напряжения, формируют события и архивы измерений (включая осциллограммы) при выходе входных напряжений за заранее определенные пороги в течение определенного времени (параметры, различные для каждого устройства), далее передают события по беспроводной сети в устройство сбора, в котором определяют группы счетчиков, сформировавших события, и, далее, управляют порогами каждого счетчика по беспроводной сети от устройства сбора.

Недостатками способа и системы являются:

- фиксированные значения порогов и, соответственно, фиксированная степень детализации в каждом устройстве;

- необходимость связи между несколькими устройствами с различными порогами для повышения детализации событий в системе в целом;

- централизованное управление системой от устройства сбора, снижающее общую надежность.

Известно семейство счетчиков электроэнергии с функциями анализа качества электроэнергии (Патент США №US7006934). Счетчики состоят из блока входных датчиков, подключенных к аналого-цифровому преобразователю, выход которого подключен к микропроцессору и памяти, микропроцессор производит вычисление параметров электрической сети, включая учет электроэнергии, вычисление параметров качества электроэнергии и гармонический анализ, и формирует события и архивы измерений (включая осциллограммы) при обнаружении выхода измеряемых значений за заданный порог.

Недостатком метода и системы является:

- фиксированные значения порогов и, соответственно фиксированная степень детализации.

Известна система измерений (Патент США №US7865320), являющаяся централизованной системой, состоящей из блока входного датчика напряжения, блоков входных датчиков токов, выходы всех датчиков подключены к схеме одновременной выборки аналого-цифрового преобразователя, отсчеты с выхода которого поступают на микропроцессор, выполняющей вычисление токов и напряжений, учет электроэнергии, гармонический анализ, контроль дискретных входов и управление дискретными выводами. После гармонического анализа микропроцессор производит сравнение значений гармоник с заранее заданным порогом и сохраняет только значения, превышающие заданный порог.

Недостатками системы измерений являются:

- фиксированные значения порогов, при которых производится уменьшение объема данных за счет обнуления значений параметров;

- централизованное построение в виде единого измерительного блока, что повышает риск выхода из строя сразу всей системы на энергообъекте при неисправности хотя бы одной цепи напряжения или хотя бы одной цепи питания.

Наиболее близким техническим решением к предлагаемому является способ и устройство для одновременной записи осциллограмм с разной частотой дискретизации для анализа качества электроэнергии (Патент США №US8121801). Способ записи осциллограмм с различными частотами дискретизации заключается в том, что в аналого-цифровом преобразователе производят преобразование входных трехфазных сигналов тока и напряжения в цифровой код, далее с помощью цифровой обработки сигналов определяют нарушения режима электрической сети по среднеквадратическим значениям напряжения (переходные процессы, провалы, перенапряжения) и формируют осциллограммы с двумя различными частотами дискретизации в зависимости от определенного нарушения режима электрической сети.

Отличительной особенностью способа является возможность обнаружения нарушений режима электрической сети на основе данных, полученных с низкой частотой дискретизации, формирования событий различных типов и одновременного сохранения осциллограмм с различной частотой дискретизации для различных типов событий при эффективном использовании памяти и отсутствии дополнительных аппаратных или вычислительных затрат.

Устройство, реализующее способ, состоит из блока входных датчиков, соединенных с аналого-цифровым преобразователем, выход которого через блок программируемой логики подключен к процессору обработки сигналов с двумя каналами обработки (первый для целей учета электроэнергии, второй для целей анализа качества электроэнергии), данные с процессора обработки сигналов поступают через двухпортовую память к центральному процессору, сохраняющий результаты обработки в блоке хранения (долговременной памяти), а также передающий данные через интерфейсы связи на верхний уровень управления и панель индикатора.

Недостатком способа и устройства является отсутствие возможности гибко регулировать степень детализации данных в зависимости от режима электрической сети и сравнительно большой объем данных, содержащихся в осциллограммах, недопустимый при использовании каналов связи с ограниченной полосой пропускания.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Цель изобретения - повышение степени наблюдаемости параметров электрической сети и энергообъекта, адаптивное изменение степени детализации данных о состоянии энергообъекта с одновременным снижением объема данных за счет мониторинга и оценки режима работы электрической сети и состояния энергообъектов и адаптивного изменения параметров измерения и формирования событий, включая осциллографирование, в зависимости от режимов электрической сети.

Поставленная цель достигается тем, что в известном способе дополнительно анализируют измеренные на интервале в ½ периода частоты сети среднеквадратические значения входных токов и напряжений, на основе анализа определяют типовой для энергосистемы режим электрической сети, в соответствии с определенным типовым режимом изменяют параметры адаптивных фильтров-вычислителей параметров сети (например, изменяют время усреднения среднеквадратических значений активной мощности), изменяют параметры адаптивных формирователей событий (например, для периодических событий изменяют время, через которое формируются соседние события со значениями измерений, для событий по отклонениям изменяют максимально допустимую разницу значений между соседними событиями со значениями измерений). Тем самым, обеспечивают зависимость количества событий со значениями измеряемого параметра в единицу времени (степень детализации данных) от текущего типового режима работы электрической сети и энергообъекта, что, в свою очередь, позволяет без ухудшения наблюдаемости уменьшить объем данных, передаваемых с энергообъекта по каналу связи на верхний уровень управления диспетчерскому персоналу для анализа режима электрической сети и состояния энергообъекта.

Реализация способа возможна с помощью устройства, в которое дополнительно вводятся многопороговые компараторы, определяющие зону нахождения измеряемого параметра на основании измеренных на интервале в ½ периода частоты сети среднеквадратических значений токов и напряжений, выходы компараторов подключены к решающей схеме, определяющей на основе комбинации выходов компараторов режим работы электрической сети и энергообъекта, решение поступает на адаптивные фильтры-вычислители, адаптивные формирователи событий и адаптивный блок записи осциллограмм, которые меняют параметры своей работы на основе решения о режиме сети, далее события, сформированные адаптивными формирователями событий и осциллограммы, сформированные адаптивным блоком записи осциллограмм поступают, соответственно, в блок хранения событий и блок хранения осциллограмм для дальнейшей передачи через интерфейсы связи с энергообъекта по каналу связи на верхний уровень управления диспетчерскому персоналу для анализа режима электрической сети и состояния энергообъекта.

Существенными отличиями изобретения являются:

- наличие анализа измеренных на интервале в ½ периода частоты сети среднеквадратических значений входных токов и напряжений и определение типового для энергосистемы режима электрической сети и энергообъекта на основе данных анализа;

- наличие изменения параметров адаптивных фильтров-вычислителей в зависимости от режима работы электрической сети и энергообъекта;

- наличие изменения параметров адаптивных формирователей событий в зависимости от режима работы электрической сети и энергообъекта;

- наличие зависимости степени детализации данных о состоянии электрической сети и энергообъекта, количества событий со значениями измеряемого параметра в единицу времени от текущего режима работы электрической сети и энергообъекта;

- наличие в устройстве многопороговых компараторов, определяющих зону нахождения среднеквадратического значения каждого измеряемого параметра электрической сети;

- наличие в устройстве решающей схемы, определяющей на основе комбинации выходов многопороговых компараторов режим работы электрической сети и энергообъекта;

- наличие в устройстве адаптивного блока записи осциллограмм, изменяющего свои параметры в зависимости от режима работы электрической сети и энергообъекта.

Техническим результатом является адаптивное изменение степени детализации данных измерений о состоянии энергообъекта с одновременным снижением объема данных измерений, передаваемых с энергообъекта, при сохранении достаточной для текущего режима сети степени наблюдаемости. Результат достигается за счет мониторинга и оценки режимов работы электрической сети и состояния энергообъектов и адаптивного изменения параметров измерения и формирования событий, включая осциллографирование, в зависимости от режимов электрической сети.

На фиг.1 поясняются временные диаграммы работы при реализации предлагаемого способа.

На фиг.2 поясняется схема устройства, реализующего предлагаемый способ.

На фиг.1а показана возможная реализация входного сигнала по одному из входных каналов.

На фиг.1б показано среднеквадратическое значение входного сигнала, соответствующее приведенной на фиг.1а реализации входного сигнала (сплошная линия), значения входного сигнала (точки), передаваемые на верхний уровень управления при непрерывной периодической передаче значений соответствующего параметра электрической сети с заданным периодом обновления D и возможный график измеряемого параметра, построенный по полученным точкам (пунктирная линия).

При показанном на фиг.1б значении периода D на участке стационарного режима (до момента времени Т2) формируется избыточное количество данных, не несущих полезной информации о состоянии электрической сети (значение параметра практически не меняется). На участке аварийного режима (момент времени Т2 и позднее) формируется недостаточное количество данных, не позволяющих провести полноценный анализ развития аварийного режима (значения параметров чрезмерно сглажены). При больших значениях периода D, выбранных исходя из имеющихся низкоскоростных каналов связи энергообъекта с верхним уровнем управления, и превышающих длительность аварийного процесса, аварийный процесс может быть вообще не зафиксирован.

На фиг.1в показано среднеквадратическое значение входного сигнала, соответствующее приведенной на фиг.1а реализации входного сигнала (сплошная линия), значения входного сигнала (точки), передаваемые на верхний уровень управления при формировании событий, возможный график измеряемого параметра, построенный по полученным точкам (пунктирная линия).

Фиг.1в поясняет изменение различных параметров формирования событий для различных зон нахождения значений измеряемого параметра. Вводится несколько пороговых значений (П1, П2) для измеряемого параметра. Для каждой зоны нахождения измеряемого параметра (ниже порога П1, между порогами П1 и П2, выше порога П2) определяются параметры формирования событий: период обновления значений (D0, D1, D2), относительное отклонение (А0, A1, А2), частота дискретизации и длительность записи при записи осциллограмм (на фигурах условно не показана), тип записи осциллограмм (запись формы сигнала или запись среднеквадратических значений за заданный период, на фигурах условно не показаны). Для определенных зон нахождения измеряемого параметра некоторые виды формирования событий могут быть отключены (например, в зоне ниже порога П1 на фиг.1в события по относительному отклонению не формируются, параметр А0 не используется).

Устройство, реализующее способ, состоит из блока входных датчиков тока и напряжения 1, аналого-цифрового преобразователя 2, процессора обработки сигналов 3, блока хранения событий 14, блока хранения осциллограмм 15 и интерфейсов связи 16. Процессор обработки сигналов 3 включает в себя вычислитель среднеквадратических значений фазных токов и напряжений за ½ периода частоты сети 4, многопороговые компараторы 5 и 6 (число которых соответствует числу входных каналов тока и напряжения), решающую схему 7, адаптивные фильтры-вычислители 8 и 9 (число которых соответствует числу вычисляемых параметров сети), адаптивный формирователь периодических событий 10, адаптивный формирователь событий по порогам 11, адаптивный формирователь событий по отклонениям 12 и адаптивный блок записи осциллограмм 13.

Блок входных цепей тока и напряжения выполняет предварительную фильтрацию входных сигналов с каналов тока и каналов напряжения (всего не менее 3 каналов фазных токов и 3 каналов фазных напряжений), далее в аналого-цифровом преобразователе 2 производится преобразование сигналов в цифровой код, поступающий в процессор обработки сигналов 3. В процессоре обработки сигналов 3 цифровой код, соответствующий входным сигналам, поступает в вычислитель среднеквадратических значений фазных токов и напряжений за ½ периода частоты сети 4, адаптивные фильтры-вычислители 8, 9 и в адаптивный блок записи осциллограмм 13. В вычислителе среднеквадратических значений фазных токов и напряжений за ½ периода частоты сети 4 на основе цифрового кода, соответствующего входным сигналам, производится вычисление среднеквадратических значений за ½. периода частоты сети. Вычисленные значения поступают на входы многопороговых компараторов 5 и 6. Выходы многопороговых компараторов 5 и 6 подключены к решающей схеме 7, которая определяет типовой текущий режим работы электрической сети в точке измерения (например, стационарный режим, режим пуска асинхронного двигателя, провал напряжения и т.п.). На основе выходных данных решающей схемы 7 производится выбор параметров работы адаптивных фильтров-вычислителей 8, 9. Фильтры-вычислители 8, 9 на основе цифрового кода, соответствующего входным сигналам, и выбранных параметров работы производят вычисление параметров сети (например, активная мощность на основе тока и напряжения, усредненная за 1 секунду, напряжение нулевой последовательности на основе фазных напряжений, усредненное за 1 период частоты сети и т.п.). Вычисленные фильтрами-вычислителями 8, 9 значения параметров сети поступают на адаптивные формирователи событий 10-12, причем на каждый формирователь событий поступают как все вычисленные значения параметров сети, так и выходные данные о режиме сети от решающей схемы 7. Адаптивный формирователь периодических событий 10 формирует события со значениями вычисленных параметров с заданной периодичностью, например, формирует события со значениями фазных токов каждые 5 минут и со значениями активных мощностей каждые 10 минут. Адаптивный формирователь периодических событий 10 в зависимости от выходных данных о режиме сети от решающей схемы 7 независимо для каждого измеряемого параметра разрешает или запрещает сохранение событий в блок хранения событий 14 и изменяет значения периодов формирования событий. Адаптивный формирователь событий по порогам 11 формирует события со значениями вычисленных параметров при обнаружении пересечения измеряемыми параметрами одного или нескольких заданных порогов, например, формирует события при превышении тока нулевой последовательности первого порога со значением, соответствующим 10% от номинального фазного тока. Адаптивный формирователь событий по порогам 11 в зависимости от выходных данных о режиме сети от решающей схемы 7 независимо для каждого измеряемого параметра разрешает или запрещает сохранение событий в блок хранения событий 14 и изменяет значения порогов для формирования событий. Адаптивный формирователь событий по отклонениям 12 формирует события со значениями вычисленных параметров при обнаружении изменения измеряемого параметра более, чем на заданное значение отклонения, например, формирует события при изменении фазных токов на 5% и при изменении частоты сети на 0.5%. Адаптивный формирователь событий по отклонениям 12 в зависимости от выходных данных о режиме сети от решающей схемы 7 независимо для каждого измеряемого параметра разрешает или запрещает сохранение событий в блок хранения событий 14 и изменяет значения отклонений для формирования событий. Адаптивный блок записи осциллограмм 13 на основе цифрового кода, соответствующего входным сигналам, производит непрерывную запись осциллограмм в кратковременную память с параметрами работы, выбранными решающей схемой 7 для текущего режима электрической сети, например, отсутствие записи в стационарном режиме, запись среднеквадратических значений фазных токов и напряжений с частотой дискретизации 50 Гц в режиме пуска двигателя и запись мгновенных значений фазных токов и напряжений с частотой дискретизации 8000 Гц в аварийном режиме. При формировании нового события на выходах адаптивных формирователей событий 10-12 адаптивный блок записи осциллограмм производит запись осциллограммы в блок хранения осциллограмм 15. Вычисленные фильтрами-вычислителями 8, 9 значения параметров сети, события, сохраненные в блоке хранения событий 14, осциллограммы, сохраненные в блоке хранения осциллограмм 15 передаются через интерфейсы связи 16 на верхний уровень управления.

Путем комбинирования параметров многопороговых компараторов 5, 6 и решающей схемы 7 возможна настройка определения различных режимов электрической сети. Путем комбинирования параметров адаптивных формирователей событий 10-12 возможна настройка степени детализации значений измеряемых параметров в различных режимах электрической сети и, таким образом, оптимизация объема данных, передаваемых от энергообъекта на верхний уровень управления, по критериям объем данных - наблюдаемость. Блоки хранения событий 14 и осциллограмм 15 имеют возможность настройки приоритетов (очередности) передачи данных событий и осциллограмм различных типов по интерфейсам связи 16 на верхний уровень управления. Таким образом, при аварийной ситуации наиболее важные данные, необходимые для ликвидации последствий аварии, могут быть получены максимально быстро, а сохраненные при аварии осциллограммы, необходимые для детального анализа развития аварийной ситуации и ее причин, могут быть получены позднее. Общий объем данных для передачи от энергообъекта на верхний уровень управления в стационарном режиме может быть резко уменьшен по сравнению с применением традиционных способов и устройств, тем самым резко снижая требования к каналам передачи данных.

Источники информации

1. ГОСТ Р МЭК 60870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров.

2. ГОСТ Р МЭК 60870-5-104-2004 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 104. Доступ к сети для ГОСТ Р МЭК 870-5-101 с использованием стандартных транспортных профилей.

3. IEC 61850-5 Communication networks and systems in substations - Part 5: Communication requirements for functions and device models.

4. IEC 61850-7-2 Communication networks and systems in substations - Part 7-2: Basic communication structure for substation and feeder equipment - Abstract communication service interface (ACSI).

5. Pat. US8121801 (B2) USA, Int. CI. G01R 13/00, G01R 13/02, G06F 19/00, G06F 17/40. System and method for multi-rate concurrent waveform capture and storage for power quality metering / Joseph Spanier, Hai Zhu, Frederick В Slota. - 21.02.2012.

6. Pat. US7860672 (B2) USA, Int. CI. G06F 19/00. Method and apparatus for monitoring voltage in a meter network / Keith Richeson, Charlie E. Minton, III, Rodney C. Hemminger, Robert T. Mason, Jr. - 28.10.2010.

7. Pat. US7006934 (B2) USA, Int. CI. G01R 19/25. Revenue meter with power quality features / Rene T Jonker, Piotr В Przydatek, Colin N Gunn, Michael E Teachman, Constantine A Antoniou. - 28.02.2006.

8. Pat. US7865320 (B2) USA, Int. CI. G01R 19/00. High density metering system / Avery Long, Ronald W Carter. - 04.01.2011.

1. Способ мониторинга состояния электрической сети и энергообъекта с записью осциллограмм с различными частотами дискретизации, заключающийся в аналого-цифровом преобразовании входных трехфазных сигналов тока и напряжения, цифровой обработке сигналов, определении нарушений режима электрической сети по изменениям среднеквадратических значений тока и напряжения и формировании осциллограмм с двумя различными частотами дискретизации в зависимости от определенного нарушения режима электрической сети, отличающийся тем, что при измерении на интервале в ½ периода частоты сети среднеквадратических значений входных токов и напряжений производят анализ и определение текущего типового для энергосистемы режима работы электрической сети и энергообъекта на основе измерений входных токов и напряжений, далее на основании данных о типовом режиме производят усреднение и вычисление значений измеряемых параметров электрической сети, формируют периодические события со значениями измеряемых параметров и метками времени формирования событий, формируют события со значениями измеряемых параметров при пересечении измеряемыми параметрами заданных порогов и метками времени пересечения порогов, формируют события со значениями измеряемых параметров при превышении измеряемыми параметрами заданных отклонений относительно предыдущего значения и метками времени превышения отклонений, формируют осциллограммы с измеряемыми параметрами.

2. Способ по п.1, отличающийся тем, что при фильтрации, усреднении и вычислении значений измеряемых параметров электрической сети применяют адаптивные фильтры-вычислители, параметры которых (тип фильтрации, время усреднения) изменяют в соответствии с определенным текущим режимом электрической сети и энергообъекта.

3. Способ по п.2, отличающийся тем, что при формировании периодических событий со значениями измеряемых параметров применяют адаптивные формирователи событий, параметры которых (период формирования, признак активности) изменяют в соответствии с текущим режимом электрической сети и энергообъекта по п.1, при этом изменение параметров обеспечивает различный период между соседними событиями, и, соответственно, различную разрешающую способность и наблюдаемость во времени вычисленных по п.2 параметров электрической сети в различных режимах электрической сети и энергообъекта.

4. Способ по п.1, отличающийся тем, что при формировании событий со значениями измеряемых параметров при пересечении измеряемыми параметрами заданных порогов применяют адаптивные формирователи событий, параметры которых (наличие и значения порогов) изменяют в соответствии с текущим режимом электрической сети и энергообъекта, при этом изменение параметров адаптивных формирователей обеспечивает наличие событий при пересечении порогов только в определенных режимах электрической сети и энергообъекта.

5. Способ по п.2, отличающийся тем, что при формировании событий со значениями измеряемых параметров при превышении измеряемыми параметрами заданных отклонений относительно предыдущего значения применяют адаптивные формирователи событий, параметры которых (наличие и значения отклонений) изменяют в соответствии с текущим режимом электрической сети и энергообъекта, при этом изменение параметров адаптивных формирователей обеспечивает различную разрешающую способность и наблюдаемость по амплитудным значениям усредненных по п.2 параметров электрической сети в различных режимах электрической сети и энергообъекта.

6. Способ по п.1, отличающийся тем, что при формировании осциллограмм с измеряемыми параметрами параметры осциллографирования (частота дискретизации, длительность записи осциллограммы, длительность записи предыстории, тип осциллограммы) изменяют в соответствии с текущим режимом электрической сети и энергообъекта, при этом изменение параметров осциллографирования обеспечивает различную разрешающую способность, включая отображение мгновенных отсчетов входных каналов тока и напряжения в различных режимах электрической сети и энергообъекта.

7. Устройство мониторинга состояния электрической сети и энергообъекта, реализующее способ, включающее блок входных датчиков, выход которого соединен с аналого-цифровым преобразователем, выход которого соединен с процессором обработки сигналов, выход которого соединен с блоком хранения событий и с блоком сохранения осциллограмм, выходы которых соединены с интерфейсами связи для передачи данных на верхний уровень управления, отличающееся тем, что выход аналого-цифрового преобразователя соединен в процессоре обработки сигналов со входом вычислителя среднеквадратических значений за ½ периода частоты сети, выход которого соединен со входами многопороговых компараторов, число которых соответствует числу входных сигналов, выходы многопороговых компараторов соединены со входами решающей схемы, которая определяет типовой текущий режим работы электрической сети в точке измерения, выход решающей схемы, содержащий решение о типовом текущем режиме работы электрической сети, соединен со входами управления адаптивных фильтров-вычислителей, адаптивных формирователей событий, адаптивного блока записи осциллограмм, выход аналого-цифрового преобразователя соединен в процессоре обработки сигналов со входами данных адаптивных фильтров-вычислителей, число которых соответствует числу измеряемых параметров, которыми производится вычисление значений параметров электрической сети, выходы адаптивных фильтров-вычислителей соединены через выход процессора обработки сигналов с интерфейсами связи, а также со входами данных адаптивных формирователей периодических событий, адаптивных формирователей событий по порогам, адаптивных формирователей событий по отклонениям, которые формируют, соответственно, периодические события, события при пересечении порогов и события при превышении отклонений, выходы адаптивных формирователей событий соединены со входом событий адаптивного блока записи осциллограмм и через выход процессора обработки сигналов со входом блока хранения событий, кроме этого выход аналого-цифрового преобразователя, с которого поступает цифровой код, соответствующий входным сигналам, соединен в процессоре обработки сигналов со входом данных адаптивного блока записи осциллограмм, который производит непрерывную запись осциллограмм и при поступлении на вход событий адаптивного блока записи осциллограмм события от адаптивных формирователей событий передает текущую осциллограмму на выход процессора обработки сигналов, соединенный далее со входом блока хранения осциллограмм.

8. Устройство мониторинга состояния электрической сети и энергообъекта по п.7, отличающееся тем, что параметры работы адаптивных фильтров-вычислителей изменяются в соответствии с определенным решающей схемой текущим режимом электрической сети и энергообъекта.

9. Устройство мониторинга состояния электрической сети и энергообъекта по п.7, отличающееся тем, что параметры работы адаптивного формирователя периодических событий, включая разрешение формирования событий через заданные периоды времени и период формирования событий, изменяются в соответствии с определенным решающей схемой текущим режимом электрической сети и энергообъекта.

10. Устройство мониторинга состояния электрической сети и энергообъекта по п.7, отличающееся тем, что параметры работы адаптивного формирователя событий по порогам, включая разрешение формирования событий при пересечении порогов, количество и значения порогов, изменяются в соответствии с определенным решающей схемой текущим режимом электрической сети и энергообъекта.

11. Устройство мониторинга состояния электрической сети и энергообъекта по п.7, отличающееся тем, что параметры работы адаптивного формирователя событий по отклонениям, включая разрешение формирования событий и значения отклонений, при превышении которых формируются события, изменяются в соответствии с определенным решающей схемой текущим режимом электрической сети и энергообъекта.

12. Устройство мониторинга состояния электрической сети и энергообъекта по п.7, отличающееся тем, что параметры работы адаптивного блока записи осциллограмм, включая признак записи мгновенных значений или среднеквадратических значений, частоту дискретизации и разрешающую способность, изменяются в соответствии с определенным решающей схемой текущим режимом электрической сети и энергообъекта.

13. Устройство по п.7, отличающееся тем, что блок хранения событий и блок хранения осциллограмм позволяют установить различные приоритеты (очередности) при передаче данных событий и осциллограмм на верхний уровень управления для каждого типа событий и осциллограмм в зависимости от степени важности данных событий и осциллограмм.



 

Похожие патенты:

Изобретение относится к области измерительной техники. Датчик постоянного тока с развязкой содержит измерительный шунт, первый вывод которого подключен к общей шине питания, а второй к нагрузке, операционный усилитель (ОУ), четырехобмоточный трансформатор, первая обмотка которого через первый диод подключена к входу первого фильтра, выход которого является выходом устройства, вторая обмотка трансформатора через второй диод подключена к входу второго фильтра, положительный вывод питания ОУ подключен к плюсовой шине питания, а отрицательный - к общей шине питания.

Изобретение относится к сенсорному устройству для монтирования на вал электрической машины с регистрирующим устройством для регистрации тока подшипника электрической машины.

Изобретение относится к информационно-измерительной технике и может быть использовано, например, для контроля напряжения гальванически развязанного аккумулятора.

Предлагаемое изобретение относится к измерительной технике, а именно к системам мониторинга режимов потребления электроэнергии. Способ основан на определении степени корреляции (статистической взаимосвязанности), разности амплитуд и разности фаз токов потребления на интервале времени анализа.

Изобретение относится к области измерения электрических величин, в частности для измерения активной составляющей тока в трехфазных сетях. Технический результат заявленного изобретения выражается в снижении материалоемкости за счет замены двух трансформаторов тока, обладающих высокой массой и стоимостью, двумя дифференцирующими индукционными преобразователями тока и упрощении конструкции и, как следствие, снижении трудоемкости изготовления за счет того, что устройство имеет два, а не четыре выходных зажима, к которым подводится пропорциональная активному току источника напряжения разность напряжений первого и второго мостовых выпрямителей.

Изобретение относится к измерительной технике, в частности к измерениям физических параметров, преобразуемых в электрическую форму, и может быть использовано в системах телеметрии.

Изобретение относится к электроизмерительной технике и предназначено для измерения переменных токов высокого уровня и определения момента перехода тока через нулевое значение в сильноточных цепях сетей промышленной частоты. В устройство для измерения тока, содержащее два коаксиально расположенных металлических цилиндра, соединенных на одном торце с помощью фланцев, а на другом торце имеющих каждый свой токоподвод, высокочастотный разъем, закрепленный на фланце одного из цилиндров, с коаксиально расположенным центральным электродом и по крайней мере одну токовую отпайку, расположенную в пространстве между внутренним и внешним цилиндрами и соединенную одним концом с внутренним цилиндром в начале его рабочей части, а другим - через отверстие в стенке внутреннего цилиндра и интегрирующую RC-цепочку с центральным электродом высокочастотного разъема, введен, по крайней мере, один дополнительный резистор, включенный между выводом центрального электрода высокочастотного разъема и корпусом внутреннего цилиндра последовательно с конденсатором RC-цепочки, а величины длин токовой отпайки и рабочей части внутреннего цилиндра выбраны в соответствии с соотношением: где l - длина отпайки; H - длина рабочей части внутреннего цилиндра. Токовая отпайка может быть выполнена в виде трубки с продольным разрезом охватывающей внутренний цилиндр. Конденсатор RC-цепочки и дополнительный резистор могут быть установлены в электронном усилительном блоке, соединенном с устройством с помощью высокочастотного кабеля. RC-цепочка и дополнительный резистор могут быть установлены в электронном усилительном блоке, соединенном с устройством с помощью высокочастотного кабеля. Результатом применения изобретения является повышение точности измерений за счет уменьшения неравномерности амплитудно-частотной характеристики устройства, а также уменьшения сдвига фазы между напряжением, наводимым на отпайке и током, протекающим по устройству.

Изобретение относится к измерительной технике, а именно к конструкциям измерительных шунтов, предназначенных для измерения токов, и может быть применено для измерения импульсных токов.

Изобретение относится к измерительной технике и может быть использовано в системах электрохимической защиты подземных металлических сооружений от коррозии, в частности для измерения поляризованного и суммарного потенциалов.

Изобретение относится к измерительной технике и может быть использовано в устройствах для измерения тока в различных системах космических аппаратов. Датчик постоянного тока с развязкой включает в себя измерительный шунт, операционный усилитель (ОУ), четырехобмоточный трансформатор, два резистивных делителя напряжения с равными коэффициентами деления; конденсатор, p-n-р-транзистор, RC-фильтр, блокинг-генератор, собранный с использованием третьей и четвертой обмотки трансформатора, диода, двух резисторов, конденсатора и второго транзистора, и другие элементы, показанные на фиг.

Изобретение относится к электроизмерительной технике, в частности, предназначено для применения в регулируемом электроприводе, системах защиты и автоматики электрических станций и подстанций, а также других сложных электротехнических комплексов. Изолированный датчик тока содержит чувствительный элемент и магнитопровод. При этом в качестве чувствительного элемента используют одноосевой интегральный датчик тока. Также в датчике используют магнитопровод пластинчатого типа, который устанавливают над токопроводящей шиной в пластиковом корпусе, крепящемся непосредственно к токопроводящей шине с помощью резьбового крепежного элемента. Технический результат - повышение оперативности и точности измерений. 1 ил.

Изобретение относится к электроэнергетике. Согласно способу получают информацию о рабочем состоянии электроэнергетического оборудования. В качестве информации, характеризующей рабочее состояние электроэнергетического оборудования, используют измеряемые токи потребления каждой фазой электроэнергетического оборудования. При этом выдачу управляющих команд на включение инкремента счетчика времени наработки производят только при условии соответствия потребляемых рабочих токов электроэнергетическим оборудованием паспортным их значениям для каждого конкретного режима его работы с отклонениями в рамках допустимых норм. Кроме того, показания инкрементируемого счетчика суммарного времени безотказной наработки сравнивают с его паспортным значением средней наработки на отказ электроэнергетического оборудования и при ее превышении сигнализируют о выработке электроэнергетическим оборудованием своего рабочего ресурса. Дополнительно измеряют температуру контролируемого оборудования и величины напряжений подаваемых на него. При этом передачу данных о суммарном времени наработки электроэнергетического оборудования, ввод данных о средней наработке на отказ и паспортных значений тока потребления электроэнергетическим оборудованием, а также предельно допустимых значений входных напряжений и температуры оборудования производят через радиомодем по GSM каналу, а в качестве дистанционного пульта управления используют сотовый телефон. При возникновении аварийной ситуации или по запросу, передав CMC сообщение по GSM каналу, вся контролируемая информация передается на дистанционный пульт управления и записывается в извлекаемую флеш память. Также заявлено устройство, реализующее указанный способ. Технический результат заключается в повышении объективности контроля состояния работоспособности электроэнергетического оборудования и эффективного использования его рабочего ресурса. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к информационно-измерительной технике и может быть использовано в контрольно-сигнальной аппаратуре для измерения вибрации. Измеритель вибрации содержит вибропреобразователь, параллельную RC-цепь, первый операционный усилитель, первый и второй резистивные делители. Для достижения технического результата введены второй операционный усилитель, первый, второй и третий конденсаторы, последовательная RC-цепь, резистор, первый, второй и третий диоды, схема встречно-параллельно включенных диодов, интегрирующая цепь, соединенные согласно схеме на фиг.1. Технический результат, на достижение которого направлено изобретение, заключается в расширении функциональных возможностей при минимизации числа последовательно соединенных каскадов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения токов в электроустановках. Способ измерения тока в проводнике с помощью герконов заключается в том, что два геркона с нормально разомкнутыми контактами устанавливают вблизи проводника. Настраивают их так, чтобы они замыкали контакты при токах срабатывания I С Р 1 и I С Р 2 и размыкали контакты при токах возврата I В 1 и I В 2 . Измеряют время t 1 между моментами размыкания контактов герконов после их срабатывания и определяют амплитуду измеряемого тока по формуле: I m 1 = I B 1 2 + I B 2 2 − 2 ⋅ I B 1 ⋅ I B 2 ⋅ cos ω t 1 / sin ω t 1 , где ω - угловая частота тока. Затем измеряют время замкнутого состояния t 2 контактов первого геркона и, если второй геркон не срабатывает, определяют амплитуду тока по формуле: I m 2 = I С Р 1 2 + I B 1 2 − 2 ⋅ I С Р 1 ⋅ I B 1 ⋅ cos ω t 2 / sin ω t 2 . Если срабатывают оба геркона, то измеряют время t 2 замкнутого состояния контактов первого геркона и время t 1 между моментами размыкания контактов герконов после их срабатывания, а амплитуду тока для этого случая определяют как среднее значение амплитуд тока I m 1 и I m 2 . Технический результат: повышение надежности. 2 ил.

Изобретение относится к измерительной технике и может быть использовано в различных системах космических аппаратов. Датчик содержит измерительный шунт, включенный последовательно с нагрузкой, операционный усилитель (ОУ), трансформатор, четыре перепаиваемых переключающих перемычки, интегратор, регулирующий транзистор p-n-p типа. Первый вывод шунта подключен ко второму выводу нагрузки. Второй вывод шунта подключен к переключающему контакту второй перемычки. Первый вывод нагрузки подключен к переключающему контакту первой перемычки. Нормально разомкнутые контакты первой и четвертой перемычки соединены с нормально замкнутым контактом второй перемычки и шиной плюс. База транзистора через резистор соединена с выходом ОУ и через другой резистор с эмиттером этого же транзистора, а эмиттер - подключен к плюсовому выводу питания ОУ и шине плюс. Минусовой вывод питания ОУ соединен с общей шиной. Коллектор транзистора подключен ко входу RC-фильтра, выход которого подключен к шинам питания введенного блокинг-генератора, собранного с использованием транзистора, двух резисторов, конденсатора, диода и двух обмоток трансформатора. Две другие обмотки с одинаковыми коэффициентами трансформации подключены к введенным умножителям напряжений. Выход первого умножителя подключен к выходу устройства. Положительный выход второго умножителя через резистор обратной связи подключен к неинвертирующему входу ОУ, а отрицательный - к инвертирующему входу ОУ. Первый делитель включен между шиной плюс и переключающим контактом третьей перемычки, а его выход соединен с инвертирующим входом ОУ. Второй делитель включен между переключающим контактом четвертой перемычки и общей шиной, а его выход соединен с неинвертирующим входом ОУ. Балансировочный резистор с отводами, который подключен к балансировочным выводам ОУ. Пятая перепаиваемая перемычка включена между шиной плюс и одним из выводов балансировочного резистора. Технический результат заключается в упрощении и повышении надежности устройства. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для определения неисправности датчика температуры, используемого в устройстве формирования изображения. Согласно заявленному способу обнаруживают фактическую температуру устройства фиксации и входное напряжение. Вычисляют величину изменения фактической температуры в заданный период времени. Сравнивают обнаруженное входное напряжение и заданное напряжение. Сравнивают вычисленную величину изменения фактической температуры и величину изменения первой опорной температуры, если входное напряжение больше, чем заданное напряжение. Определяют, что датчик температуры неисправен, если величина изменения фактической температуры меньше, чем величина изменения первой опорной температуры. Сравнивают вычисленную величину изменения фактической температуры и величину изменения второй опорной температуры, если входное напряжение меньше или равно заданному напряжению. Определяют, что датчик температуры неисправен, если величина изменения фактической температуры меньше, чем величина изменения второй опорной температуры. Технический результат - повышение точности определения неисправности датчика температуры. 3 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к метрологии, в частности к датчикам тока. Экранированный датчик тока содержит магнитопровод чувствительного элемента с обмотками, помещенный в магнитный экран, представляющий собой контейнер из сочлененных между собой стенки, основания и крышки с отверстиями, внутренней стенки. При этом конфигурация внутренней стенки соответствует контуру отверстий в основании и крышке, а основание, стенка, крышка и внутренняя стенка изготовлены в виде витых магнитопроводов из ленты с нанокристаллической структурой. Технический результат - повышение точности измерений в условиях повышенных электромагнитных помех. 2 ил.

Изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния электрооборудования переменного тока. Сущность предлагаемого способа и устройства автоматизированного контроля технического состояния электрооборудования состоит в представлении диагностического пространства, содержащего информационные признаки отказов электрооборудования в виде векторов цифровой последовательности, из которых формируют матрицу технического состояния. Идентификация технического состояния и места отказа в электрооборудовании осуществляется на основании анализа изменений в цифровых последовательностях сформированных матриц технического состояния. При этом предлагается контроль технического состояния электрооборудования осуществлять в два этапа: на первом этапе (анализа) формируют библиотеку эталонных описаний возможных технических состояний электрооборудования (информационных признаков отказов), и запоминают их в виде эталонных матриц технического состояния, а измеренный с датчика напряженности магнитного поля сигнал и преобразованный в матрицу технического состояния также запоминают; на втором этапе (идентификации) поэлементно сравнивают полученную матрицу технического состояния с эталонными матрицами технического состояния, идентифицируют техническое состояние электрооборудования по наибольшему числу совпадений элементов сравниваемых матриц. Технический результат заключается в повышении быстродействия и достоверности идентификации технического состояния электрооборудования. 2 н. и 6 з.п. ф-лы, 9 ил.

Изобретение относится к метрологии и может быть использовано для контроля качества энергии. Устройство содержит трансформатор напряжения, согласователи уровня сигнала по фазам А, В и С, АЦП фаз А, В и С; регистры временного хранения, регистр хранения эталонных значений, схемы сравнения результата измерения с эталонным значением, задатчик интервалов выборки, формирователь опорного напряжения для аналого-цифровых преобразователей. Устройство также содержит канал измерения частоты, состоящий из согласователя уровня, задатчика интервалов выборки, формирователя опорного напряжения, компаратора уровня, таймер-счетчика, схемы сравнения с эталоном. Канал измерения напряжения аккумуляторной батареи состоит из компараторов уровня по нижней и верхней границе напряжения, формирователей опорного напряжения, схемы обнаружения неисправности. Также в устройстве имеется канал часов реального времени. Управляет устройством блок управления, управляющий контроллером записи в память. Данные поступают либо в электрически перепрограммируемое энергонезависимое запоминающее устройство, либо на контроллер интерфейса USB и интерфейса RS-232. Блок индикации выполнен в виде панели единичных индикаторов. Технический результат - расширение функциональных возможностей устройства. 3 з.п. ф-лы, 1 ил.

Изобретение представляет схему для обнаружения напряжения. Схема содержит усилитель, который имеет инвертирующий и неинвертирующий входы и выполнен с возможностью усиления разности напряжений первого входного сигнала и второго входного сигнала. Первый входной сигал подается на неинвертирующий вход через первый входной участок, второй входной сигнал подается на инвертирующий вход через второй входной участок. Схема содержит также первую сигнальную линию, соединяющую первый входной участок с усилителем; вторую сигнальную линию, соединяющую второй входной участок с усилителем; первый конденсатор, один из концов которого соединен с первой сигнальной линией; второй конденсатор, один из концов которого соединен со второй сигнальной линией; первый фильтрующий элемент, имеющий индуктивный элемент и резистивный элемент и включенный между первым конденсатором и усилителем последовательно с первой сигнальной линией; и второй фильтрующий элемент, имеющий индуктивный элемент и резистивный элемент и включенный между вторым конденсатором и усилителем последовательно со второй сигнальной линией. Технический результат заключается в предотвращении снижения точности измерения напряжения на выходе усилителя. 3 з.п. ф-лы, 2 ил.
Наверх