Способ тепловых испытаний керамических обтекателей ракет

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом. Нагреву до заданной температуры подвергается металлический шпангоут изнутри обтекателя с одновременным контролем температуры шпангоута. Технический результат - повышение достоверности результатов испытаний. 1 ил.

 

Изобретение относится к технике наземных испытаний элементов летательных аппаратов, а именно к воспроизведению тепловых режимов керамического обтекателя.

Известно, что слабым местом керамического обтекателя является узел клеевого соединения металлического шпангоута с керамической оболочкой (металлический шпангоут располагается внутри керамической оболочки). Разрушение керамической оболочки при тепловых испытаниях в большинстве случаев происходит вследствие силового взаимодействия оболочки и металлического шпангоута, обусловленного разностью температурных коэффициентов линейного расширения (ТКЛР) металла и керамики.

Наиболее широкое распространение в практике наземных тепловых испытаний получили способы, реализующие радиационный нагрев. В этих способах внешний радиационный нагрев конструкций осуществляется с помощью нагревателей, разделенных на несколько зон нагрева, а контроль температуры в этих зонах - с помощью измерительных преобразователей [Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.]. Однако радиационный нагрев имеет ряд недостатков:

- большие энергозатраты вследствие потерь тепла излучением и конвекцией в окружающую среду;

- большая погрешность воспроизведения температурного поля между зонами нагрева;

- ограничение применения методов и средств исследования напряженно-деформированного состояния (НДС) керамической оболочки в зоне узла соединения с металлическим шпангоутом вследствие расположения нагревателей с внешней стороны обтекателя.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов [Патент РФ №2456568, МПК G01M 9/04, G01N 25/72, опубл. 20.07.2011]. В этом способе нагрев обтекателя осуществляется контактным методом посредством контакта нагревателя с внешней поверхностью обтекателя, что практически исключает потерю тепла в окружающую среду. Но данный способ также не позволяет применить методы и средства исследования НДС оболочки в зоне узла соединения вследствие расположения нагревателей на внешней стороне керамической оболочки.

Технический результат заявляемого изобретения заключается в расширении возможностей применения методов и средств исследования НДС керамических обтекателей ракет в зоне узла соединения керамической оболочки и металлического шпангоута и уменьшении энергозатрат при проведении тепловых испытаний.

Указанный технический результат достигается тем, что в способе тепловых испытаний керамических обтекателей ракет, включающем нагрев и контроль температуры, в обтекателе, состоящем из керамической оболочки и внутреннего металлического шпангоута, нагреву подвергается шпангоут в зоне узла соединения с оболочкой, причем нагрев осуществляется изнутри обтекателя с одновременным контролем температуры шпангоута, а заданная температура шпангоута определяется по формуле:

T м ш = T м о α к α м ( T к о T к ш ) ,

где αм - температурный коэффициент линейного расширения материала металлического шпангоута; αк - температурный коэффициент линейного расширения керамики; TМШ - температура металлического шпангоута в зоне узла соединения при нагреве изнутри; TКШ - температура керамической оболочки в зоне узла соединения при нагреве изнутри; TМО - температура металлического шпангоута в зоне узла соединения для случая нагрева снаружи; TКО - температура керамической оболочки в зоне узла соединения для случая нагрева снаружи.

Для определения тепловой прочности конструкции обтекателя нет необходимости задавать граничные температурные условия на внешней поверхности обтекателя (нагрев снаружи для воспроизведения аэродинамического нагрева). Силовое взаимодействие между керамической оболочкой и металлическим шпангоутом может быть воспроизведено за счет нагрева узла соединения со стороны металлического шпангоута (изнутри).

В первом приближении окружные напряжения оболочки, возникающие под действием теплового расширения металлического шпангоута, можно выразить формулой:

σ к = K [ α м ( Т м Т м 0 ) α к ( Т к Т к 0 ) ] , ( 1 )

где K - коэффициент пропорциональности, зависящий от механических и геометрических характеристик узла соединения; αм - температурный коэффициент линейного расширения материала металлического шпангоута; ТМ - текущая температура шпангоута; ТМ0 - начальная температура шпангоута; αК - температурный коэффициент линейного расширения керамики; ТК - текущая температура керамической оболочки; ТК0 - начальная температура керамической оболочки. Для случая нестационарного нагрева в качестве температуры шпангоута или керамики необходимо принимать среднеинтегральные температуры по стенке.

Используя формулу (1), приравняем (при условии равенства окружных напряжений в оболочке) тепловое нагружение со стороны шпангоута к тепловому нагружению со стороны оболочки. В результате получим:

α м Т м о α к Т к о = α м Т м ш α к Т к ш , ( 2 )

где индексы о и ш относятся соответственно к температуре при нагреве снаружи, моделирующем аэродинамический нагрев, и изнутри обтекателя.

Используя выражение (2), определяем необходимую температуру шпангоута, при которой обеспечивается равенство силового воздействия на керамическую оболочку:

T м ш = T м о α к α м ( T к о T к ш ) ( 3 )

Эта формула показывает принципиальную возможность воспроизведения силового воздействия на керамическую оболочку при нагреве со стороны внутренней полости обтекателя, идентичного нагреву снаружи.

Как видно из формулы (3), при нагреве изнутри необходимая температура шпангоута будет ниже, чем при нагреве снаружи. Кроме этого для создания необходимых окружных напряжений в оболочке отсутствует необходимость нагрева оболочки до высоких температур, как происходит при воспроизведении аэродинамического нагрева. Таким образом, для нагрева изнутри металлического шпангоута керамического обтекателя достаточно гораздо меньшей мощности.

Для расчета температуры TМШ по формуле (3) необходимо знать значения TМО, TКО, TКШ. Температуры ТМО, ТКО определяются расчетным путем на основе исходных параметров теплообмена при аэродинамическом нагреве. Значение TКШ оценивается расчетным путем и, затем, корректируется по результатам экспериментов при нагреве обтекателя изнутри.

Нагрев обтекателя посредством нагрева шпангоута изнутри предоставляет возможности для применения различных методов и средств исследования НДС (тензорезистивных, оптических, интерферометрических и пр.).

Для нагрева шпангоута могут быть использованы инфракрасные, контактные или индукционные методы нагрева.

Способ реализован следующим образом (см. чертеж). Нагреву подвергается обтекатель, состоящий из керамической оболочки 1 и металлического шпангоута 2. Нагрев обтекателя осуществляется посредством нагрева изнутри металлического шпангоута инфракрасным нагревателем 3. Температура нагрева контролируется термопарой 4. Нагрев изнутри позволяет контролировать радиальное перемещение оболочки, характеризующее ее напряженно-деформированное состояние, датчиками перемещения 5.

Предлагаемый способ расширяет возможности для исследования прочности конструкции при комбинированном воздействии тепловых факторов с другими: механическими, вибродинамическими и ударными.

Способ тепловых испытаний керамических обтекателей ракет, включающий нагрев и контроль температуры, отличающийся тем, что в обтекателе, состоящем из керамической оболочки и внутреннего металлического шпангоута, нагреву подвергается металлический шпангоут в зоне узла соединения оболочки со шпангоутом, причем нагрев осуществляется изнутри обтекателя с одновременным контролем температуры шпангоута, а заданная температура шпангоута определяется по формуле:
T м ш = T м о α к α м ( T к о T к ш ) ,
где αм - температурный коэффициент линейного расширения материала металлического шпангоута; αк - температурный коэффициент линейного расширения керамики; TМШ - температура металлического шпангоута в зоне узла соединения при нагреве изнутри; TКШ - температура керамической оболочки в зоне узла соединения при нагреве изнутри; TМО - температура металлического шпангоута в зоне узла соединения для случая нагрева снаружи; TКО - температура керамической оболочки в зоне узла соединения для случая нагрева снаружи.



 

Похожие патенты:

Заявленное изобретение относится к космической технике и может быть использовано для контроля теплообмена космического аппарата. Указанное устройство выполнено из сборок, в каждой из которых чувствительный элемент размещен на электроизолирующей подложке.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов.

Изобретение относится к области измерительной техники, в частности к тепловому неразрушающему контролю объектов, и может быть использовано для определения теплового сопротивления и теплопроводности строительных конструкций.
Изобретение относится к пищевой и мукомольно-элеваторной промышленности и используется для оценки степени повреждения швов наружного силоса элеватора из сборного железобетона.

Изобретение относится к способам теплового контроля герметичности и может быть использовано для контроля герметичности крупногабаритных сосудов, например котлов железнодорожных цистерн.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области неразрушающего контроля и может быть использовано при диагностике неразъемных соединений, в частности для контроля качества паяных соединений камер сгорания и сопел жидкостных ракетных двигателей.

Изобретение относится к области измерительной техники и может быть использовано для технической диагностики неоднородных конструкций. Устройство для определения сопротивления теплопередачи многослойной конструкции включает датчики температуры и теплового потока и тепловизионное устройство.

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля скрытых дефектов. Согласно заявленному способу активного одностороннего теплового контроля скрытых дефектов в твердых телах нагревают одну из поверхностей объекта контроля в течение фиксированного времени оптическим излучением источника нагрева и регистрируют нестационарное температурное поле этой поверхности в виде последовательности термограмм.

Изобретение относится к области измерительной техники и может быть использовано для оценки надежностей конструкций из полимерных композиционных материалов. Способ включает силовое воздействие на поверхность конструкции и регистрацию обусловленных им изменений.
Изобретение относится к области стендовых тепловых испытаний и может быть использовано для диагностики характеристик термопрочности и термостойкости эксплуатируемых металлов.

Изобретение относится к области авиации, в частности к технике экспериментов в аэродинамических трубах кратковременного (импульсного) действия с продолжительностью пуска порядка 40 миллисекунд, работающих при высоких давлениях и температурах газа.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на обтекатель ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство состоит из силового механизма, изменяющего его контур по заданной программе, и командного устройства, управляющего этой программой.

Изобретение касается систем управления в экспериментальной аэродинамике, в частности к аэродинамическим трубам с регулируемыми соплами. Устройство содержит контроллер управления приводами ведомых рядов гибких стенок сопла, приводы управления гибкими стенками сопла, цифровые датчики обратной связи, а также командное устройство, цифровой блок вычисления заданного положения ведомых рядов в функции измеренного положения ведущего ряда, а также цифровой датчик положения ведущего ряда и переключатель режима работы.

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам с регулируемыми соплами. Способ заключается в том, что управление гибкими стенками сопла осуществляют автоматическими приводными механизмами по заданной программе.

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на головную часть (обтекатель) ракеты в наземных условиях и может быть использовано при наземных испытаниях элементов летательных аппаратов.

Изобретение относится к области машиностроения и может быть использовано в авиационной промышленности при проведении наземных испытаний объектов авиационной техники, подвергающихся обледенению в естественных условиях эксплуатации.

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах. .

Изобретение относится к области машиностроения и авиационно-космической отрасли промышленности и может быть использовано при проведении испытаний конструкции летательных аппаратов и их узлов (головных обтекателей) из неметаллических материалов на тепловые, а также комплексные термовибрационные и термовакуумные воздействия. Заявленный способ теплового нагружения конструкций летательных аппаратов из неметаллических материалов включает зонный нагрев изделия и измерение температуры. Зонный нагрев изделия осуществляется бесконтактной передачей энергии переменным магнитным полем средней частоты, генерируемым индуктором, в промежуточный нагревательный элемент, выполненный из ферромагнитного материала, расположенный на поверхности изделия. Технический результат - повышение точности выполнения программ испытаний летательных аппаратов. 1 ил.
Наверх