Устройство контроля аккумуляторной батареи

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей. Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею, преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, причем величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи J - величина тока, вырабатываемого источником тока. Технический результат заключается в расширении функциональных возможностей устройства путем контроля изоляции шин питания аккумулятора на корпус, измерения выходного напряжения аккумулятора и полной гальванической развязкой индикаторов от шин питания и корпуса аккумулятора. 2 з.п. ф-лы, 1 ил.

 

Изобретение относится к измерительной технике и, в частности, к контролю выходного напряжения и сопротивления изоляции аккумуляторных батарей.

Известно устройство контроля изоляции сети постоянного тока, содержащее мост, два плеча которого образованы постоянными резисторами, третье - сопротивлением изоляции сети постоянного тока между «плюсом» источника питания и «землей», четвертое - сопротивлением изоляции сети постоянного тока между «минусом» источника питания и «землей». В диагональ моста включен вольтметр, одна из клемм которого подключена к «земле». Питание моста выполняется от источника питания сети постоянного тока (см. Справочник по наладке вторичных цепей электростанций и подстанций. Под редакцией Э.С. Мусаэляна. - М.: Энергия, 2-е издание, переработанное и дополненное., 1979 г., стр.86, 87).

Недостатками известного устройства является то, что вольтметр (индикатор) имеет гальваническую связь с контролируемой сетью постоянного тока и «землей», что ограничивает область его применения. Кроме того, данное устройство не контролирует выходное напряжение сети постоянного тока.

Наиболее близким по технической сущности к заявляемому техническому решению является преобразователь напряжения постоянного тока с гальванической развязкой выходного напряжения от первичной цепи питания (см. Справочник по радиоэлектронике, т.2, под редакцией Куликовского А.А., - М.: Энергия, 1968 г., стр.387). Преобразователь постоянного напряжения построен по схеме симметричного автогенератора с трансформаторной обратной связью, выходная обмотка автогенератора подключена к выпрямителю, выход которого соединен с индикатором. При изменении напряжения первичного источника питания происходит пропорциональное изменение напряжения на выходе преобразователя, то есть данное устройство можно использовать как измеритель постоянного напряжения источника питания (аккумуляторной батареи) с гальванической развязкой от шин питания и корпуса источника питания (аккумуляторной батареи).

Недостатком данного устройства является отсутствие контроля сопротивления изоляции между шинами питания и корпусом аккумуляторной батареи, что ограничивает его область применения.

Задача, решаемая предлагаемым техническим решением, заключается в расширении функциональных возможностей устройства путем контроля изоляции шин питания аккумулятора относительно корпуса, измерения выходного напряжения аккумулятора и обеспечения гальванической развязки цепей индикации от шин питания и корпуса аккумулятора.

Ожидаемый технический эффект достигается тем, что в устройство контроля аккумуляторной батареи, содержащее аккумуляторную батарею, подключенный к ней преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, выходная обмотка преобразователя подключена к выпрямителю, выход которого соединен с первым выводом индикатора, введены источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, первый резистор включен между плюсовым выводом аккумуляторной батареи и анодом светодиода первого оптрона, катод светодиода первого оптрона подключен к корпусной шине аккумуляторной батареи и к первому выводу источника тока, второй вывод источника тока соединен с минусовым выводом аккумуляторной батареи, выпрямитель выполнен двухполярным, средний вывод выходной обмотки соединен с общей шиной, плюсовой вывод выпрямителя подключен к коллектору транзистора второго оптрона и к плюсовой шине питания операционною усилителя, минусовой вывод выпрямителя подключен к эмиттеру транзистора первого оптрона и к минусовой шине питания операционного усилителя, общая шина соединена с неинвертирующим входом операционного усилителя, со вторым выводом индикатора, с первым выводом дополнительного индикатора и с первым выводом второго резистора, выход операционного усилителя подключен к аноду светодиода второго оптрона, катод светодиода второго оптрона подключен ко второму выводу второго резистора и ко второму выводу дополнительного индикатора, эмиттер транзистора второго оптрона соединен с коллектором транзистора первого оптрона и инвертирующим входом операционного усилителя, величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи, J - величина тока, вырабатываемого источником тока, источник тока выполнен на полевом транзисторе с p-n переходом и дополнительном резисторе, включенном между истоком и затвором полевого транзистора, сток полевого транзистора подключен к первому выводу источника тока, а затвор транзистора подключен ко второму выводу источника тока.

На чертеже приведена функциональная схема устройства контроля аккумуляторной батареи.

Устройство контроля аккумуляторной батареи содержит аккумуляторную батарею 1, подключенный к ней преобразователь постоянного напряжения 2, выполненный по схеме автогенератора с трансформаторной обратной связью, выходная обмотка 3 преобразователя 2 подключена к выпрямителю 4, выход которого соединен с индикатором 5. В него введены: источник тока 6, сдвоенный транзисторный оптрон 7, операционный усилитель 8, два резистора 9, 10 и дополнительный индикатор 11. Источник тока 6 выполнен на полевом транзисторе с p-n переходом 12 и дополнительном резисторе 13, включенном между истоком и затвором полевого транзистора 12, сток полевого транзистора 12 подключен к корпусной шине аккумулятора, а затвор транзистора 12 подключен к минусовому выводу аккумуляторной батареи 1. Величина сопротивления резистора 9 установлена равной E/2J, где Е - номинальное напряжение аккумуляторной батареи 1, J - величина тока, вырабатываемого источником тока 6.

Устройство работает следующим образом.

При подаче питания на устройство от аккумуляторной батареи 1 автогенератор 2 вырабатывает симметричные импульсы напряжения, амплитуда которых равна Е -величине ЭДС аккумуляторной батареи 1. Эти импульсы напряжения наводят в выходной обмотке 3 автогенератора 2 импульсы напряжения, пропорциональные коэффициенту трансформации обмоток и величине ЭДС аккумуляторной батареи 1. После выпрямления двухполярным выпрямителем 4 постоянное напряжение U5 поступает на индикатор 5, показания которого пропорциональны Е. Так как выходная обмотка 3 автогенератора 2 изолирована от аккумуляторной батареи 1, то и индикатор 5 изолирован от нее. Кроме того, от двухполярного выпрямителя 4 запитаны сдвоенный транзисторный оптрон 7 и операционный усилитель 8, что обеспечивает изоляцию индикатора 11 от аккумуляторной батареи 1.

В исходном режиме по цепи: резистор 9 - светодиод первого оптрона 7.1 источник тока 6 течет ток, задаваемый источником тока 6. Чтобы не разряжать аккумуляторную батарею 1, величина этого тока установлена в пределах 0,01…0,1 мА. Светодиод оптрона 7.1 излучает световой поток, пропорциональный току источника тока

6. Этот световой поток открывает фототранзистор оптрона 7.1, за счет чего на входе операционного усилителя 8 появляется разностное напряжение. Так как операционный усилитель 8 охвачен отрицательной обратной связью через второй оптрон 7.2, то на выходе операционного усилителя 8 вырабатывается напряжение, пропорциональное току источника тока 6 и величине сопротивления резистора 10. Это напряжение регистрируется индикатором 11. Так как индикатор 11 должен фиксировать три состояния аккумуляторной батареи, а именно: 1 - короткое замыкание плюсовой шины на корпус, 2 - короткое замыкание минусовой шины на корпус и 3 - отсутствие короткого замыкания шин на корпус, то в исходном состоянии величина сопротивления резистора 10 устанавливается такой, чтобы показания индикатора 11 были равны половине его шкалы.

При изменении ЭДС аккумуляторной батареи 1 (например, при уменьшении за счет разрядки с течением времени) амплитуда импульсов, вырабатываемых автогенератором 2, пропорционально уменьшается, а следовательно, уменьшается и напряжение на выходе выпрямителя 4, что будет зарегистрировано индикатором 5. При этом величина тока, вырабатываемого источником тока 6, не изменяется, поэтому напряжение на выходе операционного усилителя 8 и показания индикатора 11 будут постоянными.

При коротком замыкании плюсового вывода аккумуляторной батареи 1 на ее корпусную шину светодиод первого оптрона 7.1 будет зашунтирован, ток через него прекратится и фототранзисторы оптронов 7.1 и 7.2 закроются, ток на выходе операционного усилителя 8 станет равным нулю и напряжение на токоприемном резисторе 10, а следовательно, и на выходе индикатора 12 станет равным нулю. Очевидно, что при снижении сопротивления изоляции между плюсовым выводом аккумулятора 1 и корпусной шиной, например, до уровня, при котором его величина равна 0,01…0,1 сопротивления резистора 9, приведет к пропорциональному уменьшению тока через светодиод первого оптрона 7.1 в 100…10 раз. Это приведет к снижению напряжения на токоприемном резисторе 10 и на выходе индикатора 11 до уровня показаний 0,01…0,1 от полной шкалы индикатора 11, то есть ток утечки плюсовой шины аккумулятора 1 на корпус будет зарегистрирован.

При коротком замыкании минусового вывода аккумулятора 1 на его корпусную шину происходит шунтирование источника тока 6. При этом ток светодиода первого оптрона 7.1 увеличивается в два раза, так как он будет равен E/R9. Увеличение тока светодиода первого оптрона 7.1 в два раза приведет к увеличению тока светодиода второго оптрона 7.2 также в два раза, а следовательно, и к увеличению вдвое падения напряжения на токоприемном резисторе 10 и на выходе индикатора 11. То есть показания индикатора 11 будут соответствовать 100% его шкалы. Очевидно, что при снижении сопротивления изоляции между минусовым выводом аккумулятора 1 и корпусной шиной, например, до уровня, при котором его величина равна 0.01...0.1 величины сопротивления резистора 9, приведет к пропорциональному увеличению тока через светодиод первого оптрона 7.1, что приведет к 99...90% показаниям от полной шкалы индикатора 11. Таким образом, данный ток утечки минусовой шины аккумулятора на корпус будет зарегистрирован.

При использовании заявляемого устройства величина сопротивления резистора 9, равная E/2J, при напряжении аккумуляторной батареи 30 В устанавливалась в пределах 150 кОм…1,5 МОм. Поэтому уверенно обнаруживаемая величина сопротивления изоляции между плюсовым (минусовым) выводом аккумулятора 1 и его корпусной шиной была равна 0…30 кОм.

В настоящее время в разных изделиях применяются современные литий-ионные аккумуляторные батареи. Рабочее напряжение в течение цикла заряд-разряд литий-ионного элемента изменяется от 4,2 до 2,7 В. Для батареи, состоящей из 8-и последовательно соединенных элементов, рабочее напряжение будет изменяться от 33,6 до 21,6 В. Это изменение будет регистрироваться индикатором 5 с погрешностью 1…2%. При этом показания индикатора 11 при отсутствии короткого замыкания плюсового и минусового выводов аккумуляторной батареи 1 на ее корпусную шину будут составлять 50% шкалы индикатора 11 с погрешностью 3…5% (при использовании в качестве источника тока 6 полевого с p-n переходом транзистора 12 и резистора 13).

Введение и соответствующее подключение новых элементов в устройство контроля обеспечивает расширение его функциональных возможностей и гальваническую развязку индикаторов 5 и 11 от аккумулятора 1. Наличие гальванической развязки между аккумулятором 1 и индикаторами 5 и 11 позволяет повысить помехозащищенность устройства и выполнить требования по искробезопасности устройства в соответствии с ГОСТ 22782.5-78.

1. Устройство контроля аккумуляторной батареи, содержащее аккумуляторную батарею, подключенный к ней преобразователь постоянного напряжения, выполненный по схеме автогенератора с трансформаторной обратной связью, выходная обмотка преобразователя подключена к выпрямителю, выход которого соединен с первым выводом индикатора, отличающееся тем, что в него введены источник тока, сдвоенный транзисторный оптрон, операционный усилитель, два резистора и дополнительный индикатор, первый резистор включен между плюсовым выводом аккумуляторной батареи и анодом светодиода первого оптрона, катод светодиода первого оптрона подключен к корпусной шине аккумуляторной батареи и к первому выводу источника тока, второй вывод источника тока соединен с минусовым выводом аккумуляторной батареи, выпрямитель выполнен двухполярным, средний вывод выходной обмотки соединен с общей шиной, плюсовой вывод выпрямителя подключен к коллектору транзистора второго оптрона и к плюсовой шине питания операционного усилителя, минусовой вывод выпрямителя подключен к эмиттеру транзистора первого оптрона и к минусовой шине питания операционного усилителя, общая шина соединена с неинвертирующим входом операционного усилителя, со вторым выводом индикатора, с первым выводом дополнительного индикатора и с первым выводом второго резистора, выход операционного усилителя подключен к аноду светодиода второго оптрона, катод светодиода второго оптрона подключен ко второму выводу второго резистора и ко второму выводу дополнительного индикатора, эмиттер транзистора второго оптрона соединен с коллектором транзистора первого оптрона и инвертирующим входом операционного усилителя.

2. Устройство по п.1, отличающееся тем, что величина сопротивления R первого резистора установлена равной R=E/2J, где E - номинальное напряжение аккумуляторной батареи, J - величина тока, вырабатываемого источником тока.

3. Устройство по п.1, отличающееся тем, что источник тока выполнен на полевом транзисторе с p-n переходом и дополнительном резисторе, включенном между истоком и затвором полевого транзистора, сток полевого транзистора подключен к первому выводу источника тока, а затвор транзистора подключен ко второму выводу источника тока.



 

Похожие патенты:

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов.

Способ определения первичных параметров однородного участка трехпроводной линии электропередачи относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Способ определения первичных и обобщенных вторичных параметров однородного участка трехпроводной линии электропередачи методом восьмиполюсника относится к области контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании многополюсников.

Способ относится к области функционального контроля и диагностики трехфазных линий электропередачи трехпроводного исполнения на основании теории многополюсников.

Изобретение относится к измерительной технике. Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы усилителей подключены к LC-контурам измерительного и опорного плеч преобразователя.

Изобретение относится к области систем обработки информации и может быть использовано при функциональном контроле и диагностировании трехфазных линий электропередачи (ЛЭП) трехпроводного исполнения на основе ее Г-образной схемы замещения полнофазного исполнения.

Изобретение относится к электронной технике и может быть использовано для высокоэффективного контроля объектов, в качестве информативного параметра которых используют электрический импеданс. Способ включает определение глубины пропитки объекта расположением измерительных электродов в виде овальной формы с числом 2n на участке объекта, измерение импедансов между всеми ближайшими соседними измерительными электродами в первой серии, импедансов между всеми измерительными электродами во второй серии с отличием на единицу, сравнение результатов, по которым судят о глубине пропитки.

Изобретение относится к измерительной технике. Способ заключается в возбуждении кратковременным электрическим импульсом в LC-контурах измерительного и опорного плеч датчика колебательных сигналов и аналого-цифровом преобразовании их в числовые массивы данных, временной инверсии путем переиндексации элементов массивов, осуществлении Фурье-преобразования полученных в результате инверсии сигналов и определении действительных Re U(f) и мнимых Im U(f) трансформантов сигналов на частоте, наиболее близкой к частоте основной гармоники, что позволяет вычислить начальные фазы колебаний сигналов для измерительного и опорного плеч датчика, разность которых однозначно связана с изменением параметров датчика.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения и контроля неэлектрических величин резистивными датчиками.

Изобретение относится к технике электрических измерений и предназначено для профилактических испытаний изоляции крупных электрических машин и аппаратов, имеющих большую постоянную времени.

Изобретение относится к электроизмерительной технике, в частности к измерениям внутреннего сопротивления аккумуляторной батареи. Устройство измерения внутреннего сопротивления для пакетированной батареи включает в себя компонент источника питания переменного тока для подачи переменного тока на батарею, состоящую из множества пакетированных элементов генерирования энергии, посредством подключения к объекту измерения. Компонент регулирования переменного тока для регулирования переменного тока таким образом, чтобы разность потенциалов переменного тока положительного электрода, которая представляет собой разность потенциалов, полученную посредством вычитания потенциала на среднем участке из потенциала на участке, подключенном к нагрузочному устройству на положительной стороне объекта измерения, совпадала с разностью потенциалов переменного тока отрицательного электрода, которая представляет собой разность потенциалов, полученную посредством вычитания потенциала на среднем участке из потенциала на участке, подключенном к нагрузочному устройству на отрицательной стороне объекта измерения. Компонент вычисления сопротивления для вычисления сопротивления батареи на основе регулируемого переменного тока и разности потенциалов переменного тока. Технический результат заключается в возможности измерения внутреннего сопротивления батареи без нагрузки. 5 н. и 11 з.п. ф-лы, 21 ил.

Изобретение относится к метрологии. Измеритель содержит генератор, мост, нуль-детектор. Генератор содержит формирователи импульсов, синхронизатор, коммутатор, усилитель мощности. Первая ветвь моста содержит объект измерения и одиночный резистор, общий вывод которых образует первый выход моста. Вторая ветвь моста ветвь моста содержит одиночный резистор и многоэлементный уравновешивающий двухполюсник. В измеритель введен дополнительный конденсатор и изменено включение элементов мостовой цепи. Во второй ветви мостовой цепи дополнительный конденсатор включен параллельно имеющейся индуктивной катушке, параллельно этой же индуктивной катушке включен имеющийся третий резистор, свободный вывод первого резистора подключен к первому выходу генератора импульсов, общий вывод первого резистора и индуктивной катушки образует второй вывод выхода мостовой цепи, который соединяется со вторым выводом первого (дифференциального) входа нуль-индикатора, в двухполюснике объекта измерения первой ветви мостовой цепи свободный вывод второго резистора соединен с общим выводом имеющейся индуктивной катушки и первого резистора. Технический результат - повышение точности. 1 ил.

Изобретение относится к области энергетики, а именно к измерению параметров обмоток трансформаторов. Сущность заявляемого изобретения состоит в том, что измерение параметров трехфазных двухобмоточных трансформаторов при коротком замыкании производится вначале при схеме соединения первичной обмотки в треугольник, а затем - в звезду. Далее по измеренным значениям мощности трех фаз, средних линейных значениях напряжения и тока короткого замыкания определяют по формулам полное сопротивление короткого замыкания, а также значения активного и реактивного сопротивления к.з., кроме того фазные значения сопротивления первичной обмотки трансформаторов определяют также по формулам. Техническим результатом заявляемого изобретения является повышение надежности работы трансформаторов путем получения информации о их состоянии. 2 ил.

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле R д и ф | I и = U m / M I и . Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.

Изобретение относится к контрольно-измерительной технике, автоматике, управлению и промышленной электронике. Измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехполюсник с двухполюсником объекта измерения и двухполюсником с уравновешивающими элементами, неинвертирующий повторитель напряжения, инвертирующей первый усилитель с коэффициентом усиления, равным двум, первый двухвходовой аналоговый сумматор, на один из входов которого подается сигнал с выхода генератора импульсов, а на другой вход - с выхода первого инвертирующего усилителя, с выхода сумматора сигнал усиливается вторым усилителем и подается на входы двух схем выборки и хранения, сигналы с выхода каждой из двух схем выборки и хранения поступают соответственно на два входа второго двухвходового аналогового сумматора, сигнал со второго сумматора усиливается третьим усилителем и через разделительный конденсатор подается на нуль-индикатор. Также имеется блок управления, с которого поступают сигналы синхронизации на генератор импульсов и нуль-индикатор, а также сигналы управления на обе схемы выборки и хранения. В двухполюснике с уравновешивающими элементами имеются два ключа и два управляемых ключа, на управляющие входы которых через переключатель подаются управляющие сигналы с блока управления. Новым в измерителе параметров двухполюсников является введение трех дополнительных резисторов, трех дополнительных конденсаторов, двух управляемых ключей, двух ключей, одного переключателя, двух усилителей, двух схем выборки и хранения, одного двухвходового аналогового сумматора, блока управления и изменение включения блоков схемы. Технический результат заключается в повышении точности измерения за счет уменьшения составляющей погрешности измерения от неточного уравновешивания нулевой измерительной цепи. 1 ил.

Изобретение относится к технике измерений относительной электрической проводимости и солености жидкостей (например, морской воды) и может быть использовано в метрологии в качестве образцовых средств, а также для измерения активных проводимостей и сопротивлений. Технический результат - повышение точности измерения и расширение функциональных возможностей. Дополнительный технический результат - возможность прецизионного измерения активных проводимостей и сопротивлений. Сущность: кондуктометр содержит генератор (1) переменного напряжения, выход которого подключен к опорному входу преобразователя (2) код-напряжение и к трансформаторному дифференциальному кондуктометрическому преобразователю (3). Трансформаторный преобразователь (3) содержит первый (4), второй (5) и третий (6) трансформаторы, первый элемент связи (8), охватывающий сердечники первого (4) и третьего (6) трансформаторов, и второй элемент связи (11), охватывающий сердечники второго (5) и третьего (6) трансформаторов. Он также содержит первую проводную обмотку связи (9), между первым (4) и третьим (6) трансформаторами, выводы которой подсоединены к первому клеммнику (14), и вторую проводную обмотку связи (12), между вторым (5) и третьим (6) трансформаторами, выводы которой подсоединены ко второму клеммнику (15). Первый вывод первой обмотки (7) первого трансформатора (4) соединен с выходом генератора (1) переменного напряжения, опорным входом синхронного детектора (17) и опорным входом преобразователя (2) код-напряжение, выход которого непосредственно соединен с первым выводом первой обмотки (10) второго трансформатора (5). Управляющий вход преобразователя (2) код-напряжение соединен с выходом блока управления (18). Первый вывод первой обмотки (13) третьего трансформатора (6) соединен с входом избирательного усилителя (16), выход которого соединен с управляющим входом синхронного детектора (17), выход которого соединен последовательно с блоком управления (18), микроконтроллером (19) и устройством-цифровой индикации (20). Вторые выводы первых обмоток всех трех трансформаторов соединены с общей шиной устройства. 1 н. п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к устройствам для измерения активного сопротивления, и может быть использовано в средствах для измерения неэлектрических величин резистивными датчиками. Микроконтроллерный измерительный преобразователь с управляемым питанием резистивных измерительных цепей методом широтно-импульсной модуляции содержит микроконтроллер, первый RC-фильтр, первый, второй, третий и четвертый резисторы, причем первый вывод первого резистора подключен к выходу первого широтно-импульсного модулятора микроконтроллера, вторые выводы первого и второго резисторов подключены ко входу первого RC-фильтра, выход которого подключен к первому входу аналогового компаратора микроконтроллера, причем в преобразователь введен второй RC-фильтр, первые выводы второго, третьего и четвертого резисторов подключены к выходам соответственно второго, третьего и четвертого широтно-импульсных модуляторов микроконтроллера, вторые выводы третьего и четвертого резисторов подключены ко входу второго RC-фильтра, выход которого подключен ко второму входу аналогового компаратора микроконтроллера. Техническим результатом является повышение точности преобразования. 1 з.п. ф-лы, 1 ил.

Изобретение относится к промышленной электронике, автоматике, информационно-измерительной технике и может быть использовано для контроля и определения параметров двухполюсников. Мостовой измеритель параметров двухполюсников содержит последовательно соединенные генератор питающих импульсов, четырехплечую мостовую цепь и нуль-индикатор. В мостовой измеритель параметров двухполюсников дополнительно введены три резистора, катушка индуктивности, а также две клеммы для подключения объекта измерения перенесены из первой ветви во вторую ветвь моста. Техническим результатом является уменьшение погрешности измерения за счет исключения составляющей погрешности от паразитной емкости относительно «земли» незаземленного многоэлементного двухполюсника. 1 ил.

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим результатом является повышение точности измерения, которое достигается путем измерения параметров кабельной линии связи и учета измеренных параметров кабельной сети при определении параметров двухполюсника с помощью схемы замещения. Способ определения параметров двухполюсника заключается в воздействии на двухполюсник, подключенный через линию связи, и эталон синусоидальным напряжением на n заданных частотах, где n - число элементов двухполюсника. Далее производится последовательное измерение значений токов через двухполюсник и эталон на каждой из n заданных частот с последующей фиксацией результатов измерений. Параметры двухполюсника определятся по фиксированным результатам измерений в соответствии со схемой его замещения. Отличительной особенностью способа является то, что осуществляют отключение двухполюсника от линии связи и после формирования синусоидального напряжения на n заданных частотах производят измерение токов через комплексное сопротивление линии связи и эталон на каждой из n заданных частотах. Полученные результаты фиксируют и по ним определяют значения параметров комплексного сопротивления линии связи, используя схему замещения, после чего по значениям параметров комплексного сопротивления линии связи судят о ее состоянии, а также учитывают их при определении параметров двухполюсника. 2 ил.

Изобретение относится к измерительной технике. Особенностью заявленного цифрового способа измерения параметров пьезоэлектрических элементов является то, что импульсный сигнал возбуждения имеет длительность T1=Т0-τ, где τ - длительность паузы между окончанием сигнала с линейной частотной модуляцией и моментом окончания регистрации цифровых сигналов, при этом время регистрации цифровых сигналов равно Т0, определяют частоту резонанса ƒr, частоту антирезонанса ƒa и добротность Q пьезоэлемента, а также значение параллельной емкости С0 из полученного множества значений комплексной проводимости путем его дробно-рациональной аппроксимации частотной зависимостью комплексной проводимости канонической эквивалентной схемы в резонансном промежутке частот. Техническим результатом является повышение точности измерения комплексной проводимости пьезоэлектрического элемента. 1 з.п. ф-лы, 10 ил.
Наверх