Способ лазерного разделения изотопов водорода

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D. Способ лазерного разделения изотопов водорода включает облучение исходного газа в качестве которого используется хлористый водород НСl резонансным инфракрасным излучением длиной волны 4,662 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона интенсивностью превышающей 1013 Вт/см2 и экстракцию образованных положительных ионов, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния хлорида дейтерия DCl. Изобретение обеспечивает повышение эффективности разделения изотопов водорода. 1 ил.

 

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D.

Известны химические способы разделения изотопов водорода [патент РФ 2201283, МПК B01D 59/04 от 21.11.2001], при котором два сырьевых потока из протия, трития и дейтерия перерабатываются в колоннах криогенной ректификации и блоках гомомолекулярного изотопного обмена. Недостатком этого способа является высокая стоимость процесса разделения.

Известны способы разделения изотопов водорода с помощью инфракрасной лазерной технологии в сочетании с химическими процессами. В частности, в патенте СА1103614 [МПК B01D59/34, С01В 4/00, С01В 5/02 от 1977-12-01] уксусная или муравьиная кислота, содержащие соединения дейтерированных и гидрогенизированных кислот, подвергаются облучению с длиной волны в инфракрасном спектре от 9,2 до 10,8 мкм, для получения гидроксида дейтерия и гидрида дейтерия соответственно. В патенте СА1085341 [МПК B01D 59/34, С01В 4/00, С01В 5/02, H01S 3/00 от 1976-07-19] дейтерий из природных источников выделяют с использованием настроенных инфракрасных лазеров, и молекулы, содержащие дейтерий, отделяются от исходного материала путем абсорбции, дистилляции или других химических методов.

Методы лазерного разделения изотопов являются эффективными методами получения химических элементов определенного изотопического состава [Летохов B.C., Мур С.Б. Квантовая электроника, т.3, вып.3, 4, 1976], что связано с возможностью значительного изотопического обогащения за один цикл. Лазерные методы разделения изотопов основаны на селективном возбуждении лазерным излучением электронных или колебательных уровней атомов или молекул определенного изотопического состава. Метод избирательной стимуляции одного молекулярного компонента в смеси [WО 9712373, B01D 53/00, B01D 59/34, G01N 21/63 от 1997-04-03] предполагает переход обоих компонентов в первое возбужденное состояние при первом импульсе лазерного излучения и выборочный переход одного компонента во второе возбужденное состояние при втором импульсе лазерного излучения длительностью 10-15c. Время между двумя импульсами должно быть равно целому числу полупериодов резонансного периода выбранного компонента.

Известен способ [патент GB1473330, МПК B01D 59/34, B01J 19/12, G02B 27/00, H01S 3/00, H01S 3/094, H01S 3/22 от 23.10.1973] лазерного разделения изотопов, взятый за прототип, основанный на изотопически-селективном возбуждении молекул газовой фазы в процессе инфракрасного поглощения фотонов, который включает в себя следующие стадии: облучение молекул ПК-излучением с помощью ИК-лазера при интенсивности, по крайней мере, 104 Вт/см2 от 10-10 до 5×10-5 c, причем молекулы, содержащие желаемый изотоп или изотопы, преимущественно возбуждены резонансным излучением и поглощают больше чем один квант ПК-излучения; преобразование возбужденных молекул в процессе облучения лазером оптического или УФ-диапазона для осуществления фотодиссоциации, в котором возбужденные молекулы могут быть отделены от невозбужденных.

Селективное колебательное возбуждение считается наиболее трудным методом [Летохов B.C., Мур С.Б., цит.соч., стр.253]. Это связано с тем, что, несмотря на простоту селективного колебательного возбуждения, затруднено дальнейшее выделение колебательно возбужденных молекул.

Задачей изобретения является устранение недостатков, присущих прототипу.

Технический результат заключается в повышении эффективности выделения изотопа водорода лазерным разделением.

Технический результат достигается тем, что в способе лазерного разделения изотопов водорода, включающем облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов согласно изобретению в качестве исходного газа используется хлористый водород (НСl), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния DC1.

Предлагается использовать эффект антистоксова усиления туннельной ионизации молекул. Этот эффект, предложенный и описанный в работе [Komev A.S., Zon B.A. Phys. Rev. A 86, 043401 (2012)], состоит в значительном увеличении вероятности туннельного эффекта в лазерном поле для колебательно-возбужденных молекул. При туннельном эффекте в лазерном поле возможен неупругий процесс, когда часть энергии передается туннелирующему электрону от иных степеней свободы в атомах [Komev A.S. et al., Phys. Rev. A 68, 065403 (2003); 69, 065401 (2004); 79, 063405 (2009); 84, 053424 (2011); 85, 035402 (2012)] или молекулах [Komev A.S., Zon B.A., Phys. Rev. A 86, 043401 (2012)]. Для молекул такими иными степенями свободы могут являться колебательные степени свободы ядер атомов, образующих молекулу. Предварительное возбуждение ядерных колебаний позволяет в результате туннельного эффекта образовывать ионы с преимущественным содержанием определенных изотопов, поскольку нейтральные молекулы разного изотопического состава имеют различные частоты колебательных переходов.

На Фиг.1 показана зависимость отношения вероятности образования ионов DCF+ из возбужденного колебательного состояния (vi=1) к вероятности образования ионов НСl+ из основного колебательного состояния {Vi=0) от интенсивности лазерного излучения I [Вт/см2].

Газообразный хлористый водород, содержащий дейтерий (в природном водороде дейтерий составляет примерно 1,5%), облучается инфракрасным излучением с длиной волны 4,662 мкм для заселения первого колебательного состояния молекулы DC1. После этого на объем газа, подвергшийся облучению с указанной выше длиной волны, воздействуют лазерным излучением оптического или ИК-диапазона, причем интенсивность излучения I должна быть достаточно высокой, чтобы ионизация проходила вследствие туннельного эффекта, т.е. удовлетворять неравенству

I > 2 α e 2 ( 2 π α λ ) 2 E 0 E α I α ,

где E0 - потенциал ионизации молекулы; λ - длина волны ионизирующего излучения; α=0,529 Ǻ =0,529×10-10 м - атомная единица длины (боровский радиус); Еα=27,2 эВ =4,36×10-18 Дж - атомная единица энергии; Iα=3,51×1016 Вт см-2=3,51×1020Втм-2- атомная единица интенсивности; αe=7,23×10-3 - постоянная тонкой структуры.

Для молекулы хлористого водорода НСl и ее изотопической модификации DC1 эта интенсивность должна превышать 4×1013 Вт/см2 при длине волны ионизирующего излучения 1,3 мкм или 1,6×1013Вт/см2 при длине волны ионизирующего излучения 2,0 мкм. Интервал времени между облучением резонансным инфракрасным излучением и мощным лазерным излучением не должен превышать времени жизни колебательного состояния, зависящего от давления и температуры газа. Вследствие туннельного эффекта преимущественно ионизуются колебательно-возбужденные молекулы, то есть молекулы DC1. Далее путем экстракции положительных ионов получают хлористый водород с повышенным, по сравнению с природным, содержанием дейтерия.

Из зависимости на Фиг.1 видно, что в оптимальных условиях, при интенсивности лазерного излучения ~1013 Вт/см2, вероятность образования ионов DCF превышает вероятность образования ионов НС1+ больше чем на 20%.

Способ лазерного разделения изотопов водорода, включающий облучение исходного газа резонансным инфракрасным излучением, последующее воздействие лазерным излучением и экстракцию образованных положительных ионов, отличающийся тем, что в качестве исходного газа используется хлористый водород (НСl), длина волны резонансного инфракрасного излучения 4,662 мкм, диапазон лазерного излучения оптический или инфракрасный, а интенсивность превышает 1013 Вт/см2, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния DCl.



 

Похожие патенты:

Изобретение относится к молекулярной физике, а именно к области разделения изотопов хлора, и может быть использовано для получения изотопически обогащенного хлора.

Изобретение относится к способу разделения изотопов и может быть использовано для получения требуемых концентраций изотопов и для обогащения различных стабильных и радиоактивных изотопов.
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .

Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .
Изобретение относится к способу получения катализатора для изотопного обмена протия-дейтерия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .
Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для орто-пара конверсии протия. .

Изобретение относится к области гетерогенного катализа, в частности к способу получения катализатора для изотопного обмена протия-дейтерия и орто-пара конверсии протия.

Изобретение относится к установке для разделения изотопов методом фракционной перегонки. Установка содержит многоканальную ректификационную колонну 1, выполненную в виде каскада последовательно расположенных в вертикальном направлении модулей 11 с параллельно расположенными трубками 2, образующими рабочие каналы с насадкой 12, верхний буфер 3 и нижний буфер 4, конденсатор 7, испаритель 8 и дозирующее устройство 5 с раздаточными трубками 6, соединенными с рабочими каналами. Перед модулями 11 установлены распределители потока пара 13 с параллельно расположенными проходными трубками 14. На верхней части модулей 11 установлены тарелки 16 с углублениями, образующими входную часть рабочих каналов. Со стороны выходных отверстий рабочих каналов установлены чашеобразные улавливатели 15 каплеобразной фракции рабочего тела, выходные отверстия которых соединены с входными отверстиями проходных трубок 14. Выходные части проходных трубок 14 установлены во входных частях трубок 2 с образованием зазора между внешней поверхностью проходных трубок 14 и внутренней поверхностью рабочих каналов. Выходные части раздаточных трубок 6 расположены со стороны углублений в тарелках 16 с образованием зазора между внешней поверхностью раздаточных трубок 6 и внутренней поверхностью рабочих каналов. Изобретение обеспечивает повышение производительности процесса разделения изотопов. 17 з.п. ф-лы, 6 ил.

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида 63Ni, являющегося основой для создания миниатюрных автономных источников электрической энергии с длительным сроком службы, работающих на бета-вольтаическом эффекте. Способ получения радионуклида 63Ni включает изготовление никелевой мишени, обогащенной по изотопу 62Ni, из композиционного материала, состоящего из наночастиц никеля или его соединений, окруженных буфером в виде твердого вещества, растворимого в воде или других растворителях, облучение мишени в нейтронном потоке ядерного реактора, разделение наночастиц мишени и буфера, направление буфера на радиохимическую переработку для выделения радионуклида 63Ni и возвращение наночастиц никеля в ядерный реактор в состав новой мишени. Изобретение обеспечивает повышение удельной активности радионуклида 63Ni, упрощение технологического процесса его получения и снижение количества радиоактивных отходов. 4 з.п. ф-лы, 2 табл., 1 пр.
Изобретение относится к области получения радиоактивных изотопов, а более конкретно к технологии получения радиоактивного изотопа никель-63, используемого в производстве бета-вольтаических источников тока. Способ получения радионуклида никель-63 включает в себя получение из исходного никеля обогащенной по никелю-62 никелевой мишени с содержанием никеля-64 более 2%, облучение мишени в реакторе и последующее обогащение облученного продукта по никелю-63 до достижения им содержания 75% и более в обогащенном продукте. Изобретение обеспечивает крупномасштабное рентабельное производство никеля-63 для бета-вольтаических источников тока.

Изобретение относится к области технологии разделения стабильных изотопов азота 14N и 15N. Способ концентрирования изотопов азота включает проведение противоточного массообменного процесса с использованием молекулярного азота в качестве рабочего вещества, при этом газообразную смесь изотопов азота приводят в контакт с раствором нитрогенильного комплексного соединения переходного металла, способного к термическому отщеплению молекулярного азота и вступающего с ним в реакцию химического изотопного обмена с накоплением 15N в одной из фаз, a 14N - в другой. Изобретение обеспечивает повышение коэффициента разделения изотопов азота и эффективное и экологически безопасное концентрирование изотопа 15N. 2 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения питьевой воды с пониженным содержанием дейтерия и устройству для его осуществления. Способ включает охлаждение питьевой воды путем добавления гранул твердого диоксида углерода в соотношении воды к диоксиду углерода 1 : 10, перемешивание в течение 15-20 минут при скорости вращения мешалки 45-50 об/мин, обработку воды электромагнитным полем низких частот в интервале 18-48 Гц в процессе перемешивания, фильтрование через металлокерамический обеспложивающий фильтр с получением жидкой и твердой фаз, сбор жидкой фазы, обедненной дейтерием, нагревание и утилизацию твердой фазы. Изобретение обеспечивает эффективное получение питьевой воды с пониженным содержанием дейтерия. 1 ил.

Изобретение относится к ректификационному устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода. Устройство содержит ректификационную колонну, работающую под вакуумом, испаритель, конденсатор и тепловой насос. При этом ректификационная колонна состоит из двух коаксиальных труб с диаметрами D1 и D2, причем D1>D2 и (D1-D2)/2<300 мм, со слоем насыпной насадки, расположенным в зазоре между ними, при этом распределитель жидкости вверху колонны имеет не менее 800 точек орошения па квадратный метр площади сечения насадочной части колонны. Изобретение обеспечивает повышение производительности и снижение энергетических затрат. 4 з.п. ф-лы, 5 ил., 4 табл., 3 пр.

Изобретение относится к способу и устройству для очистки воздуха от трития и его концентрации в форме сверхтяжелой воды. Способ очистки воздуха от газообразного трития заключается в окислении трития воздуха в водородно-кислородном пламени. Устройство для очистки воздуха и концентрации трития в воде содержит герметично закрытую камеру для окисления трития при высокой температуре в водородно-кислородном пламени, газовая смесь для которого поступает из водородно-кислородного генератора, насос для вывода полученной смеси воздуха и водяных паров, холодильник для ее охлаждения, водяной фильтр для удержания конденсированной воды, оборудование для хранения трития. Изобретение обеспечивает эффективную очистку газов от трития, а также восстановление и обогащение трития. 3 н.п. ф-лы, 1 ил.
Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологии производства фторидных соединений урана и разделению его изотопов. Способ разделения изотопов урана включает контактирование гексафторида урана и фторида натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при температуре разложения. Изобретение обеспечивает снижение материалоемкости и упрощение аппаратурного парка для осуществления способа, увеличение коэффициента разделения изотопов урана и увеличение производительности процесса. 7 з.п. ф-лы, 5 пр.

Изобретение относится к разделению изотопов элементов, в частности к способу получения изотопов неодима. Способ заключается в применении метода центрифугирования, в котором разделительный эффект определяется разностью молекулярных масс изотопов, при этом в качестве рабочего газа выбирают неодимсодержащее газообразное соединение из класса соединений повышенной летучести, полученных обработкой бета-дикетонатов неодима полифторированными эфирами этиленгликоля, полифторированными эфирами диэтиленгликоля или полифторированными формалями, определяют технологические параметры рабочего газа: зависимость давления насыщенного пара выбранного вещества от соответствующей ему температуры и температуру его разложения, выбирают температуру эксплуатации разделительной установки, обеспечивающую давление насыщенного пара, выбранного вещества не ниже 4 мм рт.ст., но не выше 0,8 от температуры разложения, и осуществляют нагрев и поддержание выбранной температуры эксплуатации разделительной установки, включающей коммуникации, контрольные и регулирующие устройства и газовые центрифуги. Изобретение обеспечивает получение высокообогащенных изотопов неодима, изотопа 150Nd с концентрацией более 99,3%, изотопа 142Nd с концентрацией более 99,9%, изотопа 146Nd с концентрацией более 88,4%. 3 з.п. ф-лы, 2 ил., 2 табл.

Изобретение относится к способу разделения изотопов и к устройству для его осуществления и может быть использовано в атомной промышленности, в частности для разделения гексафторида урана, содержащего изотопы U235 и U238, а также в газонефтеперерабатывающей, металлургической и химической промышленности для разделения смесей газов, находящихся в газожидкостной смеси. Способ разделения смесей изотопов включает ввод разделяемой смеси изотопов тангенциальным инжектированием, разделение смеси изотопов в вихревом потоке, при этом разделяемой рабочей смесью является жидкий раствор, в котором преобладающим компонентом является низкокипящий неорганический щелочной растворитель, а растворенное вещество гексафторид урана и отвод обогащенной и обедненной целевым изотопом продуктов. Устройство для разделения смесей изотопов содержит корпус 5, узлы ввода разделяемой смеси тангенциальным инжектированием 5 и отвода обогащенной и обедненной целевым изотопом продуктов 7 и 8, емкость 1 и насос 2 для исходной разделяемой смеси и емкость 3 и насос 4 для обогащенного целевым изотопом продукта, магистрали 10, 11 и 12 для ввода разделяемой смеси, отвода обогащенного и обедненного целевым изотопом продуктов и установленную внутри корпуса 5 перегородку 9 в виде диска с отверстием, диаметр которого относится к диаметру диска, как 3:4. Изобретение обеспечивает сокращение энергетических затрат, а также надежность и легкость в обслуживании и управлении как технологическим процессом, так и оборудованием, осуществляющим этот процесс. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к молекулярной физике, а именно к области разделения изотопов водорода, и может быть использовано для выделения изотопа дейтерия D. Способ лазерного разделения изотопов водорода включает облучение исходного газа в качестве которого используется хлористый водород НСl резонансным инфракрасным излучением длиной волны 4,662 мкм, последующее воздействие лазерным излучением оптического или инфракрасного диапазона интенсивностью превышающей 1013 Втсм2 и экстракцию образованных положительных ионов, причем время между воздействиями резонансного инфракрасного и лазерного излучений не должно превышать время распада колебательного состояния хлорида дейтерия DCl. Изобретение обеспечивает повышение эффективности разделения изотопов водорода. 1 ил.

Наверх