Способ подготовки топочного мазута к сжиганию

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ. В способе подготовки топочного мазута к сжиганию из всего объема основного потока мазута отбирают объем бокового потока мазута, равный 1,5 - 2% объема основного потока мазута. Основной поток мазута направляют в линию бокового потока мазута. Подогревание потока мазута, смешивание присадки и мазута осуществляют в линии бокового потока мазута, параллельно подключенной к линии основного потока мазута. Смешивание объема бокового потока мазута и присадки осуществляют без участия подвижных механических устройств посредством смесителя, выполненного в виде устройства статического перемешивания мазута и присадки. Присадку подают в линию бокового потока мазута до процесса статического перемешивания мазута и присадки. Техническим результатом изобретения является упрощение технологической схемы с сохранением высоких эксплуатационных характеристик топочного мазута за счет высокой гомогенизации вводимой присадки и мазута путем интенсивного смешения и автоматизации приготовления однородной смеси мазута и присадки, эффективная подготовка и сжигание жидкого топлива с выделением меньшего количества токсичных веществ, повышение надежности, экономичности и экологической безопасность котельных установок. 3 з.п. ф-лы, 1 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано для улучшения физико-химических и эксплуатационных характеристик топочных мазутов на тепловых электрических станциях, в котельных промышленных предприятий, котельных агропромышленного комплекса и ЖКХ.

В связи с увеличением глубины переработки нефти наблюдается ухудшение качества котельного топлива, которое отрицательно влияет на хранение, подготовку, сжигание мазутов, увеличивает объемы выбрасываемых вредных продуктов в атмосферу, увеличивает отложения на поверхностях теплоэнергетического оборудования, увеличивает затраты на собственные нужды, снижает КПД парогенератора, следовательно, снижает КПД котельных и ТЭС в целом. Введение специальных веществ-многофункциональных присадок способствует улучшению качества топочных мазутов, улучшению его физико-химических и эксплуатационных свойств.

Известен способ подготовки топочного мазута к сжиганию, включающий слив мазута из цистерн в приемные резервуары, циклическое прокачивание мазута через подогреватели и подачу мазута на сжигание в котельные агрегаты (Г.С.Степанов и др. Рациональное использование мазута в паровых котлах предприятий пищевой промышленности. Легкая и пищевая промышленность, М., 1981, с.127).

Недостатком способа является то, что высокая вязкость сжигаемого мазута приводит к неэффективному распылу, снижению КПД котельных установок.

Наиболее близким техническим решением к настоящему изобретению является способ подготовки топочного мазута к сжиганию и устройство для его осуществления (патент РФ №2143312, МПК B01F 3/08, 27.12.1999).

Способ включает эмульгирование смеси мазута с водой и подогрев, при этом в состав топлива до или в процессе эмульгирования вводят пиролизную смолу в количестве 2-10 мас.%, а эмульгирование осуществляют путем гидродинамической кавитационной обработки при определенных режимах. Устройство содержит нагреватель, кавитационные аппараты, магистраль рециркуляции. Нагреватель установлен в магистрали подачи топлива на сжигание.

Основным недостатком известного способа является сложность технологической схемы подготовки топочного мазута к сжиганию из-за наличия четырех гидродинамических кавитационных аппаратов.

Задачей настоящего изобретения является упрощение технологической схемы подготовки топочного мазута к сжиганию.

Технический результат достигается тем, что в способе подготовки топочного мазута к сжиганию, включающем приготовление присадки с механическим и циркуляционным перемешиванием, измерение расхода присадки, измерение расхода мазута в линии основного потока мазута, подогревание потока мазута, подачу присадки в мазут, смешивание присадки и мазута, подачу смеси мазута и присадки в линию основного потока мазута, согласно настоящему изобретению, из всего объема основного потока мазута отбирают объем бокового потока мазута, равный 1,5-2% объема основного потока мазута, который направляют в линию бокового потока мазута, параллельно подключенной к линии основного потока мазута, при этом подогревание потока мазута, смешивание присадки и мазута осуществляют в линии бокового потока мазута, причем смешивание объема бокового потока мазута и присадки осуществляют без участия подвижных механических устройств посредством смесителя, выполненного в виде устройства статического перемешивания мазута и присадки, а присадку подают в линию бокового потока мазута до процесса статического перемешивания мазута и присадки.

В качестве присадки используют деэмульгатор «Дипроксамин-157» (ТУ 6-14-614-76), который вводят в объем бокового потока мазута до процесса статического перемешивания мазута и присадки в количестве 0,15-0,25 мас.%.

В процессе приготовления присадки осуществляют ее подогревание до температуры 20-50°С, а подогревание бокового потока мазута осуществляют до температуры 80-90°С.

При этом осуществляют автоматизацию приготовления однородной смеси мазута и присадки, и ее добавления в мазут посредством программирующего логического контроллера, который отслеживает расход присадки, уровень присадки и расход мазута.

Сущность изобретения поясняется чертежом, на котором изображена технологическая схема системы, реализующей предлагаемый способ подготовки топочного мазута к сжиганию.

Цифрами на чертеже обозначены:

1 - емкость хранения и приготовления присадки;

2 - линия циркуляции присадки;

3 - циркуляционный насос;

4 - линия подачи присадки в мазут;

5 - линия основного потока мазута;

6 - расходомер мазута;

7 - насос перекачки мазута;

8 - подогреватель мазута;

9 - датчик температуры мазута;

10 - смеситель;

11 - датчик уровня присадки;

12 - мешалка;

13 - выпускной клапан;

14 - датчик температуры присадки;

15 - фильтр;

16 - насос-дозатор присадки;

17 - расходомер присадки;

18- обратный клапан;

19 - линия бокового потока мазута;

20 - программирующий логический контроллер;

21 - электрогенераторы.

Система, реализующая способ подготовки топочного мазута к сжиганию, содержит технологически связанные между собой емкость 1 хранения и приготовления присадки, линию 2 циркуляции присадки с циркуляционным насосом 3, линию 4 подачи присадки в мазут, линию 5 основного потока мазута с расходомером 6 мазута, а также насос 7 перекачки мазута, подогреватель 8 мазута с датчиком 9 температуры и смеситель 10.

Емкость 1 хранения и приготовления присадки имеет датчик 11 уровня, мешалку 12, выпускной клапан 13 и датчик 14 температуры присадки.

Линия 4 подачи присадки в мазут включает в себя последовательно соединенные фильтр 15, насос-дозатор 16 присадки, расходомер 17 присадки и обратный клапан 18.

Система, реализующая предлагаемый способ подготовки топочного мазута к сжиганию, снабжена линией 19 бокового потока мазута, соединенной с линией 4 подачи присадки в мазут, и параллельно подключенной к линии 5 основного потока мазута, а также программирующим логическим контроллером 20.

Программирующий логический контроллер 20 соединен с расходомером 1 7 присадки, датчиком 11 уровня присадки и расходомером 6 мазута.

Принцип действия программирующего логического контроллера 20 основан на преобразовании электрических сигналов напряжения, силы постоянного тока и активного сопротивления первичных измерительных преобразователей (датчиков) в унифицированные сигналы постоянного тока или напряжения с последующим аналого-цифровым преобразованием и передачей измерительной информации к персональному компьютеру.

Линия 19 бокового потока мазута включает в себя последовательно соединенные указанные насос 7 перекачки мазута, подогреватель 8 мазута с датчиком 9 температуры и смеситель 10.

Смеситель 10 выполнен в виде устройства статического перемешивания мазута и присадки (статического миксера).

Приготовление однородной смеси мазута и присадки, осуществляемое в смесителе 10 (статическом миксере), являющемся устройством непрерывного смешивания, не нуждается в дополнительных энергозатратах, т.к. не имеет никаких движущихся частей, что повышает его надежность.

Способ подготовки топочного мазута к сжиганию включает приготовление присадки с механическим и циркуляционным перемешиванием, измерение расхода присадки, измерение расхода мазута в линии 5 основного потока мазута, подогревание потока мазута, подачу присадки в мазут, смешивание присадки и мазута, подачу смеси мазута и присадки в линию 5 основного потока мазута.

Отличием предлагаемого способа подготовки топочного мазута к сжиганию является то, что из всего объема основного потока мазута отбирают объем бокового потока мазута, равный 1,5%-2% объема основного потока мазута, который направляют в линию 4 бокового потока мазута, параллельно подключенной к линии 5 основного потока мазута, при этом подогревание потока мазута, смешивание присадки и мазута осуществляют в линии 4 бокового потока мазута, причем смешивание объема бокового потока мазута и присадки осуществляют без участия подвижных механических устройств посредством смесителя 10, выполненного в виде устройства статического перемешивания мазута и присадки, а присадку подают в линию 4 бокового потока мазута до процесса статического перемешивания мазута и присадки.

В качестве присадки используют деэмульгатор «Дипроксамин-157» по ТУ 6-14-614-76, который вводят в объем бокового потока мазута до процесса статического перемешивания мазута и присадки в количестве 0,15-0,25 мас.%.

В процессе приготовления присадки осуществляют ее подогревание до температуры 20-50°С, а подогревание бокового потока мазута осуществляют до температуры 80-90°С.

При этом осуществляют автоматизацию приготовления однородной смеси мазута и присадки и ее добавления в мазут посредством программирующего логического контроллера, который отслеживает расход присадки, уровень присадки и расход мазута.

Пример конкретного выполнения.

Выгрузку присадки, в качестве которой используют деэмульгатор «Дипроксамин-157» по ТУ 6-14-614-76, и ее приготовление часто объединяют в один процесс.

Присадку приготавливают в емкости 1, снабженной датчиком 14, измеряющим температуру присадки. Изменение температурной среды приводит к изменению давления жидкости внутри датчика, которое в свою очередь через систему рычагов замыкает или размыкает контакты прибора. Нагрев присадки, находящейся в емкости 1, допускается до температуры не ниже 20°С и не выше 50°С.

Емкость 1 хранения и приготовления присадки оборудована перемешивающим устройством, в качестве которого используют механическую мешалку 12. Циркуляционное перемешивание осуществляют путем принудительной циркуляции присадки по линии 2 циркуляционным насосом 3. Циркуляционное перемешивание обеспечивает турбулентность и способствует эффективному массообмену.

Емкость 1 хранения и приготовления присадки имеет датчик 11 уровня, с помощью которого программирующий логический контроллер 20 отслеживает уровень присадки в емкости. Контроль уровня присадки в емкости 1 базируется на преобразовании изменения электрического сопротивления между стенкой емкости и электродом датчика 11 уровня в электрический сигнал. При погружении в контролируемую среду электрода датчика, данное сопротивление уменьшается и срабатывает реле соответствующего канала, загорается светодиод. Если среда отсутствует - сопротивление возрастает, реле обесточивается, светодиод гаснет.

В случае переполнения емкости 1 автоматически открывается выпускной клапан 13 и выводится излишек присадки.

Из емкости 1 жидкая присадка по линии 4 подачи присадки в мазут проходит через фильтр 15, который предназначен для ее очистки от механических примесей. Затем очищенную присадку перекачивают насосом-дозатором 16 по линии 4 в линию 19 бокового потока мазута.

На линии 4 подачи присадки в мазут установлен расходомер 17 присадки. По его показателям контроллер 20 отслеживает расход присадки перед подачей ее в мазутопровод линии 19 бокового потока мазута. На линии 4 подачи присадки в мазут также установлен обратный клапан 18, предотвращающий обратное течение присадки на линии 4.

На основном мазутопроводе линии 5 основного потока мазута установлен расходомер 6 мазута.

Из всего объема основного потока мазута отбирают объем бокового потока мазута, равный 1,5% - 2% объема основного потока мазута, который направляют по линии 19 для смешения с присадкой. Этот боковой поток мазута перекачивают насосом 7.

Перед добавлением присадки в боковой поток мазута, последний в свою очередь проходит через подогреватель 8, который предназначен для подогрева мазута до температуры 80-90°С и тем самым для предотвращения его застывания, а также для обеспечения необходимых значений вязкости.

После прохождения бокового потока мазута через подогреватель, датчиком 9 измеряют температуру мазута (80-90°С). Затем жидкую присадку по линии 4 подачи присадки в мазут добавляют в мазутопровод линии 19 бокового потока мазута (из расчета 0,15-0,25 мас.%).

Интенсивное перемешивание бокового потока мазута и присадки осуществляют посредством смесителя 10, выполненного в виде устройства статического перемешивания мазута и присадки (статического миксера).

Присадку подают в линию 4 бокового потока мазута до процесса статического перемешивания мазута и присадки.

Перемешивание мазута и присадки в статическом миксере осуществляют без участия подвижных механических устройств. Мазут и присадка перемешиваются лишь за счет энергии потока при участии неподвижно закрепленных смешивающих элементов, способствующих непрерывному разделению и перераспределению общего потока по сечению смесительного канала.

Далее смесь мазута и присадки подают в основной мазутопровод линии 5 основного потока мазута, откуда суспензию мазута с присадкой подают на сжигание в котельной установке.

Таким образом, использование настоящего изобретения позволит, по сравнению с прототипом, упростить технологическую схему подготовки топочного мазута к сжиганию за счет исключения четырех гидродинамичесих кавитационных аппаратов. При этом сохраняются высокие эксплуатационные характеристики топочного мазута за счет высокой гомогенизации вводимой присадки и мазута путем интенсивного смешения компонентов, и автоматизации приготовления однородной смеси мазута и присадки, и ее добавления в мазут, что обеспечит эффективную подготовку и сжигание жидкого топлива с выделением меньшего количества токсичных веществ, повысит надежность, экономичность и экологическую безопасность котельных установок.

Высокая гомогенизация вводимой присадки и мазута путем интенсивного смешения компонентов достигается без участия подвижных механических устройств посредством смесителя, выполненного в виде устройства статического перемешивания мазута и присадки.

Эффект интенсивного перемешивания и взаимодействия подаваемых веществ достигается за счет многократного деления и направляемого закручивания потока на укрепленных в устройстве элементах специальной насадки в процессе движения потока внутри статического миксера.

Автоматизация приготовления однородной смеси мазута и присадки и ее добавления в мазут осуществляется посредством программирующего логического контроллера, который отслеживает расход присадки, уровень присадки и расход мазута.

1. Способ подготовки топочного мазута к сжиганию, включающий приготовление присадки путем механического и циркуляционного перемешивания, измерение расхода присадки, измерение расхода мазута в линии основного потока мазута, подогревание потока мазута, подачу присадки в мазут, смешивание присадки и мазута, подачу смеси мазута и присадки в линию основного потока мазута, отличающийся тем, что из всего объема основного потока мазута отбирают объем бокового потока мазута, равный 1,5%-2% объема основного потока мазута, который направляют в линию бокового потока мазута, при этом подогревание потока мазута, смешивание присадки и мазута осуществляют в линии бокового потока мазута, параллельно подключенной к линии основного потока мазута, причем смешивание объема бокового потока мазута и присадки осуществляют без участия подвижных механических устройств посредством смесителя, выполненного в виде устройства статического перемешивания мазута и присадки, а присадку подают в линию бокового потока мазута до процесса статического перемешивания мазута и присадки.

2. Способ подготовки мазута к сжиганию по п.1, отличающийся тем, что в качестве присадки используют деэмульгатор «Дипроксамин-157», который вводят в объем бокового потока мазута до процесса статического перемешивания мазута и присадки в количестве 0,15-0,25 мас.%.

3. Способ подготовки мазута к сжиганию по п.1 или 2, отличающийся тем, что в процессе приготовления присадки осуществляют ее подогревание до температуры 20-50°С, а подогревание бокового потока мазута осуществляют до температуры 80-90°С.

4. Способ подготовки мазута к сжиганию по п.1 или 2, отличающийся тем, что осуществляют автоматизацию приготовления однородной смеси мазута и присадки и ее добавления в мазут посредством программирующего логического контроллера, который отслеживает расход присадки, уровень присадки и расход мазута.



 

Похожие патенты:

Изобретение предназначено для приготовления топливных смесей. Установка содержит источники нефтепродукта и воды, парогенератор, насосы, паропроводы, трубопроводы, подогреватели воды и нефтепродукта, роторный аппарат, накопительную емкость, контуры обработки нефтепродукта, систему подготовки дозируемых компонентов, систему парораспределения, систему дренажной пропарки и очистки оборудования.

Эмульсер // 2502549
Изобретение относится к пищевой промышленности, в частности к получению смесей из многокомпонентных смесей с добавлением жидких ингредиентов. В верхней части прямоугольного корпуса установлены два наклонных подающих лотка, нижняя плоскость которых обогревается горячей водой.

Изобретение относится к области теплоэнергетики и может быть использовано для приготовления водотопливных эмульсий для котельных промышленных предприятий, судовых энергетических установок (главных двигателей, газотурбинных, вспомогательных котлов).

Изобретение относится к области энергетики. Устройство для гидродинамического эмульгирования жидкого топлива содержит гидродинамический кавитационный аппарат, выполненный как тангенциально-осевой вихревой эмульгатор, состоящий из трубопровода обрабатываемых жидких топлив, трубопровода добавляемой жидкости - чистой, замазученной или замасленной воды, отработавших масел, горючих жидких отходов, присадок, цилиндрического корпуса эмульгатора с верхней и средней кольцевыми полостями и внутренней полостью, кавитационной зоной; верхняя и средняя кольцевые полости связаны тангенциально установленными соплами с внутренней полостью корпуса эмульгатора, обеспечивающими, соответственно, тангенциальный подвод в нее жидких топлив и добавляемой жидкости, трубопровод добавляемой жидкости соединен осевым патрубком с внутренней полостью корпуса эмульгатора, с возможностью подачи в его центральную осевую часть добавляемой жидкости; трубопровод добавляемой жидкости снабжен регулирующим вентилем с возможностью регулирования в эмульгированном топливе процентного соотношения обрабатываемого жидкого топлива и добавляемой жидкости.

Изобретение относится к технике физико-химических процессов, включая проведение реакций, приготовление растворов, эмульсий, может быть использовано в качестве стенда в научно-исследовательских работах и в промышленных технологиях.
Изобретение относится к способу получения устойчивых во времени мелкодисперсных водо-углеводородных эмульсий для экологически безопасных топливных присадок и битумного вяжущего в дорожном строительстве из воды и углеводородных составляющих, предварительно очищенных от механических примесей.

Изобретение относится к области приготовления эмульсий и может использоваться при производстве водотопливных эмульсий для двигателей и горелок, а также для создания коллоидных растворов в других областях техники: в химической промышленности, в строительстве, в сельском хозяйстве, в медицине при эмульгировании жидкостей с тяжелой и легкой фракцией, в том числе и для их стерилизации и обеззараживания.

Изобретение относится к технике приготовления эмульсии, которая может быть использована в качестве альтернативного топлива в двигателях внутреннего сгорания. .

Изобретение относится к приготовлению реактивного топлива с заданным содержанием воды для летных сертификационных испытаний на обледенение топливной системы летательных аппаратов.

Изобретение относится к ресурсо- и природосберегающим топливным системам питания транспортных средств или энергетического оборудования, которые монтируются в штатной системе питания двигателя внутреннего сгорания транспортного средства и позволяют получать безэмульгаторные водо-топливные эмульсии (ВТЭ).
Изобретение может быть использовано в области нефтедобывающей промышленности. Способ переработки жидких нефтешламов в гидратированное топливо включает нагрев и очистку нефтешлама. Очищенную нагретую смесь углеводородов с водой подают в рабочую емкость с разделением по крайней мере на два потока. Разделенные потоки для их гомогенизации непрерывно подают в виброкавитационный гомогенизатор с разницей величины расхода одного из потоков по отношению к другому не менее 1,5. Гомогенизацию проводят в виброкавитационном гомогенизаторе с вращающимся ротором с перфорированной поверхностью и неподвижным статором при удельном расходе смеси не более 2,5 г/см2 рабочей поверхности ротора в секунду и окружной скорости его вращения не менее 20 м/с. Обработку проводят троекратно: первичную обработку ведут до полученния топливной эмульсии гидратированного топлива с размером капель воды не более 15 мкм, повторные обработки проводят до получения капель воды с размером не более 5 мкм. Изобретение позволяет повысить стабильность эмульсии гидратированного топлива. 3 з.п. ф-лы, 7 пр.

Изобретение относится к аппарату, системе и способу эмульгирования масла и воды для приготовления водных эмульсий клеящих агентов для проклейки в массе или поверхностной проклейки бумаги и картона. Осуществляют подачу непрерывной фазы под давлением через сопло для непрерывной фазы аппарата Вентури в секцию смешения. Дисперсную фазу необязательно подают под давлением в секцию смешения аппарата Вентури. Эмульсию, образовавшуюся в секции смешения, пропускают по каналу через сопло для смешанной фазы и из аппарата Вентури. Диаметр сопла для смешанной фазы аппарата Вентури больше чем диаметр сопла для непрерывной фазы при соотношении больше чем 1:1 и меньше чем 4:1. Изобретение обеспечивает приготовление стабильных эмульсий клеящих агентов в воде хорошего качества при высокой устойчивости работы бумагоделательной машины и эффективности проклейки. 3 н. и 13 з.п. ф-лы, 4 ил., 7 пр.

Изобретение относится к прибору для приготовления готовой к использованию шпаклевочной массы посредством связующего и отверждающего компонентов согласно ограничительной части пункта 1 формулы изобретения. Прибор содержит емкость с закрывающей емкость донной пластиной с выходным отверстием, расположенную на пластине основания пластинообразную приборную плиту с образованными на одной из обеих сторон плиты входными отверстиями для подачи связующего и отверждающего компонентов и с выполненным на другой противоположной стороне плиты выходным отверстием, смесительное устройство из стационарной статорной части и расположенной в ней, приводимой во вращение с помощью электродвигателя роторной части. Приборная плита в зоне обоих выходных отверстий имеет держатель для разъемного крепления смесительного устройства. Прибор содержит ручной привод для управляемого, зависящего от длины хода движения подачи обоих поршневых штоков для управления притоком требуемого количества компонентов из емкостей в смесительное устройство, причем ручной привод для привода и подачи, а также возврата назад обоих поршневых штоков имеет поворотный исполнительный рычаг. Техническим результатом является упрощение конструкции и компактность устройства. 27 з.п. ф-лы, 48 ил.

Изобретение может быть использовано в двигателях внутреннего сгорания. Предложен ультразвуковой смеситель растительного масла и минерального топлива, содержащий ультразвуковой излучатель (1), электронный блок управления (3). Ультразвуковой излучатель (1) размещен в полости корпуса (7) смесителя, имеющего входные каналы (8 и 9). Напряжение бортовой сети автотракторной техники (+12 В) подается на электронный блок управления (3), который формирует и подает высокочастотные сигналы на ультразвуковой излучатель. Растительное масло и минеральное топливо через входные каналы (8 и 9) поступают в смеситель и под воздействием ультразвуковых колебаний смешиваются. Технический результат: обработка растительного и минерального компонентов смесевого топлива ультразвуком приводит к качественному смешиванию и получению однородной мелкодисперсной эмульсии. 2 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для перемешивания, эмульгирования, гомогенизации жидких сред и может быть использовано для проведения и интенсификации различных физико-химических, тепломассообменных процессов в системах "жидкость-жидкость" и "газ-жидкость". Смеситель содержит корпус с осевым и радиальным патрубками ввода компонентов, смесительные элементы. Осевой входной патрубок имеет возможность возвратно-поступательного перемещения и выполнен в виде конусно-цилиндрического сопла. Смесительный элемент состоит из конической вставки, на поверхности которой выполнены кольцевые проточки. Вставка находится в конической части корпуса смесительного элемента. На торце вставки напротив коническо-цилиндрического сопла по центру выполнен отражатель в виде лунки. Корпус смесительного элемента имеет сквозные каналы, расположенные по концентрическим окружностям. Кольцевые проточки соединены каналами с первой смесительной камерой. Количество смесительных элементов не менее двух. Суммарная площадь каналов, соединяющих кольцевые проточки со смесительной камерой, составляет (5…20)% от площади поперечного сечения кольцевого радиального зазора на входе в смесительный элемент. Диаметры концентричных окружностей, на которых расположены центры каналов, выполненных на торцовой поверхности большего основания конической вставки, определяют по математическому выражению. Технический результат изобретения - интенсификация гидродинамических, физико-химических и тепломассообменных процессов. 3 з.п. ф-лы, 3 ил.

Изобретение относится к приготовлению тонкодисперсных эмульсий в системах жидкость - жидкость. Вихревой эмульсор содержит вихревую трубу с двумя тангенциальными патрубками. Вихревая труба выполнена в виде цилиндра, длина которого равна десяти внутренним его диаметрам. Один из патрубков предназначен для подачи первого компонента и размещен у верхнего торца вихревой трубы под углом наклона к горизонтали 20-30°, а второй - для отвода готовой эмульсии и размещен у нижнего торца вихревой трубы. Патрубок для подачи второго компонента установлен соосно в вихревой трубе с нижнего ее торца с возможностью осевого перемещения, а расстояние от торца патрубка для подачи второго компонента до верхнего торца вихревой трубы равно 0,25÷1 от внутреннего диаметра патрубка для подачи второго компонента. Патрубок готовой эмульсии выполнен с внутренним диаметром, равным половине внутреннего диаметра вихревой трубы, патрубок для подачи второго компонента выполнен с внутренним радиусом, равным внутреннему диаметру патрубка для подачи первого компонента. Обеспечивается снижение потерь давления жидкости, увеличение зоны кавитации и исключения застойных зон. 3 ил.

Изобретение относится к устройству для смешивания и охлаждения двух реакционноспособных жидкостей и к способу производства пероксомоносерной кислоты с помощью этого устройства. Устройство для смешивания и охлаждения двух реакционноспособных жидкостей содержит многотрубный теплообменник с пучком параллельных труб, расположенных в общем кожухе, распределительную камеру, в которую одним концом открыты все трубы пучка, и первый вход в распределительную камеру для введения первой жидкости, причем устройство имеет второй вход в распределительную камеру, выполненный с выпускными отверстиями для введения второй жидкости, находящимися в распределительной камере и ориентированными так, чтобы направлять вводимую жидкость поперек осей труб пучка. Техническим результатом изобретения является возможность производства пероксомоносерной кислоты с применением менее сложного оборудования, чем известные решения, и безопасность осуществления в крупных масштабах с высокими значениями выхода, поскольку позволяет избежать воздействия высоких температур на пероксомоносерную кислоту и непрореагировавшую перекись водорода, ведущего к разложению перекиси. 2 н. и 9 з.п. ф-лы, 1 ил.

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения стерильной наноэмульсии перфторорганических соединений (ПФОС), включающий: добавление смеси ПФОС к водному раствору стабилизирующей добавки; гомогенизацию смеси ПФОС с водным раствором стабилизирующей добавки с получением предэмульсии ПФОС; смешивание предэмульсии ПФОС с водно-солевым раствором с получением наноэмульсии ПФОС; выдерживание наноэмульсии ПФОС при температуре от 2 до 10°С в течение не менее 18 часов. Способ также может быть осуществлен следующим образом: предварительное заполнение циркуляционного контура установки для получения наноэмульсии ПФОС водным раствором стабилизирующей добавки; добавление смеси ПФОС к водному раствору стабилизирующей добавки; гомогенизация смеси ПФОС с водным раствором стабилизирующей добавки с получением предэмульсии ПФОС; смешивание предэмульсии ПФОС с водно-солевым раствором с получением наноэмульсии ПФОС. Изобретение обеспечивает увеличение стабильности эмульсии ПФОС и срока ее хранения. 2 н. и 28 з.п. ф-лы, 7 пр., 5 табл., 1 ил.

Настоящее изобретение относится к способу и устройству для примешивания разнообразных потоков в поток технологической жидкости. Соответствующие изобретению способ и устройство особенно предпочтительно пригодны для введения разнообразных химических реагентов в пульпу, используемую при производстве бумаги. 2 н. и 14 з.п. ф-лы, 6 ил.

Изобретение относится к устройствам для смешения потоков жидкостей. Способ определения параметров для целевого эмульгатора для создания конкретных водотопливных эмульсий, соответствующих эмульсиям, создаваемым эталонным эмульгатором, в котором целевой эмульгатор и эталонный эмульгатор содержат соответственно целевую смесительную камеру и эталонную смесительную камеру для смешивания топлива и воды, причем способ содержит следующие этапы: (I) определение размера целевой смесительной камеры для целевого эмульгатора исходя из размера эталонной смесительной камеры эталонного эмульгатора, причем определенный размер целевой смесительной камеры обеспечивает турбулентный режим течения в целевой смесительной камере; (II) вычисление относительного размера частиц воды исходя из указанного определенного размера; (III) определение размера для по меньшей мере одной водяной форсунки целевого эмульгатора для впрыска воды в топливо в целевой смесительной камере исходя из вычисленного относительного размера частиц воды. Изобретение позволяет получить водотопливную эмульсию с требуемым содержанием воды и размером частиц. 4 н. и 28 з.п. ф-лы, 11 ил.
Наверх