Способ обнаружения сигналов с линейной частотной модуляцией

Изобретение относится к обнаружению сигналов с линейной частотной модуляцией (ЛЧМ). Достигаемый технический результат - повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения. Указанный результат достигается тем, что в заявленном способе принимают пространственно разнесенные сигналы, излучаемые множеством радиопередатчиков, выполняют ЛЧМ-гетеродинирование суммарного сигнала и вычисляют быстрое преобразование Фурье (БПФ), с помощью сумматора в течение сеанса обнаружения парциально накапливают отсчеты БПФ, далее среди выходов сумматора находят максимальное значение rh и соответствующий ему индекс jp, по заданному значению вероятности ложной тревоги вычисляют пороговое значение rhпор, устанавливают флаг и, если sобн=«Обнаружен», по величине индекса jp определяют значения стартового времени обнаруженного ЛЧМ-сигнала и длины его группового пути распространения. 3 ил.

 

Изобретение относится к области техники радиосвязи, конкретнее к обнаружению сигналов с линейной частотной модуляцией (ЛЧМ) и может быть использовано для построения технических средств и использования результатов ЛЧМ-зондирования.

Наиболее близким к предлагаемому техническому решению является способ поиска сложных сигналов, заключающийся в том, что когерентно принимают пространственно разнесенными приемными каналами сигналы, излучаемые множеством радиопередатчиков, синхронно преобразуют ансамбль принятых сигналов в комплексные цифровые сигналы, скользящим во времени преобразованием цифровых сигналов с заданной дискретностью по времени и частоте получают комплексные спектральные плотности сигналов каждого канала, запоминают спектральные плотности, из комплексных спектральных плотностей формируют и запоминают комплексные взаимные спектральные плотности (ВСП) сигналов всех возможных пар каналов, по сформированным комплексным ВСП определяют и запоминают частотно-временные области локализации принятых сигналов.

Недостатком способа-прототипа является то, что процесс вынесения решения об обнаружении ЛЧМ-сигнала не максимизирует отношение сигнал/шум, поскольку в качестве исходных данных используются спектральные характеристики, которые вычисляются на интервалах более коротких, чем длительность интервала наблюдения, предположительно равная длительности искомого сигнала, и в которых, следовательно, учитывается только часть энергии сигнала.

Задача изобретения в том, чтобы при вынесении решения об обнаружении ЛЧМ-сигнала максимизировать отношение сигнал/шум, учитывая полную энергию принимаемого сигнала.

Поставленная задача достигается тем, что в способе обнаружения сигналов с линейной частотной модуляцией (ЛЧМ), заключающемся в том, что принимают пространственно разнесенные сигналы, излучаемые множеством радиопередатчиков, согласно изобретению выполняют ЛЧМ-гетеродинирование суммарного сигнала и вычисляют быстрое преобразование Фурье (БПФ), с помощью сумматора в течение сеанса обнаружения парциально накапливают отсчеты БПФ, далее среди выходов сумматора находят максимальное значение rh, и соответствующий ему индекс jp, по заданному значению вероятности ложной тревоги вычисляют пороговое значение rhпор, устанавливают флаг s о б н = { " О б н а р у ж е н " , п р и r h > r h п о р " Н е о б н а р у ж е н " , п р и r h r h п о р и, если sобн=«Обнаружен», по величине индекса jp определяют значения стартового времени обнаруженного ЛЧМ-сигнала и длины его группового пути распространения.

Достигаемым техническим результатом является повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения.

На фиг.1 представлена структурная схема приемника ЛЧМ-сигналов, обеспечивающего осуществление предлагаемого способа, содержащая преобразователь 1, вычислитель быстрого преобразования Фурье (БПФ) 2, сумматор 3, решающая схема 4, вычислитель стартового времени 5.

Предлагаемый способ работает следующим образом.

Преобразователь 1 выполняет гетеродинирование входного сигнала с целью получить для конкретного ЛЧМ-сигнала сигнал разностной частоты, мгновенная частота fp которого зависит от величины времени τз задержки распространения радиоволн по пути от передающей станции до приемного пункта:

f p = ( T н а ч г ( Т с т + τ з ) ) β f н а ч г , ( 1 )

где Тнач г - значение времени начала гетеродинирования;

Тст - значение стартового времени для передающей станции;

β - значение скорости изменения мгновенной частоты зондирующего ЛЧМ-сигнала;

fнач г - значение начальной частоты гетеродинирования.

Вычислитель БПФ 2 осуществляет быстрое преобразование Фурье (БПФ) и в результате i-ой итерации вычисления на каждом j-ом выходе формирует выходной сигнал, имеющий модуль mij. Для входного сигнала с разностной частотой fp, максимальное напряжение образуется на выходе вычислителя БПФ, имеющем индекс fp. При этом значения fp, и jр будут связаны соотношением:

f p = { j p × f д N б п ф , п р и 0 j p < N б п ф 2 ( j p N б п ф ) × F д N б п ф п р и N б п ф 2 j p < N б п ф , ( 2 )

где Nбпф - длина БПФ;

Fд - значение частоты дискретизации в процессе вычисления БПФ.

В течение одного сеанса обнаружения (работы приемника ЛЧМ-сигналов) сумматор 3 накапливает I раз напряжения на каждом из J выходов вычислителя БПФ 2 (J≤Nбпф) таким образом, что напряжение на j-выходе сумматора 3 к моменту завершения сеанса составляет величину

r j = h j m k 1 ,

где h j = i = 0 I 1 m i j I ;

m h = i = 0 I 1 h j J - среднее арифметическое значение всех элементов hj.

Пример характерной диаграммы значений rj приведен на фиг.2.

Максимальное значение rh из всех rj будет соответствовать тому значению jp индекса j, для которого чаще всего проявляется отклик зондирующего сигнала в выходных значениях mij БПФ, и, следовательно, тому значению fp разностной частоты, которое определяется выражением (2).

Решающая схема 4 анализирует значения rj, находит максимальное значение rh и соответствующий ему индекс jp. Кроме того, решающая схема 4 формирует флаг sобн, устанавливаемый в состояние «Обнаружен» или в состояние «Не обнаружен», по следующему правилу:

s о б н = { " О б н а р у ж е н " , п р и r h > r h п о р " Н е о б н а р у ж е н " , п р и r h r h п о р , ( 3 )

где r h п о р = σ 0 2 ln ( 1 exp ( ln ( 1 P л т ) J ) ) ;

Pлт - значение регламентируемой вероятности ложной тревоги;

σ0 - среднее квадратическое отклонение значения rj в отсутствие отклика зондирующего сигнала. Например, если использовать значения rj для текущего сеанса работы ЛЧМ-приемника, величину σ0 можно определить как j = 0 J 1 r j 2 J .

Результаты расчета нормированных значений r h п о р σ 0 в виде функции от Рлт приведены на фиг.3 для J=40, 400, 4000.

Если флаг sобн установлен в состояние «Обнаружен», то вычислитель стартового времени 5 определяет значение разностной частоты fp по правилу (2), значение стартового времени:

Т с т = [ ( Т с т + τ з ) Δ Т с т ] × Δ Т с т , ( 4 )

где (Тстз)=Тнач г-(fp+fнач г)/β (см. выражение (1));

ΔТст - регламентируемый шаг временной сетки для передающих станций (например, ΔТст=1 с), величина которого заведомо больше возможной величины τз;

[х] - операция извлечения целой части величины x,

и значение группового пути распространения радиоволн по пути от передающей станции до приемного пункта:

L г р = ( ( Т с т + τ з ) [ ( Т с т + τ з ) Δ Т с т ] × Δ Т с т ) × с , ( 5 )

где [x] - операция извлечения целой части величины х;

с=3×105 км/с - скорость распространения электромагнитной волны.

Источники информации

1. З. №2009124999, G01S 5/00, опубл. 10.01.2011.

Способ обнаружения сигналов с линейной частотной модуляцией (ЛЧМ), заключающийся в том, что принимают пространственно разнесенные сигналы, излучаемые множеством радиопередатчиков, отличающийся тем, что выполняют ЛЧМ-гетеродинирование суммарного сигнала и вычисляют быстрое преобразование Фурье (БПФ), с помощью сумматора в течение сеанса обнаружения парциально накапливают отсчеты БПФ так, что на каждом j-ом выходе сумматора образуется величина rj, далее среди всех J выходов сумматора находят выход с тем индексом jр, для которого в результате накопления получено максимальное из всех значений rj и обозначенное как rh, и который однозначно связан со значением разностной частоты fp, затем по заданному значению вероятности ложной тревоги вычисляют пороговое значение rhпор, устанавливают флаг и, если sобн = «Обнаружен», по значению разностной частоты fp определяют значения стартового времени обнаруженного ЛЧМ-сигнала и длины его группового пути распространения.



 

Похожие патенты:

Изобретение относится к гидроакустическим системам навигации подводных аппаратов относительно судна обеспечения и может быть использовано для определения координат буксируемого подводного аппарата (БПА), осуществляющего гидролокацию рельефа дна.

Способ предназначен для определения оценок местоположения объектов на дорожной сети (ДС). Достигаемый технический результат - обеспечение возможности однозначного определения подвижного объекта, привязанного к ДС.

Изобретение относится к области навигационного приборостроения морских подвижных объектов. Достигаемый технический результат изобретения - повышение точности и помехоустойчивости системы.

Изобретение относится к радиопеленгации и может быть использовано в комплексах радиоконтроля для определения местоположения источников излучения коротковолнового диапазона с ионосферным распространением радиоволн.

Изобретение относится к вычислительной технике и может быть использовано при формировании эталонной информации (изображений) для корреляционно-экстремальных навигационных систем летательных аппаратов (ЛА).

Изобретение относится к радиотехнике и может быть использовано в многопозиционных радиотехнических системах с подвижными пунктами приема, устанавливаемыми, например, на летательных аппаратах.

Изобретения могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности измерения углов крена, азимута и тангажа ЛА.

Изобретение может быть использовано в загоризонтных радиолокаторах. Достигаемый технический результат - повышение точности измерения высот и упрощение устройства.

Изобретение относится к области определения местоположения источников радиоизлучений. Достигаемый технический результат изобретения - определение координат местоположения источника радиоизлучения известной интенсивности в пассивном режиме в условиях отсутствия взаимной временной синхронизации пунктов приема.

Изобретение относится к области радиотехники, а именно к беспроводной связи, и может быть использовано в системе определения местоположения. Технический результат заключается в предоставлении информации, применимой для выполнения операций определения местоположения для обеспечения возможности определения местоположения.

Изобретение относится к области обнаружения в атмосфере объектов, преимущественно малозаметных, и их координатометрии. Согласно способу дальнего оптического обнаружения по признакам конденсационного следа в атмосфере обеспечивают оптимальные условия обзора с размещением приемных постов угломерной системы координатометрии на бортах барражирующих выше облаков беспилотных вертолетов. При этом скорость перемещения фронта, альбедо и форма искусственного облака представляют его как конденсационный след, а по измеренным углам фронта конденсационного следа угломерным методом определяются местоположение и параметры движения объекта. Техническими результатами являются реализация дальнего пассивного местоопределения и расчета параметров движения объектов с минимальными ошибками, расширение зоны наблюдения. 2 н.п. ф-лы, 4 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемым техническим результатом изобретения является повышение вероятности обнаружения далеких и слаборассеивающих объектов. Повышение вероятности обнаружения достигается за счет применения новых операций поляризационно-чувствительной нелинейной итерационной обработки радиосигналов, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек. 1 ил.

Изобретение относится к радиотехнике, в частности к радиопеленгации. Достигаемый технический результат - повышение точности пеленгации при приеме радиосигналов источника радиоизлучения и одновременно отраженных сигналов с использованием антенных систем (АС), состоящих из слабонаправленных элементов (вибраторов). Повышение точности пеленгации достигается за счет использования эффективного способа идентификации параметров АС, состоящего в том, что первоначально с помощью преобразования Фурье определяются амплитуды и разность по времени приходов сигналов, входящих в суммарный сигнал, затем находятся по аналитическому выражению сигналов значения фаз сигналов, по которым составляется система алгебраических уравнений для определения амплитуды, азимутальных и угломестных пеленгов и начальной фазы каждого наложившегося сигнала. 4 ил.

Изобретения относятся к радиотехнике и могут быть использованы для определения угловой ориентации летательных аппаратов (ЛА) в пространстве и на плоскости. Достигаемый технический результат - повышение точности оценивания углов крена α, азимута θ и тангажа β ЛА. Указанный результат достигается тем, что выделяют три антенных элемента (АЭ) из их общего числа M, лежащие в одной плоскости, определяют их предварительные координаты, задают необходимую точность е определения координат АЭ, на основе метода Гауса-Зейделя и золотого сечения уточняют координаты АЭ путем максимизации целевой функции BΣ. Поиск максимума BΣ для каждой комбинации αi, θi, βi осуществляют до тех пор, пока длина интервала золотого сечения не станет меньше наперед заданного значения е. Аналогично последовательно методом одномерной оптимизации на основе золотого сечения с точностью е определяют координаты всех M АЭ антенной решетки и далее - уточненные эталонные значения разностей фаз Δφэт.m0(αi, βi, θi). Устройство, реализующее способ, содержит M идентичных приемных каналов, M≥3, блок формирования опорных сигналов, тактовый генератор, S корреляторов, S блоков анализа, S+1 коммутатор, блок начальной установки корреляторов, радионавигатор, блок управления, S блоков вычитания, блок памяти, первый и второй вычислители-формирователи, блок принятия решения, первый и второй вычислители, блок индикации и четыре входных установочных шины. Перечисленные средства определенным образом соединены между собой. 2 н.п. ф-лы, 18 ил.

Изобретение относится к радиотехнике и может быть использовано в системах контроля воздушного, наземного и морского пространства с использованием прямых и рассеянных подвижными объектами радиосигналов, излучаемых множеством неконтролируемых и контролируемых передатчиков радиоэлектронных систем различного назначения. Достигаемый технический результат изобретения - повышение вероятности поиска малоразмерных подвижных объектов. Указанный результат достигается за счет применения новых операций адаптивной обработки с обратной связью по полезному радиосигналу, обеспечивающих повышение чувствительности и динамического диапазона при формировании компонент горизонтальной и вертикальной поляризации двухкомпонентного комплексного частотно-временного изображения радиосигналов, рассеянных объектами в анализируемой области доплеровских частот и временных задержек. 3 ил.

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения. Достигаемый технический результат - определение пространственных координат местоположения источников радиоизлучений (ИРИ) путем измерения его уровня сигнала с помощью двух стационарных постов радиоконтроля и одного мобильного в М точках (первый вариант) или двух мобильных постов радиоконтроля (второй вариант) в M1 и М2 точках их положения при независимом перемещении по нелинейной траектории без привлечения уравнений линий положения. Способ основан на сравнении отношений расстояний от точек измерения до местоположения источника радиоизлучения и обратных отношений измеренных уровней сигналов Для этого составляются мультипликативные функции разностей указанных отношений. Для обработки этих функций предложен дихотомический способ, в основе которого лежит принцип последовательного определения параметров местоположения ИРИ. 1 табл., 3 ил.

Изобретение относится к области навигации летательных аппаратов (ЛА) с использованием комплексного способа навигации, функционально объединяющего инерциальный способ навигации, спутниковый способ навигации и дальномерный способ навигации. Изобретение может быть использовано при осуществлении навигации высокодинамичных ЛА в сложных навигационных условиях. Новизна способа состоит в том, что формируют дополнительную базу данных, включающую диаграммы направленности антенны спутникового приемника и бортовых антенн приемопередатчика дальномерных сигналов, после приема сигналов навигационных спутников (НС) параллельно с определением навигационных параметров по спутниковому способу навигации (ССН) выделяют состав рабочего созвездия и угловые координаты НС, выделяют отношения сигнал/шум спутникового приемника и формируют корреляционную матрицу ошибок ССН, затем формируют векторы направления НС и определяют весовые коэффициенты НС из состава рабочего созвездия по ориентации ЛА, уточненному положению ЛА, угловым координатам НС и диаграмме направленности антенны спутникового приемника, корректируют состав рабочего созвездия спутников по весовым коэффициентам НС, корректируют навигационные параметры по откорректированному составу рабочего созвездия НС, далее формируют ориентированную корреляционную матрицу ошибок ССН, учитывающую ориентацию ЛА на основе откорректированного состава рабочего созвездия и учета весовых коэффициентов НС, параллельно по дальномерному способу навигации (ДСН) формируют корреляционную матрицу ошибок ДСН, формируют векторы направления и определяют весовые коэффициенты наземных радиомаяков (НРМ) из рабочего состава НРМ по ориентации ЛА, уточненному положению ЛА, координатам НРМ из рабочего состава НРМ и диаграмме направленности упомянутой бортовой антенны приемопередатчика, корректируют рабочий состав НРМ по весовым коэффициентам НРМ, формируют ориентированную корреляционную матрицу ошибок ДСН, учитывающую ориентацию ЛА, на основе откорректированного рабочего состава НРМ и учета весовых коэффициентов НРМ формируют соответственно ориентированные навигационные параметры по ССН и ДСН и используют их в бортовом вычислителе для формирования комплексных навигационных параметров, при этом выходные результаты представляют в виде уточненного положения ЛА, откорректированного с учетом ориентации ЛА. Предлагается вариант способа, использующий для определения данных по ориентации ЛА оператор ориентации, вычисляемый в инерциальном способе навигации. Предлагается также вариант способа, определяющий выбор диаграммы направленности антенны одной из бортовых антенн приемопередатчика дальномерных сигналов. Предлагается также вариант способа, учитывающий зависимость диаграммы многолучевости ЛА от ориентации ЛА и корректирующий определение положения ЛА в зависимости от уровня многолучевости. Результатом использования способа является повышение надежности и точности систем навигации, снижения вероятности авиационных катастроф. 3 з.п. ф-лы, 5 ил., 3 прил.

Изобретение относится к геофизике и может использоваться в системе мониторинга окружающей среды, сейсмического и инфразвукового мониторинга, МЧС России, контроля околоземного космического пространства для диагностики положения эпицентральной зоны потенциальных источников протяженных перемещающихся ионосферных возмущений (ПИВ). Достигаемый технический результат - повышение точности и надежности определения скорости распространения ПИВ и положения эпицентральной зоны источника ПИВ. Способ определения положения эпицентральной зоны источника и скорости распространения ПИВ заключается в том, что: принимают сетью рассредоточенных по поверхности Земли навигационных приемников, синхронизированных по времени, электромагнитные сигналы от группировки космических аппаратов (КА); передают принятые данные в центр обработки с ПЭВМ оператора на базе процессора с устройством отображения информации, где: рассчитывают время прохождения электромагнитных сигналов от каждого КА к каждому навигационному приемнику; рассчитывают характеристики псевдопозиционирования навигационных приемников; рассчитывают ошибки и изменения ошибок позиционирования навигационных приемников; определяют время прохождения фронта ПИВ, при этом: время получения сигнала о прохождении фронта ПИВ устанавливают отдельно для каждого навигационного приемника и определяют его по времени появления в течение нескольких секунд сочетания знакопеременных экстремумов ошибок его позиционирования; скорость распространения ПИВ определяют путем осреднения скоростей перемещения ПИВ между парами из трех любых заранее выбранных навигационных приемников, а положение эпицентральной зоны источника ПИВ определяют по зоне пересечения прямых, направление которых определено векторами осредненных скоростей, полученных для каждых трех заранее выбранных навигационных приемников. 7 ил.

Изобретение относится к области радиотехнической разведки. Достигаемый технический результат - оперативная оценка наличия и характер траектории полета воздушного объекта (ВО). Указанный результат достигается за счет того, что при сопровождении воздушного объекта по первичной радиотехнической информации на приемных постах производят одновременную первичную фильтрацию отдельных пеленгов по времени их поступления, при этом движение воздушного объекта принимают прямолинейным и равномерным, а в противном случае принимают за маневр, при этом формирование начальной оценки приближенного вектора параметров траектории воздушного объекта и ковариационной матрицы ошибок на приемных постах производят по первому пеленгу, поступившему от одного из информационных датчиков по новому воздушному объекту, далее производят окончательную фильтрацию информации с получением уточненного вектора параметров траектории каждого воздушного объекта и алгоритмической ковариационной матрицы ошибок параметров наблюдения приемных постов, выдают точную оценку параметров траектории каждого воздушного объекта для четкого отслеживания характера и параметров его полета, при этом на приемных постах фильтрацию отдельных пеленгов воздушного объекта по времени их поступления производят определенным образом. 2 н.п. ф-лы, 5 ил.

Изобретение относится к области навигационных систем и может быть использовано для позиционирования удаленного объекта на основе нескольких пространственно разнесенных дальномерно-угломерных приборов (ПДУ). Достигаемый технический результат - повышение точности и скорости позиционирования, обеспечение надежности и живучести системы позиционирования. Указанный результат достигается за счет того, что дальномерный узел наводчика наводит свой ПДУ на объект и определяет расстояние и угловые координаты объекта, по этим измерениям вычисляют первое приближение координат объекта, которые передают на остальные дальномерные узлы, которые по этим координатам прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют второе приближение координат объекта, используя для этого расстояние от дальномерного узла наводчика и множество сочетаний расстояний от дальномерных узлов до объекта, взятых попарно, и передают координаты объекта на остальные дальномерные узлы, которые по этим координатам заново прицеливают свои ПДУ и определяют расстояния до объекта, затем по измеренным расстояниям вычисляют третье приближение координат объекта и так далее, пока разница в определении координат объекта в двух соседних, по порядку выполнения, приближениях координат объекта не станет менее порогового значения. Для дальномерных узлов, расстояния которых до объекта определяют координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, выполняют дополнительное прицеливание ПДУ путем их пробных угловых перемещений, при этом расстояния от дальномерных узлов до объекта, определяющие координаты объекта, отклоняющиеся от приближений координат объекта более, чем на величину порогового значения, исключают из вычислений координат объекта. 4 з.п. ф-лы, 1 ил.

Изобретение относится к обнаружению сигналов с линейной частотной модуляцией. Достигаемый технический результат - повышение достоверности обнаружения ЛЧМ-сигналов и возможность определения их характеристик в случае обнаружения. Указанный результат достигается тем, что в заявленном способе принимают пространственно разнесенные сигналы, излучаемые множеством радиопередатчиков, выполняют ЛЧМ-гетеродинирование суммарного сигнала и вычисляют быстрое преобразование Фурье, с помощью сумматора в течение сеанса обнаружения парциально накапливают отсчеты БПФ, далее среди выходов сумматора находят максимальное значение rh и соответствующий ему индекс jp, по заданному значению вероятности ложной тревоги вычисляют пороговое значение rhпор, устанавливают флаг и, если sобн«Обнаружен», по величине индекса jp определяют значения стартового времени обнаруженного ЛЧМ-сигнала и длины его группового пути распространения. 3 ил.

Наверх